

Safer and Faster
New JDK Security Features and
Performance Improvements

Sean Mullan
Consulting Member of Technical Staff
Oracle
October 28, 2015
@seanjmullan

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not
a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing
of any features or functionality described for Oracle’s products remains at the sole
discretion of Oracle.

3

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

2

3

4

5

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

2

3

4

5

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Java SE Security Components

Tools

APIs and Libraries

keytool

Java Language and Runtime Security

JAAS

jarsigner policytool

GSSAPI/Kerberos XML Signature

JSSE (SSL/TLS) SASL

JCE (crypto) PKI

Java Language and
Runtime Security

kinit, klist, ktab

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

2

3

4

5

7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Wikipedia: “Security by default, in software, means that the default
configuration settings are the most secure settings possible, which
are not necessarily the most user friendly settings.” [1]
• OWASP: “… by default, the experience should be secure, and it

should be up to the user to reduce their security – if they are
allowed.” [2] 
 
 
 
[1] https://en.wikipedia.org/wiki/Secure_by_default  
[2] https://www.owasp.org/index.php/Establish_secure_defaults

What is “Secure by Default”?

8

https://en.wikipedia.org/wiki/Secure_by_default
https://www.owasp.org/index.php/Establish_secure_defaults

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Wikipedia: “In many cases, security and user friendliness are
evaluated based on both risk analysis and usability tests. This leads
to the discussion of what the most secure settings actually are. As a
result, the precise meaning of "secure by default" remains
undefined.”
• OWASP: “It is important to understand that by no means does

“Secure Defaults” mean turning off all possible network applications
or sockets and services. And neither do Secure Defaults mean a
100% secure environment. But, they should ensure the least number
of possible loopholes and fewer drawbacks.”

Also …

9

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Compatibility
• Interoperability
• Usability
• One size does not fit all
• Phased approach
• Incorporate ability to quickly adapt to changes
• New vulnerabilities
• Weak or broken algorithms

Challenges

10

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Initial focus: provide protection against untrusted code
• Default sandbox policy
• Restrict access to internal packages

• As scope of security APIs expanded, new defaults became
necessary
• Cryptographic algorithms were weakening or being broken
• TLS was increasingly under attack

• Going forward, module system will introduce additional safeguards
• Not just for code running with a Security Manager

Java Secure Defaults

11

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Direct access to crypto algorithms (via JCE) is not restricted
• Ensures long-term compatibility
• You can still use MD2, but you do so at your own risk

• Required algorithms are evaluated at each major release
• Ensures every SE implementation supports industry-recommended algorithms

• Some APIs have defaults
• KeyStore.getDefaultType()
• In JDK 9, default changed from jks to pkcs12

• SecureRandom.getInstanceStrong()
• Reads securerandom.strongAlgorithms security property (value varies per platform)

Cryptographic Algorithm Defaults

12

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Three security properties control algorithm and key size restrictions
(values shown below are for JDK 8u65)
• jdk.certpath.disabledAlgorithms=MD2, RSA keySize < 1024

• Certificate validation will fail if any of the listed algorithms or key sizes are used. Includes
CRLs and OCSP responses.

• jdk.tls.disabledAlgorithms=SSLv3, RC4, DH keySize < 768

• Protocols, algorithms and key sizes listed will not be negotiated in SSL/TLS sessions
• jdk.tls.legacyAlgorithms=K_NULL, C_NULL, M_NULL, \  
 DHE_DSS_EXPORT, DHE_RSA_EXPORT, DH_anon_EXPORT, \  
 DH_DSS_EXPORT, DH_RSA_EXPORT, RSA_EXPORT, \  
 DH_anon, ECDH_anon, RC4_128, RC4_40, DES_CBC, DES40_CBC

• Algorithms and cipher suites listed will be negotiated only if enabled and there is no other
alternative

PKI and TLS Algorithm Restrictions

13

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Restricted Algorithm Matrix (JDK 8, 9)

14

Algorithm/Protocol CertPath TLS Legacy TLS Disabled Notes

MD2 √
MD5 √ * * Disabled in 9, targeted to 8u71 (Jan 2016)

SHA-1 Plan in development

RSA < 1024 bits √
DH < 768 bits N/A √
DES N/A √
RC4 N/A √
Export CipherSuites N/A √
SSLv3 N/A √

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Applications can also use the AlgorithmConstraints API to
implement application-specific restrictions
• Example: extending TLS to restrict certificates with SHA-1 signatures

AlgorithmConstraints API

15

SSLParameters sslParams = new SSLParameters();
sslParams.setAlgorithmConstraints(new AlgorithmConstraints() {
 @Override
 public boolean permits(Set<CryptoPrimitive> primitives,
 String algorithm, AlgorithmParameters params) {
 return !(primitives.contains(CryptoPrimitive.SIGNATURE) &&
 algorithm.startsWith(“SHA1"));
 }
 . . .
});

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• SSLv3 disabled by default (January 2015: JDK 8u31)
• Added to jdk.tls.disabledAlgorithms security property

• RC4 Cipher Suites disabled by default in a phased approach

Other TLS Secure Defaults (continued)

16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• SSLv3 disabled by default (January 2015: JDK 8u31)
• Added to jdk.tls.disabledAlgorithms security property

• RC4 Cipher Suites disabled by default in a phased approach
1. Lowered position in enabled cipher suites (October 2014: JDK 8u25)

Other TLS Secure Defaults (continued)

17

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• SSLv3 disabled by default (January 2015: JDK 8u31)
• Added to jdk.tls.disabledAlgorithms security property

• RC4 Cipher Suites disabled by default in a phased approach
1. Lowered position in enabled cipher suites (October 2014: JDK 8u25)
2. Removed from default enabled cipher suites and added to
jdk.tls.legacyAlgorithms property (July 2015: JDK 8u51)
• Applications must explicitly enable RC4 using the setEnabledCipherSuites method of  
SSLSocket or SSLEngine

• RC4 not used unless explicitly enabled and there are no other candidates

Other TLS Secure Defaults (continued)

18

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• SSLv3 disabled by default (January 2015: JDK 8u31)
• Added to jdk.tls.disabledAlgorithms security property

• RC4 Cipher Suites disabled by default in a phased approach
1. Lowered position in enabled cipher suites (October 2014: JDK 8u25)
2. Removed from default enabled cipher suites and added to
jdk.tls.legacyAlgorithms property (July 2015: JDK 8u51)
• Applications must explicitly enable RC4 using the setEnabledCipherSuites method of  
SSLSocket or SSLEngine

• RC4 not used unless explicitly enabled and there are no other candidates

3. Disabled by default (August 2015: JDK 8u60)
• Added to jdk.tls.disabledAlgorithms property

Other TLS Secure Defaults (continued)

19

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Security Tool Defaults (JDK 8, 9)
• keytool • jarsigner

– digest algorithm
– SHA-256

– signature algorithm
– same as keytool

20

Key
Type

Key Size Signature Algorithm

DSA JDK 8: 1024  
JDK 9: 2048

JDK 8: SHA1withDSA
JDK 9: SHA256withDSA

RSA 2048 SHA256withRSA

EC 256 SHA256withECDSA

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Strong encapsulation
• A module’s packages must be exported for its public types to be accessible to

other modules, e.g.: 
 module java.security.sasl {  
 requires java.logging;  
 exports javax.security.sasl;  
 }

• Qualified exports allow you to export public types to one or more modules, e.g.: 
 module java.security.sasl {  
 requires java.logging;  
 exports javax.security.sasl;  
 exports com.sun.security.sasl.util to jdk.security.jgss;  
 }

Module System Security Features (JDK 9)

21

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Encapsulate most internal APIs (JEP 260)
• With a few exceptions, all internal APIs will be inaccessible by default
• Even if a Security Manager is not enabled

• IllegalAccessError will be thrown if SecurityManager disabled
• AccessControlException will be thrown if SecurityManager enabled

Module System Security Features (continued)

22

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Module System Security Features (continued)

23

$ cat Test.java
import sun.security.x509.X509CertImpl;
public class Test {
 public static void main(String[] args) throws Exception {
 X509CertImpl cert = new X509CertImpl();
 }
}

$ javac Test.java
Test.java:1: error: package sun.security.x509 does not exist
import sun.security.x509.X509CertImpl;
…
$ javac -XaddExports:java.base/sun.security.x509=ALL-UNNAMED Test.java 

$ java Test
Exception in thread "main" java.lang.IllegalAccessError: class Test (in module: Unnamed Module) cannot
access class sun.security.x509.X509CertImpl (in module: java.base), sun.security.x509 is not exported to
Unnamed Module

at Test.main(Test.java:7)

$ java -Djava.security.manager Test
Exception in thread "main" java.security.AccessControlException: access denied
("java.lang.RuntimePermission" “accessClassInPackage.sun.security.x509”)
 …

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• De-privilege modules that do not require AllPermission
• Loaded with extension class loader
• Applied to modules: java.activation, java.annotations.common, java.corba,
java.transaction, java.xml.bind, java.xml.ws, jdk.accessibility,
jdk.crypto.ec, jdk.crypto.pkcs11, jdk.localedata, jdk.naming.dns,
jdk.scripting.nashorn, jdk.xml.dom, jdk.zipfs

• Apply principle of least privilege, and only grant required permissions, e.g.: 
 grant codeBase “jrt:/jdk.crypto.ec” {
 permission java.lang.RuntimePermission "accessClassInPackage.sun.security.*";
 permission java.lang.RuntimePermission "loadLibrary.sunec";
 permission java.util.PropertyPermission "*", "read";
 permission java.security.SecurityPermission "putProviderProperty.SunEC";
 permission java.security.SecurityPermission "clearProviderProperties.SunEC";
 permission java.security.SecurityPermission "removeProviderProperty.SunEC";
 };

Module System Security Features (continued)

24

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

3

2

4

5

25

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Since JDK 8, we have implemented major performance
improvements to several cryptographic algorithms
• Most of these leverage JVM Intrinsics

JCE Performance Improvements

26

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• The HotSpot JIT compiler can compile bytecode in two ways
• Normal compilation
• Intrinsics, which are hand-written assembly code for specific methods that are

embedded in JVM code generation logic
• For some performance critical code, normal compilation is not able to

generate optimal code or use platform-specific instructions
• Before compiling a method, the JIT compiler checks for an intrinsic

and if defined, uses it instead
• Intrinsics allow JCE to leverage ISA-specific hardware accelerated

instructions

How do Intrinsics Work?

27

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• JDK 8: Leverage CPU Instructions for AES Cryptography
• http://openjdk.java.net/jeps/164
• AES block cipher on x86 systems

• JDK 8u20: Support for AES on SPARC
• https://bugs.openjdk.java.net/browse/JDK-8002074
• SPARC T4 Systems and beyond

JCE Performance Improvements using Intrinsics

28

http://openjdk.java.net/jeps/164
https://bugs.openjdk.java.net/browse/JDK-8002074

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• JDK 8u40: Leverage CPU Instructions to Improve SHA
• http://openjdk.java.net/jeps/207
• SHA1 and SHA2 message digests on SPARC systems

• JDK 9: Leverage CPU Instructions for GHASH and RSA
• http://openjdk.java.net/jeps/246
• GHASH (used in AES/GCM mode) on x86/SPARC systems and RSA on

x86_64 systems

JCE Performance Improvements using Intrinsics (cont)

29

http://openjdk.java.net/jeps/207
http://openjdk.java.net/jeps/246

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
30

SHA-256 Performance on SPARC

• SHA-256: up to 7.8x faster (in
throughput) than
OracleUcrypto
• More gain at smaller data sizes

• SHA-1 (not shown): up to 7.7x
faster than OracleUcrypto
• SecureRandom
• SHA1PRNG: 48%

improvement

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
31

HTTPS Benchmark Performance on SPARC

Providers Throughput
(ops/sec)

%CPU Ops/sec/
%CPU

Gain
(factor)

Java w/o Intrinsics 76185 91 837 1

Java+Ucrypto 88816 82 1083 1.29

Java+AES Intrinsics 97791 76 1287 1.54

Java+AES+SHA Intrinsics 110033 66 1667 1.99

Benchmark: HTTP Servlet
Response Size = 1K
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
Number of Users: 90

• AES and SHA Intrinsics
significantly improve
performance of HTTPS
• 99% faster in throughput

over pure Java

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

RSA Comparison with Specjvm2008 crypto.rsa on Solaris
• SPARC T7-1@4.13GHz (Tahoe)
• OS version: Solaris 12.0 b69 (March

2015)
• JDK 1.9.0 b74
• Single-threaded runs

• Intel X5-2 Xeon E5-2690 v3 @2.60GHz
(Haswell)

• OS version: Solaris 11.3 b15 (Feb 2015)
• JDK 1.9.0 b74
• Single-threaded runs

32

Crypto.rsa RSA->Ucrypto RSA->intrinsic RSA->pure java

Throughput
(Ops/min)

649.51 N/A 57.48

Crypto.rsa RSA->Ucrypto RSA->intrinsic RSA->pure java

Throughput
(Ops/min)

351.92 362.79 150.79

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
33

AES/GCM Performance on x86
• JDK 9: up to a 62x performance gain

over the JDK 8 GA implementation
• up to 5.45x over 8u60 implementation

• 8u60 performance improved due to:
• https://bugs.openjdk.java.net/browse/

JDK-8069072

https://bugs.openjdk.java.net/browse/JDK-8069072

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Improve performance of applications run with a Security Manager
enabled (JEP 232)
• Optimizations implemented:
• Reduced number of synchronized blocks
• Used concurrent collections to cache Permissions, ProtectionDomains, etc
• Improved speed of SecurityManager.checkPackageAccess()
• Eliminated name service lookup from CodeSource.hashCode()

• Increased speed and throughput of permission checks
• Did not focus on stack walking or AccessController.doPrivileged()

Improve Secure Application Performance (JDK 9)

34

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

SPECjEnterprise Benchmark Results
Method Improvement  

(Inclusive CPU Time)
AccessController.checkPermission() 22.7%

AccessControlContext.checkPermission() 64%

ProtectionDomain.implies() 65.4%

Permissions.implies() 35.9%

SecurityManager.checkPackageAccess() 29.6%

35

Overall overhead of Security Manager (in response time): 4.68%

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 36

Duke wins … again!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

3

37

4

2

5

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

JDK 9 Security Features

• JEP 219: Datagram Transport
Layer Security (DTLS)
• JEP 229: Create PKCS12

Keystores by Default
• JEP 232: Improve Secure

Application Performance
• JEP 244: TLS Application-Layer

Protocol Negotiation Extension

• JEP 246: Leverage CPU
Instructions for GHASH and
RSA
• JEP 249: OCSP Stapling for TLS
• JEP 273: DRBG-Based

SecureRandom Implementations

38

http://openjdk.java.net/jeps/0

http://openjdk.java.net/jeps/0

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Transition the default keystore type from JKS to PKCS12
• Improved security and flexibility
• PKCS12 supports stronger cryptographic algorithms than JKS
• PKCS12 supports secret keys and attributes

• Compatibility is maintained
• A JKS keystore can read a PKCS12 keystore and vice-versa

• KeyStore.getDefaultType() will now return “pkcs12”
• New KeyStore.getInstance(File, …) methods for

automatically determining type of keystore

JEP 229: Create PKCS12 Keystores by Default

39

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// Create default keystore type
KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType());

// Prints “pkcs12”
System.out.println(ks.getType());

// Load keystore
try (FileInputStream fis = new FileInputStream("keystore.p12")) {
 ks.load(fis, "password".toCharArray());
}

// Or preferably, use new file probing API to automatically determine type
ks = KeyStore.getInstance(new File(“keystore.p12"), “password”.toCharArray());

40

Create PKCS12 Keystores by Default (Example)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |
41

Improved Provider Configuration
JEP 246: Leverage CPU Instructions for GHASH/RSA

• The existing provider configuration security properties (in the
java.security file) have limitations
• Insufficient for providers that offer large performance gains for some, but not

all algorithms
• E.g.: on Solaris, the SunJCE provider in JDK 9 offers better performance for AES/

GCM but the Ucrypto provider performs better for other algorithms

• A new jdk.security.provider.preferred property will allow
specific providers to be chosen before others, e.g.: 
 
 jdk.security.provider.preferred=AES/GCM:SunJCE,\  
 MessageDigest.SHA-256:SUN

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Implement the three Deterministic Random Bit Generator (DRBG)
mechanisms described in NIST 800-90Ar1
• Use modern algorithms as strong as SHA-512 and AES-256
• Each can be configured to better match user requirements
• Support for mechanisms becoming very important in some environments

• Add new methods to SecureRandom for DRBG operations
• Add new APIs for specifying Entropy Input as described in NIST SP

800-90B and 800-90C

JEP 273: DRBG-Based SecureRandom
Implementations

42

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// Create SecureRandom for “HashDRBG” mechanism
SecureRandom sr = SecureRandom.getInstance(“HashDRBG”);

// Optionally, configure DRBG
// (not all code shown)
DrbgSpec spec =
 new DrbgSpec(entropyInput, “SHA-256”, 256, true, false, nonce, personal);
sr.configure(spec);

// Generate random bytes
sr.nextBytes(random);

43

DRBG-Based SecureRandom Implementations (Example)
NOTE: API is still under discussion

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Extend the JSSE API and implementation to support DTLS (RFCs
4347 and 6347)
• TLS must run over a reliable transport channel such as TCP
• DTLS allows applications to use TLS over an unreliable transport

channel such as UDP
• An increasing number of application protocols use UDP, e.g.: SIP, CoAP,

SRTP
• Applications use the SSLEngine programming model to use DTLS

JEP 219: Datagram Transport Layer Security (DTLS)

44

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Implement the TLS Certificate Status Request Extensions (RFCs
6066 and 6961)
• Client-side OCSP checking incurs significant performance overhead
• With OCSP Stapling, the server is responsible for obtaining and

sending the OCSPResponse to the client. This has several benefits:
• Performance: responses can be cached and sent to all clients
• Security
• Allows captive portals to check revocation status
• Avoids client-side privacy leaks

JEP 249: OCSP Stapling for TLS

45

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// By default, OCSP Stapling is enabled if revocation checking is enabled.
// To disable, set the system property jdk.tls.client.enableStatusRequestExtension
// to false.

SSLContext context = SSLContext.getInstance(“TLS”);
TrustManagerFactory fac = TrustManagerFactory.getInstance(“PKIX”);

// To enable revocation checking, either:
// 1. Set revocation property to true
System.setProperty(“com.sun.net.ssl.checkRevocation”, “true”);
fac.init(keyStore);

// Or, 2. use PKIXBuilderParameters and revocation is enabled by default
PKIXBuilderParameters params =
 new PKIXBuilderParameters(anchors, new X509CertSelector());
ManagerFactoryParameters trustParams = new CertPathTrustManagerParameters(params);
fac.init(trustParams);

context.init(null, fac.getTrustManagers(), null);

46

OCSP Stapling for TLS (Example)
On the Client

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

// Enable OCSP Stapling (off by default)
System.setProperty(“jdk.tls.server.enableStatusRequestExtension”, “true”);

// Yes, that’s really it!

// Optionally, several other system properties can be set for advanced usages.

// cache lifetime, in seconds (default: 3600)
System.setProperty(“jdk.tls.stapling.cacheLifetime”, 7200);

// cache size, number of entries (default: 256)
System.setProperty(“jdk.tls.stapling.cacheSize”, 128);

// and a few more …

47

OCSP Stapling for TLS (Example)
On the Server

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Add API support for the ALPN TLS Extension (RFC 7301), which
provides the means to negotiate an application protocol used over a
TLS connection
• An important consumer of this feature is the HTTP/2 client (JEP 110/

RFC 7540)

JEP 244: TLS Application-Layer Negotiation Extension
(ALPN)

48

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

SSLParameters params = sslSocket.getSSLParameters();

// Set application protocols to “h2” (HTTP/2) and “http/1.1”
params.setApplicationProtocols(new String[]{"h2", “http/1.1”});

// Optionally, set other parameters, cipher suites, etc

sslSocket.setSSLParameters(params);

sslSocket.startHandshake();

if (sslSocket.getApplicationProtocol().equals(“h2”)) {
 . . .
}

49

TLS Application-Layer Negotiation Extension (Example)
On the Client

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Overview

Secure By Default Improvements

Performance Improvements

JDK 9 Security Features

Conclusion

Agenda

1

3

50

5

2

4

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Security is important
• We continue to make Java more secure and faster and incorporate

new security features
• You can help us!
• Let us know what you think is important
• Participate: http://openjdk.java.net/groups/security/
• Contribute: http://openjdk.java.net/contribute

Conclusion

51

http://openjdk.java.net/groups/security/
http://openjdk.java.net/contribute

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

• Solaris Performance Application Engineering Team for performance
charts
• Java Security Libraries Team: Xue-Lei Fan, Frances Ho, Jamil

Nimeh, Jeffrey Nisewanger, Valerie Peng, Vincent Ryan, Anthony
Scarpino, Weijun Wang, Bradford Wetmore

Acknowledgements

52

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Questions?

53

