Understanding Java
Garbage Collection

Gil Tene



High level agenda

@ Some GC fundamentals, terminology & mechanisms
@ Classifying currently available collectors
® Why Stop-The-World is a problem

@ The C4 collector: What a solution to STW looks like...



About me: Gil Tene

@ co-founder, CTO @Azul
Systems
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® Have been working on "think
different” GC approaches
since 2002

@ Created Pauseless & C4 core
GC algorithms (Tene, Wolf)

@ A Long history building
Virtual & Physical Machines,
Operating Systems, Enterprise
apps, efc...
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@ I also like to nag people
about how they measure and
think about |a-|-ency * working on real-world trash compaction issues, circa 2004

AZUL
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Why should you understand
(at least a little) how GC works?




The story of the good little architect

@ A good architect must, first and foremost, be able to
Impose their architectural choices on the project...

@ Early in Azuls concurrent collector days, we encountered
an application exhibiting 18 second pauses

@ Upon investigation, we found the collector was performing 10s of
millions of object finalizations per GC cycle

*We have since made reference processing fully concurrent...

@ Every single class written in the project had a finalizer

@ The only work the finalizers did was nulling every reference field

@ The right discipline for a C++ ref-counting environment

@ The wrong discipline for a precise garbage collected environment

15 Azul Systems, Inc



Much of what People seem to “know"”
about Garbage Collection is wrong

@ In many cases, its much better than you may think

@ GC is extremely efficient. Much more so that malloc()
@ Dead objects cost nothing to collect
@ GC will find all the dead objects (including cyclic graphs)

. Sk

@ In many cases, its much worse than you may think

o Yes, it really will stop for 71 sec per live GB (except with Zing)
@ No, GC does not mean you cant have memory leaks

@ No, those pauses you eliminated from your 20 minute test are
not gone
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A Basic Terminology example:
What is a concurrent collector?

@ A Concurrent Collector performs garbage collection
work concurrently with the applications own execution

@ A Parallel Collector uses multiple CPUs to perform
garbage collection




Classifying a collectors operation

@ A Concurrent Collector performs garbage collection work
concurrently with the applications own execution

® A Parallel Collector uses multiple CPUs to perform garbage
collection

@ A Stop-the-World collector performs garbage collection while
the application is completely stopped

@ An Incremental collector performs a garbage collection
operation or phase as a series of smaller discrete operations
with (potentially long) gaps in between

@ Monolithic: “all in one shot”; the opposite of Incremental

@ Mostly means sometimes it isnt (usually means a different
fall back mechanism exists)




Precise vs. Conservative Collection

@ A Collector is Conservative if it is unaware of some
object references at collection time, or is unsure
about whether a field is a reference or not

@ A Collector is Precise if it can fully identify and
process all object references at the time of collection

@ A collector MUST be precise in order to move objects

® The COMPILERS need to produce a lot of information (oopmaps)

@ All commercial server JVMs use precise collectors

@ All commercial server JVMs use some form of a moving collector



Safepoints

@ A GC Safepoint is a point or range in a threads
execution where the collector can identify all the
references in that threads execution stack

o “Safepoint” and “"GC Safepoint” are often used interchangeably

@ “Bringing a thread to a safepoint” is the act of getting
a thread to reach a safepoint and not execute past it
@ Close to, but not exactly the same as “stop at a safepoint”
@ e.g. JNI: you can keep running in, but not past the safepoint
@ Safepoint opportunities are (or should be) frequent

@ In a Global Safepoint all threads are at a Safepoint




What's common to all
precise GC mechanisms?

@ Identify the live objects in the memory heap
@ Reclaim resources held by dead objects

@ Periodically relocate live objects

@ Examples:

@ Mark/Sweep/Compact (common for Old Generations)

@ Copying collector (common for Young Generations)



Mark (aka “Trace”)

@ Start from “roots” (thread stacks, statics, etc.)
@ “"Paint” anything you can reach as "live”
@ At the end of a mark pass:
@ all reachable objects will be marked "live”
@ all non-reachable objects will be marked

“"dead” (aka “non-live”).

@ Note: work is generally linear to “live set”



Sweep

@ Scan through the heap, identify "dead” objects and
track them somehow

@ (usually in some form of free list)

@ Note: work is generally linear to heap size



Compact

@ Over time, heap will get “swiss cheesed”: contiguous
dead space between objects may not be large
enough to fit new objects (aka "fragmentation”)

@ Compaction moves live objects together to reclaim
contiguous empty space (aka “relocate”)

@ Compaction has to correct all object references to
point to new object locations (aka “remap” or "fixup“)

@ Remap scan must cover all references that could
possibly point to relocated objects

@ Note: work is generally linear to “live set”



Copy

@ A copying collector moves all lives objects from a
"from” space to a "to” space & reclaims “from” space

o At start of copy, all objects are in “from” space and
all references point to “from” space.

@ Start from “root” references, copy any reachable
object to "to” space, correcting references as we go

@ At end of copy, all objects are in "to” space, and all
references point to "to” space

@ Note: work generally linear to “live set”



Mark/Sweep/Compact, Copy, Mark/Compact

@ Copy requires 2x the max. live set to be reliable

@ Mark/Compact [typically] requires 2x the max. live set
in order to fully recover garbage in each cycle

@ Mark/Sweep/Compact only requires 1x (plus some)
@ Copy and Mark/Compact are linear only to live set
@ Mark/Sweep/Compact linear (in sweep) to heap size

@ Mark/Sweep/(Compact) may be able to avoid some
moving work

@ Copying is [typically] "monolithic”



Generational Collection

@ Weak Generational Hypothesis; "most objects die young”

@ Focus collection efforts on young generation:

@ Use a collector in which work is linear to the live set
@ The live set in the young generation is a small % of the space

@ Promote objects that live long enough to older generations

@ Only collect older generations as they fill up

@ "Generational filter” reduces rate of allocation into older generations

@ Tends to be (order of magnitude) more efficient

@ Great way to keep up with high allocation rate

@ Practical necessity for keeping up with processor throughput



Generational Collection

@ Requires a "Remembered set”: a way to track all
references info the young generation from the outside

@ Remembered set is also part of "roots” for young
generation collection

@ No need for 2x the live set: Can “spill over” to old gen

@ Usually want to keep surviving objects in young
generation for a while before promoting them to the
old generation

@ Immediate promotion can significantly reduce gen. filter efficiency

@ W.aiting too long to promote can eliminate generational benefits



How does the remembered set work?

@ Generational collectors require a "Remembered set”: a
way to track all references into the young generation
from the outside

® Each store of a NewGen reference into and OldGen
object needs to be intercepted and tracked

@ Common technique: “"Card Marking”

@ A bit (or byte) indicating a word (or region) in OldGen is "suspect”

® Write barrier used to track references

@ Common technique (e.g. HotSpot): blind stores on reference write

@ Variants: precise vs. imprecise card marking, conditional vs. non-
conditional



Some non monolithic-STW stuff




Concurrent Marking

@ Mark all reachable objects as “live”, but object graph
is "mutating” under us.

@ Classic concurrent marking race: mutator may move
reference that has not yet been seen by the marker
into an object that has already been visited

@ If not intercepted or prevented in some way, will corrupt the heap

@ Example technique: track mutations, multi-pass marking

@ Track reference mutations during mark (e.g. in card table)
@ Re-visit all mutated references (and track new mutations)

@ When set is "small enough”, do a STW catch up (mostly concurrent)

@ Note: work grows with mutation rate, may fail fo finish



Incremental Compaction

@ "Much of the heap is not popular”

@ Track cross-region remembered sets (which region
points to which)

@ To compact a single region, only need fo scan regions
that point into it to fix all potential references

@ identify regions sets that fit in limited time

@ Each such set of regions is a Stop-the-World increment

@ Safe to run application between (but not within) increments

@ Note: work can grow with the square of the heap size

@ The number of regions pointing info a single region is generally
linear to the heap size (the number of regions in the heap)



Delaying the inevitable

@ Some form of copying/compaction is inevitable in practice

@ And compacting anything requires scanning/fixing all references to it

@ Delay tactics focus on getting “easy empty space” first

@ This is the focus for the vast majority of GC tuning

@ Most objects die young [Generational]

@ So collect young objects only, as much as possible. Hope for short STW.

® But eventually, some old dead objects must be reclaimed

@ Most old dead space can be reclaimed without moving it
o [e.g. CMS] track dead space in lists, and reuse it in place

@ But eventually, space gets fragmented, and needs fo be moved

@ Much of the heap is not “popular” [e.g. G1, "Balanced”]
@ A non popular region will only be pointed to from a small % of the heap
@ So compact non-popular regions in short stop-the-world pauses

@ But eventually, popular objects and regions need to be compacted
@ Young generation pauses are only small because heaps are tiny

@ A 200GB heap will regularly have several GB of live young stuff...

©2015 Azul Systems, Inc.



Classifying common collectors




The typical combos
In server JVMS

@ Young generation usudlly uses a copying collector

@ Young generation is usually monolithic, stop-the-world

@ Old generation usually uses Mark/Sweep/Compact

@ Old generation may be STW, or Concurrent, or
mostly-Concurrent, or Incremental-STW, or mostly-
Incremental-STW



HotSpot™ ParallelGC

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen

@ Monolithic Stop-the-world Mark/Sweep/Compact OldGen



HotSpot™ ConcMarkSweepGC (aka CMS)

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen (ParNew)
@ Mostly Concurrent, non-compacting OldGen (CMS)

@ Mostly Concurrent marking

@ Mark concurrently while mutator is running
® Track mutations in card marks

@ Revisit mutated cards (repeat as needed)

)

Stop-the-world to catch up on mutations, ref processing, efc.

@ Concurrent Sweeping

@ Does not Compact (maintains free list, does not move objects)

@ Fallback to Full Collection (Monolithic Stop the world).

@ Used for Compaction, etc.



HotSpot™ G1GC (aka "Garbage First™)

Collector mechanism classification

@ Monolithic Stop-the-world copying NewGen

@ Mostly Concurrent, OldGen marker

@ Mostly Concurrent marking

@ Stop-the-world to catch up on mutfations, ref processing, etc.

@ Tracks inter-region relationships in remembered sets

@ Stop-the-world mostly incremental compacting old gen

@ Objective: "Avoid, as much as possible, having a Full GC...”

@ Compact sets of regions that can be scanned in limited time

@ Delay compaction of popular objects, popular regions

@ Fallback to Full Collection (Monolithic Stop the world).

@ Used for compacting popular objects, popular regions, etc.



The "Application Memory Wall”

or: Why stop-the-world garbage
collection is a problem



Memory use

How many of you use heap sizes of:

& more ’rhan / GB?

"""

N
R o

L ,4"'ore ’rhan 1 GB?
& more than 2 GB?

4 more than 4 GB?
= more than 20 GB?

4 more than 50 GB?

more than 100 GB?

©2011 Azul Systems, Inc.



Reality check: servers in 2015

@ Retail prices, major web server store (us $, circa 2015)
24 vCore, 128GB server = $4K

32 vCore, 256GB server = $7K
32 vCore, 512GB server = $11K
64 vCore, 1TB server ~ $24K

@ Cheap (< $1/GB/Month), and roughly linear to ~1TB

@ The basic building blocks in the cloud...

SSSSSSS



Current (2015) cloud stuff

Linux RHEL SLES Windows Windows with SQL Standard

Windows with SQL Web

Region: US East (N. Virginia)

vCPU ECU Memory (GiB) Instance Storage (GB) Linux/UNIX Usage
Compute Optimized - Current Generation
cd.large 2 8 3.75 EBS Only $0.116 per Hour

c4.xlarge 4 16 75 EBS Only $0.232 per Hour

c4.2xlarge 15 EBS Only $0.464 per Hour

EBS Only $0.928 per Hour

EBS Only $1.856 per Hour

1 x 32 SSD $0.175 per Hour
1 x80SSD $0.35 per Hour
1 x 160 SSD $0.7 per Hour
1 x 320 SSD $1.4 per Hour

2 x 320 SSD $2.8 per Hour

©2015 Azul Systems, Inc.



Current (2015) cloud stuff

SALES 1-800-867-1389 w | MY ACCOUNT PORTAL  [Search P ‘

FREE TRIAL

Why Azure Products Documentation Partners Blog Resources Support

INSTANCE DISK SIZES PRICE

384 GB $0.61/hr
(~$454/mo)

768 GB $1.22/hr
(~$908/mo)

1,536 GB $2.44/hr
(~$1,815/mo)

3'072 GB $4.88/hr
(~$3,631/mo)

6,144 GB 3878/
(~$6,532/mo)

©2015 Azul Systems, Inc.



The Application Memory Wall
A simple observation:

@ Application instances appear to be unable to
make effective use of modern server memory
capacities

@ The size of application instances as a % of a
servers capacity is rapidly dropping



How much memory do applications need?

@ “640KB ought to be enough for anybody”
WRONG!

@ So whats the right number?
6,400K?
64,000K?
640,000K?
6,400,000K?
64,000,000K?

@ There is no right number

@ Target moves at 50x-100x per decade

“I've said some stupid things and
some wrong things, but not that.
No one involved in computers
would ever say that a certain
amount of memory is enough for
all time ...” - Bill Gates, 1996




Monolithic-STW GC Problems




One way to deal with Monolithic-STW GC
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Hiccups by Time Interval
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Another way to cope: Creative Language
@ "Guarantee a worst case of X msec, 99% of the time”

@ "Mostly” Concurrent, "Mostly” Incremental

Translation: "Will at times exhibit long monolithic stop-
the-world pauses”

@ “Fairly Consistent”

Translation: "Will sometimes show results well outside
this range”

@ "Typical pauses in the tens of milliseconds”

Translation: "Some pauses are much longer than tens of
milliseconds”

SSSSSSS



Actually measuring things

(e.g. jHiccup)

SSSSSSS
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Incontinuities in Java platform execution

Hiccups by Time Interval
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C4: Solving Stop-The-World




We needed to solve the right problems

@ Motivation: Scale is artificially limited by responsiveness

@ Responsiveness must be unlinked from scale:

@ Heap size, Live Set size, Allocation rate, Mutation rate
@ Transaction Rate, Concurrent users, Data set size, efc.
@ Responsiveness must be continually sustainable

@ Cant ignore “rare” events

@ Eliminate all Stop-The-World Fallbacks

@ At modern server scales, any STW fall back is a failure



The problems that needed solving

(areas where the state of the art needed improvement)

@ Robust Concurrent Marking

@ In the presence of high mutation and allocation rates

@ Cover modern runtime semantics (e.g. weak refs, lock deflation)

@ Compaction that is not monolithic-stop-the-world

o E.g. stay responsive while compacting % TB heaps

® Must be robust: not just a tactic to delay STW compaction

@ [current “incremental STW” attempts fall short on robustness]

@ Young-Gen that is not monolithic-stop-the-world
@ Stay responsive while promoting multi-GB data spikes
@ Concurrent or “incremental STW” may both be ok

@ Surprisingly little work done in this specific area



Azuls "C4"” Collector

Continuously Concurrent Compacting Collector

@ Concurrent guaranteed-single-pass marker

@ Oblivious to mutation rate

@ Concurrent ref (weak, soft, final) processing

@ Concurrent Compactor

@ Objects moved without stopping mutator
@ References remapped without stopping mutator

@ Can relocate entire generation (New, Old) in every GC cycle

@ Concurrent, compacting old generation
@ Concurrent, compacting new generation

@ No stop-the-world fallback

@ Always compacts, and always does so concurrently

SSSSSSS



C4's Prime Directives

@ Always do the same thing
@ Avoid the temptation to “solve” things by delaying them
@ Avoid rare code paths
@ Running under load for an hour should exercise the whole thing

@ Dont be in a hurry
@ Avoid the "if we dont do this quickly it will get worse” trap
@ e.g. multi-pass marking
@ or pauses that depend on scale meftrics
@ or being consistently slow during an entire phase of GC
@ Allow collector to be "lazy” and run at a “relaxed pace”
@ Keeping up with allocation rate should be the only reason for “pace”

©2015 Azul Systems , Inc.



Good Latency vs. Good Throughput

Why “vs.”?

We can have both!
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What empty memory controls

@ Empty memory controls efficiency (amount of collector
work needed per amount of application work
performed)

@ Empty memory controls the frequency of pauses (if
the collector performs any Stop-the-world operations)

@ Empty memory DOES NOT reduce pause times (only
their frequency)

@ In fact, *IF* you do GC work in a pause, more empty
memory usually means larger pauses

@ With C4, we get the upside with no downside...



C4 algorithm highlights

@ Same core mechanism used for both generations
@ Concurrent Mark-Compact

@ A Loaded Value Barrier (LVB) is central to the algorithm

@ Every heap reference is verified as “sane” when loaded
@ "Non-sane” refs are caught and fixed in a self-healing barrier

@ Refs that have not yet been "marked through” are caught

@ Guaranteed single pass concurrent marker

@ Refs that point to relocated objects are caught

@ Lazily (and concurrently) remap refs, no hurry
@ Relocation and remapping are both concurrent

@ Uses "quick release” to recycle memory
@ Forwarding information is kept outside of object pages
@ Physical memory released immediately upon relocation
@ “Hand-over-hand” compaction without requiring empty memory P

©2015 Azul Systems , Inc.



Benefits

ELIMINATES Garbage Collection as a

concern for enterprise applications
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Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewSize=1i1 -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepSuT =X A.iviaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

Java -Xms8g -Xmx8g —-Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrovt -XX:SurvivorRatio=2 #XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2015 Azul Systems, Inc.



A few more GC tuning flags
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Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”



The complete guide to
modern GC tuning™*

Java -Xmx40g

Java -Xmx20g

Java -Xmx10g

Java -Xmx5g
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An example of "First days run” behavior

File Edit Help

E-Commerce application

Azul Systems - Zing LX Garbage Collector Log Analyser - /Users/gil/Downloads/AnonCustomer/Decl1/gc/verbosegc.log

Open [ Snapshot Time Range (Minutes): 0.0043363334 3.385084 to 702.0003 722.126 . SetTime Range > Reset = Select Data

@ use: 30% Old GC/min: 0

Heap Usage - New & Old GC Current/Peak/Max * GC and Safepoint - Pause Duration * | App Delays * GC Duration * GC Concurrent Phase Times x GC Time Percent x GC Count =

0.00550
0.00525
0.00500
0.00475
0.00450
0.00425
0.00400
0.00375

0.00350

|||
0.00325 '

|
, Ll
0.00300 | l I
0.00275 | '

"

0.00250
0.00225
0.00200
0.00175
0.00150
0.00125
0.00100
0.00075
0.00050
0.00025

0.00000
50

®- New GC Pause 1 Duration
Old GC Pause 4 Duration

©2015 Azul Systems, Inc.

GC and Safepoint - Pause Duration
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»- Deoptimize Pause -# Force Safepoint Pause -« Concurrent Deflation Pause - Other Safepoint Pause

Old GC Pause 3 Duration




A production FX trading system over a whole week

GC and Safepoint - Pause Duration
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Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

W/

o "’ 0 . " 2k . “ /= .
e ¢ T 5 ﬁ . o IR

m NI

-
N———

=T ST

-
LX) w .

©2015 Azul Syste



Cassandra Query behavior
(newgen-only)

Latency by Percentile Distribution
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Lots of conclusions can be drawn from the above...
E.g. C4 delivers a consistent 100x reduction in the
rate of occurrence of >20msec query times
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Comparing latency behavior under different throughputs, configurations
latency sensitive messaging distribution application

Latency by Percentile Distribution
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Fun with jHiccup

Charles Nutter
jHiccup, @AzulSystems' free tool to show you why your JVM sucks

compared to Zing: bit.ly/wsH5A8 (thx @bascule)
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Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval
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Oracle HotSpot CMS, 1GB in an 8GB heap Zing 5, 1GB in an 8GB heap

Hiccups by Time Interval Hiccups by Time Interval
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OpenJDK: 200-1400 msec sftalls

alency (msec)

op rate
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row rate
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mean
median

cassandra-stress
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Service time
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A simple visual summary &K

This is Cassandra on HotSpot

This is Cassandra on Zing
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Any Questions?

http://www.azulsystems.com

http://www.jhiccup.com

http://qgiltene.github.com/HdrHistogram
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