Understanding Java
Garbage Collection

Gil Tene

High level agenda

@ Some GC fundamentals, terminology & mechanisms
@ Classifying currently available collectors
® Why Stop-The-World is a problem

@ The C4 collector: What a solution to STW looks like...

About me: Gil Tene

@ co-founder, CTO @Azul
Systems

i
S

® Have been working on "think
different” GC approaches
since 2002

@ Created Pauseless & C4 core
GC algorithms (Tene, Wolf)

@ A Long history building
Virtual & Physical Machines,
Operating Systems, Enterprise
apps, efc...

4

@ I also like to nag people
about how they measure and
think about |a-|-ency * working on real-world trash compaction issues, circa 2004

AZUL

©2015 Azul Systems, Inc. SYSTEMS

Why should you understand
(at least a little) how GC works?

The story of the good little architect

@ A good architect must, first and foremost, be able to
Impose their architectural choices on the project...

@ Early in Azuls concurrent collector days, we encountered
an application exhibiting 18 second pauses

@ Upon investigation, we found the collector was performing 10s of
millions of object finalizations per GC cycle

*We have since made reference processing fully concurrent...

@ Every single class written in the project had a finalizer

@ The only work the finalizers did was nulling every reference field

@ The right discipline for a C++ ref-counting environment

@ The wrong discipline for a precise garbage collected environment

15 Azul Systems, Inc

Much of what People seem to “know"”
about Garbage Collection is wrong

@ In many cases, its much better than you may think

@ GC is extremely efficient. Much more so that malloc()
@ Dead objects cost nothing to collect
@ GC will find all the dead objects (including cyclic graphs)

. Sk

@ In many cases, its much worse than you may think

o Yes, it really will stop for 71 sec per live GB (except with Zing)
@ No, GC does not mean you cant have memory leaks

@ No, those pauses you eliminated from your 20 minute test are
not gone

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

S5 AN « SPREw

ool 4 ,
on 3 n..ﬂ.r N ENCS -P..@Ju.lluldu
_ A, ¢ TR

S
=
%)
=
@
i
%]
>
(]
3
re)
-
=)
N
(@)

A Basic Terminology example:
What is a concurrent collector?

@ A Concurrent Collector performs garbage collection
work concurrently with the applications own execution

@ A Parallel Collector uses multiple CPUs to perform
garbage collection

Classifying a collectors operation

@ A Concurrent Collector performs garbage collection work
concurrently with the applications own execution

® A Parallel Collector uses multiple CPUs to perform garbage
collection

@ A Stop-the-World collector performs garbage collection while
the application is completely stopped

@ An Incremental collector performs a garbage collection
operation or phase as a series of smaller discrete operations
with (potentially long) gaps in between

@ Monolithic: “all in one shot”; the opposite of Incremental

@ Mostly means sometimes it isnt (usually means a different
fall back mechanism exists)

Precise vs. Conservative Collection

@ A Collector is Conservative if it is unaware of some
object references at collection time, or is unsure
about whether a field is a reference or not

@ A Collector is Precise if it can fully identify and
process all object references at the time of collection

@ A collector MUST be precise in order to move objects

® The COMPILERS need to produce a lot of information (oopmaps)

@ All commercial server JVMs use precise collectors

@ All commercial server JVMs use some form of a moving collector

Safepoints

@ A GC Safepoint is a point or range in a threads
execution where the collector can identify all the
references in that threads execution stack

o “Safepoint” and “"GC Safepoint” are often used interchangeably

@ “Bringing a thread to a safepoint” is the act of getting
a thread to reach a safepoint and not execute past it
@ Close to, but not exactly the same as “stop at a safepoint”
@ e.g. JNI: you can keep running in, but not past the safepoint
@ Safepoint opportunities are (or should be) frequent

@ In a Global Safepoint all threads are at a Safepoint

What's common to all
precise GC mechanisms?

@ Identify the live objects in the memory heap
@ Reclaim resources held by dead objects

@ Periodically relocate live objects

@ Examples:

@ Mark/Sweep/Compact (common for Old Generations)

@ Copying collector (common for Young Generations)

Mark (aka “Trace”)

@ Start from “roots” (thread stacks, statics, etc.)
@ “"Paint” anything you can reach as "live”
@ At the end of a mark pass:
@ all reachable objects will be marked "live”
@ all non-reachable objects will be marked

“"dead” (aka “non-live”).

@ Note: work is generally linear to “live set”

Sweep

@ Scan through the heap, identify "dead” objects and
track them somehow

@ (usually in some form of free list)

@ Note: work is generally linear to heap size

Compact

@ Over time, heap will get “swiss cheesed”: contiguous
dead space between objects may not be large
enough to fit new objects (aka "fragmentation”)

@ Compaction moves live objects together to reclaim
contiguous empty space (aka “relocate”)

@ Compaction has to correct all object references to
point to new object locations (aka “remap” or "fixup“)

@ Remap scan must cover all references that could
possibly point to relocated objects

@ Note: work is generally linear to “live set”

Copy

@ A copying collector moves all lives objects from a
"from” space to a "to” space & reclaims “from” space

o At start of copy, all objects are in “from” space and
all references point to “from” space.

@ Start from “root” references, copy any reachable
object to "to” space, correcting references as we go

@ At end of copy, all objects are in "to” space, and all
references point to "to” space

@ Note: work generally linear to “live set”

Mark/Sweep/Compact, Copy, Mark/Compact

@ Copy requires 2x the max. live set to be reliable

@ Mark/Compact [typically] requires 2x the max. live set
in order to fully recover garbage in each cycle

@ Mark/Sweep/Compact only requires 1x (plus some)
@ Copy and Mark/Compact are linear only to live set
@ Mark/Sweep/Compact linear (in sweep) to heap size

@ Mark/Sweep/(Compact) may be able to avoid some
moving work

@ Copying is [typically] "monolithic”

Generational Collection

@ Weak Generational Hypothesis; "most objects die young”

@ Focus collection efforts on young generation:

@ Use a collector in which work is linear to the live set
@ The live set in the young generation is a small % of the space

@ Promote objects that live long enough to older generations

@ Only collect older generations as they fill up

@ "Generational filter” reduces rate of allocation into older generations

@ Tends to be (order of magnitude) more efficient

@ Great way to keep up with high allocation rate

@ Practical necessity for keeping up with processor throughput

Generational Collection

@ Requires a "Remembered set”: a way to track all
references info the young generation from the outside

@ Remembered set is also part of "roots” for young
generation collection

@ No need for 2x the live set: Can “spill over” to old gen

@ Usually want to keep surviving objects in young
generation for a while before promoting them to the
old generation

@ Immediate promotion can significantly reduce gen. filter efficiency

@ W.aiting too long to promote can eliminate generational benefits

How does the remembered set work?

@ Generational collectors require a "Remembered set”: a
way to track all references into the young generation
from the outside

® Each store of a NewGen reference into and OldGen
object needs to be intercepted and tracked

@ Common technique: “"Card Marking”

@ A bit (or byte) indicating a word (or region) in OldGen is "suspect”

® Write barrier used to track references

@ Common technique (e.g. HotSpot): blind stores on reference write

@ Variants: precise vs. imprecise card marking, conditional vs. non-
conditional

Some non monolithic-STW stuff

Concurrent Marking

@ Mark all reachable objects as “live”, but object graph
is "mutating” under us.

@ Classic concurrent marking race: mutator may move
reference that has not yet been seen by the marker
into an object that has already been visited

@ If not intercepted or prevented in some way, will corrupt the heap

@ Example technique: track mutations, multi-pass marking

@ Track reference mutations during mark (e.g. in card table)
@ Re-visit all mutated references (and track new mutations)

@ When set is "small enough”, do a STW catch up (mostly concurrent)

@ Note: work grows with mutation rate, may fail fo finish

Incremental Compaction

@ "Much of the heap is not popular”

@ Track cross-region remembered sets (which region
points to which)

@ To compact a single region, only need fo scan regions
that point into it to fix all potential references

@ identify regions sets that fit in limited time

@ Each such set of regions is a Stop-the-World increment

@ Safe to run application between (but not within) increments

@ Note: work can grow with the square of the heap size

@ The number of regions pointing info a single region is generally
linear to the heap size (the number of regions in the heap)

Delaying the inevitable

@ Some form of copying/compaction is inevitable in practice

@ And compacting anything requires scanning/fixing all references to it

@ Delay tactics focus on getting “easy empty space” first

@ This is the focus for the vast majority of GC tuning

@ Most objects die young [Generational]

@ So collect young objects only, as much as possible. Hope for short STW.

® But eventually, some old dead objects must be reclaimed

@ Most old dead space can be reclaimed without moving it
o [e.g. CMS] track dead space in lists, and reuse it in place

@ But eventually, space gets fragmented, and needs fo be moved

@ Much of the heap is not “popular” [e.g. G1, "Balanced”]
@ A non popular region will only be pointed to from a small % of the heap
@ So compact non-popular regions in short stop-the-world pauses

@ But eventually, popular objects and regions need to be compacted
@ Young generation pauses are only small because heaps are tiny

@ A 200GB heap will regularly have several GB of live young stuff...

©2015 Azul Systems, Inc.

Classifying common collectors

The typical combos
In server JVMS

@ Young generation usudlly uses a copying collector

@ Young generation is usually monolithic, stop-the-world

@ Old generation usually uses Mark/Sweep/Compact

@ Old generation may be STW, or Concurrent, or
mostly-Concurrent, or Incremental-STW, or mostly-
Incremental-STW

HotSpot™ ParallelGC

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen

@ Monolithic Stop-the-world Mark/Sweep/Compact OldGen

HotSpot™ ConcMarkSweepGC (aka CMS)

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen (ParNew)
@ Mostly Concurrent, non-compacting OldGen (CMS)

@ Mostly Concurrent marking

@ Mark concurrently while mutator is running
® Track mutations in card marks

@ Revisit mutated cards (repeat as needed)

)

Stop-the-world to catch up on mutations, ref processing, efc.

@ Concurrent Sweeping

@ Does not Compact (maintains free list, does not move objects)

@ Fallback to Full Collection (Monolithic Stop the world).

@ Used for Compaction, etc.

HotSpot™ G1GC (aka "Garbage First™)

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen

@ Mostly Concurrent, OldGen marker

@ Mostly Concurrent marking

@ Stop-the-world to catch up on mutfations, ref processing, etc.

@ Tracks inter-region relationships in remembered sets

@ Stop-the-world mostly incremental compacting old gen

@ Objective: "Avoid, as much as possible, having a Full GC...”

@ Compact sets of regions that can be scanned in limited time

@ Delay compaction of popular objects, popular regions

@ Fallback to Full Collection (Monolithic Stop the world).

@ Used for compacting popular objects, popular regions, etc.

The "Application Memory Wall”

or: Why stop-the-world garbage
collection is a problem

Memory use

How many of you use heap sizes of:

& more ’rhan / GB?

"""

N
R o

L ,4"'ore ’rhan 1 GB?
& more than 2 GB?

4 more than 4 GB?
= more than 20 GB?

4 more than 50 GB?

more than 100 GB?

©2011 Azul Systems, Inc.

Reality check: servers in 2015

@ Retail prices, major web server store (us $, circa 2015)
24 vCore, 128GB server = $4K

32 vCore, 256GB server = $7K
32 vCore, 512GB server = $11K
64 vCore, 1TB server ~ $24K

@ Cheap (< $1/GB/Month), and roughly linear to ~1TB

@ The basic building blocks in the cloud...

SSSSSSS

Current (2015) cloud stuff

Linux RHEL SLES Windows Windows with SQL Standard

Windows with SQL Web

Region: US East (N. Virginia)

vCPU ECU Memory (GiB) Instance Storage (GB) Linux/UNIX Usage
Compute Optimized - Current Generation
cd.large 2 8 3.75 EBS Only $0.116 per Hour

c4.xlarge 4 16 75 EBS Only $0.232 per Hour

c4.2xlarge 15 EBS Only $0.464 per Hour

EBS Only $0.928 per Hour

EBS Only $1.856 per Hour

1 x 32 SSD $0.175 per Hour
1 x80SSD $0.35 per Hour
1 x 160 SSD $0.7 per Hour
1 x 320 SSD $1.4 per Hour

2 x 320 SSD $2.8 per Hour

©2015 Azul Systems, Inc.

Current (2015) cloud stuff

SALES 1-800-867-1389 w | MY ACCOUNT PORTAL [Search P ‘

FREE TRIAL

Why Azure Products Documentation Partners Blog Resources Support

INSTANCE DISK SIZES PRICE

384 GB $0.61/hr
(~$454/mo)

768 GB $1.22/hr
(~$908/mo)

1,536 GB $2.44/hr
(~$1,815/mo)

3'072 GB $4.88/hr
(~$3,631/mo)

6,144 GB 3878/
(~$6,532/mo)

©2015 Azul Systems, Inc.

The Application Memory Wall
A simple observation:

@ Application instances appear to be unable to
make effective use of modern server memory
capacities

@ The size of application instances as a % of a
servers capacity is rapidly dropping

How much memory do applications need?

@ “640KB ought to be enough for anybody”
WRONG!

@ So whats the right number?
6,400K?
64,000K?
640,000K?
6,400,000K?
64,000,000K?

@ There is no right number

@ Target moves at 50x-100x per decade

“I've said some stupid things and
some wrong things, but not that.
No one involved in computers
would ever say that a certain
amount of memory is enough for
all time ...” - Bill Gates, 1996

Monolithic-STW GC Problems

One way to deal with Monolithic-STW GC

m
@
[%2]

E
c
@)

B
©
S
>

(o]
Q
>
(54

lg

I

D
o
o
o

Hiccups by Time Interval

—Max per Interval ===99% ===99.90% ===99.99% ===Max

4000 6000
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=16023.552

/

/
/
J

90% 99% 99.9% 99.99% 99.999% 99.9999%

Hiccup Duration (msec)

Percentile

Hiccups by Time Interval
Chart Area
Max per Interval ==99% *===9990% *===99.99% *===Max

18000

— 16000
14000

msec

=~ 12000

10000
8000

2]
o
o
o

4000
2000

Hiccup Duration

0
20000 40000 60000 80000 100000 120000

Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=16023.552

o
o
o
o

Hiccup Dura

90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile

Another way to cope: Creative Language
@ "Guarantee a worst case of X msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ “Fairly Consistent”

Translation: "Will sometimes show results well outside
this range”

@ "Typical pauses in the tens of milliseconds”

Translation: "Some pauses are much longer than tens of
milliseconds”

SSSSSSS

Actually measuring things

(e.g. jHiccup)

SSSSSSS

©2015 Azul Systems, Inc.

Incontinuities in Java platform execution

Hiccups by Time Interval

— Max per Interval ===99% ====99 90% «====09.99% ===Max

IIIIIIIIIIIIIIIIIIIIIIIIIII\II||I\I||IIIIIIllIIIIIIIllllllIII|I|l||IIIllIIIlIlIlIlIIIIIIflllllllllllllllllllllII|IlIIll1|||||\|l|IIIIIIlIIlIIIIIIIIlIIIlI

Hiccup Duration (msec)

800 1000 1200 1400 1600 1800
Elapsed Time (sec)

Hiccups by Percentile Distribution

Max=1665.024

Hiccup Duration (ms

[
o N
o o
o o
(=]
o |
o
(=]
o

99.9% 99.99% 99.999%

Percentile

C4: Solving Stop-The-World

We needed to solve the right problems

@ Motivation: Scale is artificially limited by responsiveness

@ Responsiveness must be unlinked from scale:

@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Transaction Rate, Concurrent users, Data set size, efc.
@ Responsiveness must be continually sustainable

@ Cant ignore “rare” events

@ Eliminate all Stop-The-World Fallbacks

@ At modern server scales, any STW fall back is a failure

The problems that needed solving

(areas where the state of the art needed improvement)

@ Robust Concurrent Marking

@ In the presence of high mutation and allocation rates

@ Cover modern runtime semantics (e.g. weak refs, lock deflation)

@ Compaction that is not monolithic-stop-the-world

o E.g. stay responsive while compacting % TB heaps

® Must be robust: not just a tactic to delay STW compaction

@ [current “incremental STW” attempts fall short on robustness]

@ Young-Gen that is not monolithic-stop-the-world
@ Stay responsive while promoting multi-GB data spikes
@ Concurrent or “incremental STW” may both be ok

@ Surprisingly little work done in this specific area

Azuls "C4"” Collector

Continuously Concurrent Compacting Collector

@ Concurrent guaranteed-single-pass marker

@ Oblivious to mutation rate

@ Concurrent ref (weak, soft, final) processing

@ Concurrent Compactor

@ Objects moved without stopping mutator
@ References remapped without stopping mutator

@ Can relocate entire generation (New, Old) in every GC cycle

@ Concurrent, compacting old generation
@ Concurrent, compacting new generation

@ No stop-the-world fallback

@ Always compacts, and always does so concurrently

SSSSSSS

C4's Prime Directives

@ Always do the same thing
@ Avoid the temptation to “solve” things by delaying them
@ Avoid rare code paths
@ Running under load for an hour should exercise the whole thing

@ Dont be in a hurry
@ Avoid the "if we dont do this quickly it will get worse” trap
@ e.g. multi-pass marking
@ or pauses that depend on scale meftrics
@ or being consistently slow during an entire phase of GC
@ Allow collector to be "lazy” and run at a “relaxed pace”
@ Keeping up with allocation rate should be the only reason for “pace”

©2015 Azul Systems , Inc.

Good Latency vs. Good Throughput

Why “vs.”?

We can have both!

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

S5 AN « SPREw

ool 4 ,
on 3 n..ﬂ.r N ENCS -P..@Ju.lluldu
_ A, ¢ TR

S
=
%)
=
@
i
%]
>
(]
3
re)
-
=)
N
(@)

CrU%

—g - - - 20 e v e

{ Heap size vs. |
{ GCCPU % |

H@.&Fv sLze

Live sekb

What empty memory controls

@ Empty memory controls efficiency (amount of collector
work needed per amount of application work
performed)

@ Empty memory controls the frequency of pauses (if
the collector performs any Stop-the-world operations)

@ Empty memory DOES NOT reduce pause times (only
their frequency)

@ In fact, *IF* you do GC work in a pause, more empty
memory usually means larger pauses

@ With C4, we get the upside with no downside...

C4 algorithm highlights

@ Same core mechanism used for both generations
@ Concurrent Mark-Compact

@ A Loaded Value Barrier (LVB) is central to the algorithm

@ Every heap reference is verified as “sane” when loaded
@ "Non-sane” refs are caught and fixed in a self-healing barrier

@ Refs that have not yet been "marked through” are caught

@ Guaranteed single pass concurrent marker

@ Refs that point to relocated objects are caught

@ Lazily (and concurrently) remap refs, no hurry
@ Relocation and remapping are both concurrent

@ Uses "quick release” to recycle memory
@ Forwarding information is kept outside of object pages
@ Physical memory released immediately upon relocation
@ “Hand-over-hand” compaction without requiring empty memory P

©2015 Azul Systems , Inc.

Benefits

ELIMINATES Garbage Collection as a

concern for enterprise applications

©2015 Azul Systems, Inc.

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1i1 -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepSuT =X A.iviaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrovt -XX:SurvivorRatio=2 #XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2015 Azul Systems, Inc.

A few more GC tuning flags

ISP bjertshoung (:MSIJuncMarkMultlpIe ExplicitaClnvokesConcurrent <&

CMSBitMapYieldQuantum
CMSIIIdPLABReactwutyFactor CMSIncrementalSafetyFactor
AaptnePermSeNCIgnt oo ey iohemarkdenSizeToreshold CHSTrgerPermRatio &

CMSFullGCsBeforeCompaction S oyiyorkgueueDrainTreshald

printeCApplicationConcurrentTime CMSIitiatingO¢cupancyFraction
uliSSmallSpitSurglusPercent 3 CMS'"Ueme"ta'D“WCYNBMInNewSueThreadInchase CMSCompactWhenClearAllSoftRefs HeapDumpPath
= CHSCoordinatorYieldSlegpCount =5 CMSClassUnloadingMaxInterval - CMSScheduleRemarkSamplingRatio AdaptiveSizeMajorGCDecayTimeScale

2 CMSPrecleaningEnabled CyShaxAbortablePrecleanLoops
= MaxHeapSize CMSPermGenPrecleaningEnabled p CMSPermﬁensweeplIIgEIIalﬂedInltlatmaHeanﬂccuﬂaﬂcvf’mem

g6

mpactmncuun

2 S= £

CHSOIGPLABMax S E - £E = = s
EMSBSMSlmwnarf" Remark PrintReferenceGC S 2§ SE 5 PrintCHSStatst 2 <
cavengeperorexemar § =2 2 (MSRevisitStackSize S = rn atisties £ = = 5
CSPrecleanNumerator = = _ “Mf,'r'::{fl';‘:“;‘t‘é%"“‘ E 2 5 Unconmit0idGen0nbt ZSpnoitiveas § ChiSHhortSemantics s = 8 &
Ggmlgfmk%nfyhnant = CNSCorauentHTEnabie £ £ OMSieldSleepCount MaxGBMmurPauseMlllls S CMSP"’”I““R““S% %ﬁsaﬂg:ﬁﬁgn% S 2 %
. CMSncrementalDutyCycle = S - BEE 2

La gePage

maIIanISurpIusPercent

CMSYoun

CMSIndexedFreeListRe
tMaximumCo

5 CMSLargeCoalSurplusPercent MaxNewSize

ramBeforeFulléC GCTimeRatio

S, CMSS
Cﬂ
pFi

AtGCExtended HeapBaseMinAddress

.BMSParaIIeIRemarkEnahIed

>
=
s
—
-2
=

CMSOIdPLABToleranceFactor

£ BMSRe lenishIntermediate PrintGC S
g‘jMSIn|t|altingPerm0ccupancyFractlun u Se P a rN ewa CI;rlnttﬁﬁccTTaskl"ltneStamps DISﬂhIBEXpIICIth s
=2 G1HeapRegionSize fintGCTimeStamps =

= éE VEIhosE. charGCArrayScanChunk CMSAhortablePreclean’finorkPereration oy inStagkTargetsize M axpe rmSIZe S

GCInvokesConcurrentAndUnloadsClasses

MSClassUnloading Enahledu NewSiz
sel

CMSTriggerRatio HeapMaximumCompactioninterval 0 n c M a rkswe e p G EMSInNcEanl!t‘aﬁ’atclng
P (]

PnntﬁlassH|stugramAfterFuIIGB CMSPLABRecordAlways S
arGCDesiredObjsFromOverflowlist =5

gapDumpOnQut0fMemoryError

CMSAbortahlePrecleanWaitMillis
EMSLargeSpI|tSurpIusPercent CHSDumpAtPromotionkalure - oycpa promoteBlocksToClaim PrintGCApplicationStoppedTime CMSIsTooFullPercentage

= CMSSplitindexedFreeListBlocks MinPermHeapExpansion
xplu:lt

BeforeFullGC

ump
CMSOIdPLABResizeQuicker
CMSBootstrapOccupancy

ParGClUseLocalOverflow

CHSDPUABReactiCeig s Uncanmomghoatn SerngebeHIRCS S 2 ooyl PrintOHSntitionStatstc
BindGCTaskThreadsToCPUs == SMaxPermHeapExpansion GCLockerlnvokesConcurrent g céﬂhfggﬁgé?ggl?ﬁ'&@ﬁm"éEH ol tGCUverheadRepurting
= eaprreeLimi

AutoGCSelectPauseMillis MinHeapDeltaBytes
PermSize CMSOIdPLABNumRefills BMSEprnga{{.,, PrintGCDetails EMSPrecIeanRefhstslMlﬁwga';"rsrg'ﬁ’:t“ll}'lﬂe

cms(ﬁmﬁﬂf; et nitalHapSize CNSUseOldDefaults

MaxGCPauseMillis
s CMSCleanOnEnter

CMSPrecleanSurvivors2 CMSExtrapolateSweep PrintHea
ProtectlavaHea
CMSPrecleanSurvivors
CMSWaitDuration

GCPauselntervalMillis

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”

The complete guide to
modern GC tuning™*

Java -Xmx40g

Java -Xmx20g

Java -Xmx10g

Java -Xmx5g

SSSSSSS

An example of "First days run” behavior

File Edit Help

E-Commerce application

Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/Decl1/gc/verbosegc.log

Open [Snapshot Time Range (Minutes): 0.0043363334 3.385084 to 702.0003 722.126 . SetTime Range > Reset = Select Data

@ use: 30% Old GC/min: 0

Heap Usage - New & Old GC Current/Peak/Max * GC and Safepoint - Pause Duration * | App Delays * GC Duration * GC Concurrent Phase Times x GC Time Percent x GC Count =

0.00550
0.00525
0.00500
0.00475
0.00450
0.00425
0.00400
0.00375

0.00350

|||
0.00325 '

|
, Ll
0.00300 | l I
0.00275 | '

"

0.00250
0.00225
0.00200
0.00175
0.00150
0.00125
0.00100
0.00075
0.00050
0.00025

0.00000
50

®- New GC Pause 1 Duration
Old GC Pause 4 Duration

©2015 Azul Systems, Inc.

GC and Safepoint - Pause Duration

' i |i || IIHI |h| I|I

| |l‘|’} "| IE

75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725

Elapsed Time (Minutes)

®- New GC Pause 2 Duration New GC Pause 3 Duration -* New GC Pause 4 Duration Old GC Pause 2 Duration
»- Deoptimize Pause -# Force Safepoint Pause -« Concurrent Deflation Pause - Other Safepoint Pause

Old GC Pause 3 Duration

A production FX trading system over a whole week

GC and Safepoint - Pause Duration

.0019

0018

0016
0.0015
0014
0013
).0012
0011
).0010
).0009
0.0008
L0007
0006
0005
0004
0003
0002
0001

0000 - . . -
1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500

Elapsed Time (Minutes)

& New GC Pause 1 Duration e New GC Pause 2 Duration & New GC Pause 3 Duration - New GC Pause 4 Duration = 0Old GC Pause 2 Duration Old GC Pause 3 Duration

Old GC Pause 4 Duration * Deoptimize Pause "% Force Salfepoint Pause * Concurrent Deflation Pause ™ Thread Dump Pause * Find Deadlocks Pause & Other Safepoint Pause

©2015 Azul Systems, Inc.

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

W/

o "’ 0 . " 2k . “ /= .
e ¢ T 5 ﬁ . o IR

m NI

-
N———

=T ST

-
LX) w .

©2015 Azul Syste

Cassandra Query behavior
(newgen-only)

Latency by Percentile Distribution
50.0

HotSpot @ 10K, 20K, 40K, 60K

_
)
©
§
9
=
&
3
c
2
o
-J

Zing @20K, 40K, 60K
90% % 99.9% 99.99% 99.999% 99.9999%
Percentile

—— h40k ——h20k ~—— h10k ——h60k —— 220k —— 240k —— 260k

Lots of conclusions can be drawn from the above...
E.g. C4 delivers a consistent 100x reduction in the
rate of occurrence of >20msec query times

AZUL
©2015 Azul Systems , Inc.

KSYSTEMS

Comparing latency behavior under different throughputs, configurations
latency sensitive messaging distribution application

Latency by Percentile Distribution

/_/_/_’Ttsp; 15K

U
o

40

—
(%]
©
[=
o
(S}
)]
2
S
—
>
[}
[
()]
=
©
-

w
o

N
o

[
o

Zing 5K

Zing 1K

99.9% 99.99% 99.999%

o

Percentile

Fun with jHiccup

Charles Nutter
jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)

SSSSSSS

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

==Max

——Max per Interval ===99% ===09.90% ===99.99% ===Max ——Max per Interval ===99% ===99.90% ===99.99%

o
14000

Y.

12000 5%

-
o
o
o
o

- Hiccup Duration (msec)

g ”Hiccup Duration (msec)' »

500 1000 1500 2000 2500 3000 3500 R 0 4 1000 1500 2000 2500 3000 3500
Elapsed Time (sec) b Elapsed Time (sec)

Hiccups by Percentile Distribution

Hiccup Duration (msec)

99.9% 99.99% 99.999% 90% 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

©2015 Azul Systems, Inc.

Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval

— Max per Interval ===99% ===99.90% ===99.99% ===Max —Max per Interval ===99% ===99.90% ===99.99% ===Max

Hiccup Duration (msec)

Hiccup Duration (msec)
N S (o)) (0]
o o o o
o o o o
(@) o (@) o

o

500 1000 1500 2000 2500 3000 3500 1000 1500 2000 2500 3000
Elapsed Time (sec) Elapsed Time (sec)

Hiccups by Percentile Distribution Hiccups by Percentile Distribution

Hiccup Duration (msec)
Hiccup Duration (msec)

99.9% 99.99% 99.999% 0% Max229.384 99% 99.9% 99.99% 99.999% 99.9999%

Percentile Percentile

Drawn to scale

©2015 Azul Systems, Inc.

OpenJDK: 200-1400 msec sftalls

alency (msec)

op rate

partition rate

row rate
latency
latency
latency
latency
latency
latency

©2015 Azul Systems, Inc.

mean
median

cassandra-stress

OponJOK Latency

cassandia-syess (Open)OK) Max Latency

40001
26996
26996
30.6

95th percentile : 244.4
99th percentile : 537.4

99.9th percentile

max

(0.7)
0.5 (0.5)

(1.1)
(2.0)
1052.2 (8.4)

1314.9 (1312.8)

Response Time

Service time

latency (msec)

op rate

partition rate

row rate
latency
latency
latency
latency
latency
latency

mean
median

Zing (drawn to scale)

95th percentile
99th percentile

99.9th
max

percentile

Response Time

40001

26961

26961

0.6 (0.5)
0.5 (0.95)
1.0 (0.9)
2.7 (1.9)
13.3 (3.8)
110.6 (28.2)

Service time AZUL

A simple visual summary &K

This is Cassandra on HotSpot

This is Cassandra on Zing

KSYSTEMS

Any Questions?

http://www.azulsystems.com

http://www.jhiccup.com

http://qgiltene.github.com/HdrHistogram

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

