
©2015 Azul Systems, Inc.	 	 	 	 	 	

Understanding Java
Garbage Collection

Gil Tene

©2015 Azul Systems, Inc.	 	 	 	 	 	

High level agenda

Some GC fundamentals, terminology & mechanisms

Classifying currently available collectors

Why Stop-The-World is a problem

The C4 collector: What a solution to STW looks like...

©2015 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene

co-founder, CTO @Azul
Systems

Have been working on “think
different” GC approaches
since 2002

Created Pauseless & C4 core
GC algorithms (Tene, Wolf)

A Long history building
Virtual & Physical Machines,
Operating Systems, Enterprise
apps, etc...

I also like to nag people
about how they measure and
think about latency * working on real-world trash compaction issues, circa 2004

©2015 Azul Systems, Inc.	 	 	 	 	 	

Why should you understand
(at least a little) how GC works?

©2015 Azul Systems, Inc.	 	 	 	 	 	

The story of the good little architect  

A good architect must, first and foremost, be able to
impose their architectural choices on the project...

Early in Azul’s concurrent collector days, we encountered
an application exhibiting 18 second pauses

Upon investigation, we found the collector was performing 10s of
millions of object finalizations per GC cycle

*We have since made reference processing fully concurrent...

Every single class written in the project had a finalizer

The only work the finalizers did was nulling every reference field

The right discipline for a C++ ref-counting environment

The wrong discipline for a precise garbage collected environment

©2015 Azul Systems, Inc.	 	 	 	 	 	

Much of what People seem to “know”
about Garbage Collection is wrong

In many cases, it’s much better than you may think

GC is extremely efficient. Much more so that malloc()

Dead objects cost nothing to collect

GC will find all the dead objects (including cyclic graphs)

...

In many cases, it’s much worse than you may think

Yes, it really will stop for ~1 sec per live GB (except with Zing)

No, GC does not mean you can’t have memory leaks

No, those pauses you eliminated from your 20 minute test are
not gone

...

©2015 Azul Systems, Inc.	 	 	 	 	 	

Some GC Terminology

©2015 Azul Systems, Inc.	 	 	 	 	 	

A Basic Terminology example:  
What is a concurrent collector?

A Concurrent Collector performs garbage collection
work concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform
garbage collection

©2015 Azul Systems, Inc.	 	 	 	 	 	

A Concurrent Collector performs garbage collection work
concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform garbage
collection

Classifying a collector’s operation  

An Incremental collector performs a garbage collection
operation or phase as a series of smaller discrete operations
with (potentially long) gaps in between

A Stop-the-World collector performs garbage collection while
the application is completely stopped

Monolithic: “all in one shot”; the opposite of Incremental

Mostly means sometimes it isn’t (usually means a different
fall back mechanism exists)

©2015 Azul Systems, Inc.	 	 	 	 	 	

Precise vs. Conservative Collection  

A Collector is Conservative if it is unaware of some
object references at collection time, or is unsure
about whether a field is a reference or not

A Collector is Precise if it can fully identify and
process all object references at the time of collection

A collector MUST be precise in order to move objects

The COMPILERS need to produce a lot of information (oopmaps)

All commercial server JVMs use precise collectors

All commercial server JVMs use some form of a moving collector

©2015 Azul Systems, Inc.	 	 	 	 	 	

Safepoints 

A GC Safepoint is a point or range in a thread’s
execution where the collector can identify all the
references in that thread’s execution stack

“Safepoint” and “GC Safepoint” are often used interchangeably

“Bringing a thread to a safepoint” is the act of getting
a thread to reach a safepoint and not execute past it

Close to, but not exactly the same as “stop at a safepoint”

e.g. JNI: you can keep running in, but not past the safepoint

Safepoint opportunities are (or should be) frequent

In a Global Safepoint all threads are at a Safepoint

©2015 Azul Systems, Inc.	 	 	 	 	 	

What’s common to all
precise GC mechanisms?

Identify the live objects in the memory heap

Reclaim resources held by dead objects

Periodically relocate live objects

Examples:

Mark/Sweep/Compact (common for Old Generations)

Copying collector (common for Young Generations)

©2015 Azul Systems, Inc.	 	 	 	 	 	

Mark (aka “Trace”)

Start from “roots” (thread stacks, statics, etc.)

“Paint” anything you can reach as “live”

At the end of a mark pass:

all reachable objects will be marked “live”

all non-reachable objects will be marked
“dead” (aka “non-live”).

Note: work is generally linear to “live set”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Sweep

Scan through the heap, identify “dead” objects and
track them somehow

(usually in some form of free list)

Note: work is generally linear to heap size

©2015 Azul Systems, Inc.	 	 	 	 	 	

Compact

Over time, heap will get “swiss cheesed”: contiguous
dead space between objects may not be large
enough to fit new objects (aka “fragmentation”)

Compaction moves live objects together to reclaim
contiguous empty space (aka “relocate”)

Compaction has to correct all object references to
point to new object locations (aka “remap” or “fixup”)

Remap scan must cover all references that could
possibly point to relocated objects

Note: work is generally linear to “live set”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Copy

A copying collector moves all lives objects from a
“from” space to a “to” space & reclaims “from” space

At start of copy, all objects are in “from” space and
all references point to “from” space.

Start from “root” references, copy any reachable
object to “to” space, correcting references as we go

At end of copy, all objects are in “to” space, and all
references point to “to” space

Note: work generally linear to “live set”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Mark/Sweep/Compact, Copy, Mark/Compact

Copy requires 2x the max. live set to be reliable

Mark/Compact [typically] requires 2x the max. live set
in order to fully recover garbage in each cycle

Mark/Sweep/Compact only requires 1x (plus some)

Copy and Mark/Compact are linear only to live set

Mark/Sweep/Compact linear (in sweep) to heap size

Mark/Sweep/(Compact) may be able to avoid some
moving work

Copying is [typically] “monolithic”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Generational Collection

Weak Generational Hypothesis; “most objects die young”

Focus collection efforts on young generation:

Use a collector in which work is linear to the live set

The live set in the young generation is a small % of the space

Promote objects that live long enough to older generations

Only collect older generations as they fill up

“Generational filter” reduces rate of allocation into older generations

Tends to be (order of magnitude) more efficient

Great way to keep up with high allocation rate

Practical necessity for keeping up with processor throughput

©2015 Azul Systems, Inc.	 	 	 	 	 	

Generational Collection

Requires a “Remembered set”: a way to track all
references into the young generation from the outside

Remembered set is also part of “roots” for young
generation collection

No need for 2x the live set: Can “spill over” to old gen

Usually want to keep surviving objects in young
generation for a while before promoting them to the
old generation

Immediate promotion can significantly reduce gen. filter efficiency

Waiting too long to promote can eliminate generational benefits

©2011 Azul Systems, Inc.	 	 	 	 	 	

How does the remembered set work?
Generational collectors require a “Remembered set”: a
way to track all references into the young generation
from the outside

Each store of a NewGen reference into and OldGen
object needs to be intercepted and tracked

Common technique: “Card Marking”

A bit (or byte) indicating a word (or region) in OldGen is “suspect”

Write barrier used to track references

Common technique (e.g. HotSpot): blind stores on reference write

Variants: precise vs. imprecise card marking, conditional vs. non-
conditional

©2015 Azul Systems, Inc.	 	 	 	 	 	

Some non monolithic-STW stuff

©2015 Azul Systems, Inc.	 	 	 	 	 	

Concurrent Marking
Mark all reachable objects as “live”, but object graph
is “mutating” under us.

Classic concurrent marking race: mutator may move
reference that has not yet been seen by the marker
into an object that has already been visited

If not intercepted or prevented in some way, will corrupt the heap

Example technique: track mutations, multi-pass marking

Track reference mutations during mark (e.g. in card table)

Re-visit all mutated references (and track new mutations)

When set is “small enough”, do a STW catch up (mostly concurrent)

Note: work grows with mutation rate, may fail to finish

©2015 Azul Systems, Inc.	 	 	 	 	 	

Incremental Compaction
“Much of the heap is not popular”

Track cross-region remembered sets (which region
points to which)

To compact a single region, only need to scan regions
that point into it to fix all potential references

identify regions sets that fit in limited time

Each such set of regions is a Stop-the-World increment

Safe to run application between (but not within) increments

Note: work can grow with the square of the heap size

The number of regions pointing into a single region is generally
linear to the heap size (the number of regions in the heap)

©2015 Azul Systems, Inc.	 	 	 	 	 	

Delaying the inevitable
Some form of copying/compaction is inevitable in practice

And compacting anything requires scanning/fixing all references to it

Delay tactics focus on getting “easy empty space” first

This is the focus for the vast majority of GC tuning

Most objects die young [Generational]

So collect young objects only, as much as possible. Hope for short STW.

But eventually, some old dead objects must be reclaimed

Most old dead space can be reclaimed without moving it

[e.g. CMS] track dead space in lists, and reuse it in place

But eventually, space gets fragmented, and needs to be moved

Much of the heap is not “popular” [e.g. G1, “Balanced”]

A non popular region will only be pointed to from a small % of the heap

So compact non-popular regions in short stop-the-world pauses

But eventually, popular objects and regions need to be compacted

Young generation pauses are only small because heaps are tiny

A 200GB heap will regularly have several GB of live young stuff…

©2015 Azul Systems, Inc.	 	 	 	 	 	

Classifying common collectors

©2015 Azul Systems, Inc.	 	 	 	 	 	

The typical combos
in server JVMS

Young generation usually uses a copying collector

Young generation is usually monolithic, stop-the-world

Old generation usually uses Mark/Sweep/Compact

Old generation may be STW, or Concurrent, or
mostly-Concurrent, or Incremental-STW, or mostly-
Incremental-STW

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ParallelGC 
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Monolithic Stop-the-world Mark/Sweep/Compact OldGen

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ConcMarkSweepGC (aka CMS)  
Collector mechanism classification

Monolithic Stop-the-world copying NewGen (ParNew)

Mostly Concurrent, non-compacting OldGen (CMS)

Mostly Concurrent marking

Mark concurrently while mutator is running

Track mutations in card marks

Revisit mutated cards (repeat as needed)

Stop-the-world to catch up on mutations, ref processing, etc.

Concurrent Sweeping

Does not Compact (maintains free list, does not move objects)

Fallback to Full Collection (Monolithic Stop the world).

Used for Compaction, etc.

©2015 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ G1GC (aka “Garbage First”)  
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Mostly Concurrent, OldGen marker

Mostly Concurrent marking

Stop-the-world to catch up on mutations, ref processing, etc.

Tracks inter-region relationships in remembered sets

Stop-the-world mostly incremental compacting old gen

Objective: “Avoid, as much as possible, having a Full GC…”

Compact sets of regions that can be scanned in limited time

Delay compaction of popular objects, popular regions

Fallback to Full Collection (Monolithic Stop the world).

Used for compacting popular objects, popular regions, etc.

©2011 Azul Systems, Inc.	 	 	 	 	 	

The “Application Memory Wall”

or: Why stop-the-world garbage
collection is a problem

©2011 Azul Systems, Inc.	 	 	 	 	 	

Memory use
 How many of you use heap sizes of:

 F more than ½ GB?

 F more than 1 GB?

 F more than 2 GB?

 F more than 4 GB?

 F more than 10 GB?

 F more than 20 GB?

 F more than 50 GB?

 F more than 100 GB?

Reality check: servers in 2015

Retail prices, major web server store (US $, circa 2015)

Cheap (< $1/GB/Month), and roughly linear to ~1TB

The basic building blocks in the cloud…

24 vCore, 128GB server ≈ $4K

32 vCore, 256GB server ≈ $7K

32 vCore, 512GB server ≈ $11K

64 vCore, 1TB server ≈ $24K

©2015 Azul Systems, Inc.	 	 	 	 	 	

Current (2015) cloud stuff

©2015 Azul Systems, Inc.	 	 	 	 	 	

Current (2015) cloud stuff

©2011 Azul Systems, Inc.	 	 	 	 	 	

The Application Memory Wall
A simple observation:

Application instances appear to be unable to
make effective use of modern server memory
capacities

The size of application instances as a % of a
server’s capacity is rapidly dropping

©2011 Azul Systems, Inc.	 	 	 	 	 	

How much memory do applications need? 

“640KB ought to be enough for anybody”

WRONG!

So what’s the right number?

6,400K?

64,000K?

640,000K?

6,400,000K?

64,000,000K?

There is no right number

Target moves at 50x-100x per decade

“I've said some stupid things and
some wrong things, but not that.
No one involved in computers
would ever say that a certain
amount of memory is enough for
all time …” - Bill Gates, 1996

©2015 Azul Systems, Inc.	 	 	 	 	 	

Monolithic-STW GC Problems

One way to deal with Monolithic-STW GC

640KB/MB should be enough…

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2000" 4000" 6000" 8000" 10000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=16023.552&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2000" 4000" 6000" 8000" 10000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=16023.552&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2015 Azul Systems, Inc.	 	 	 	 	 	

Another way to cope: Creative Language

“Guarantee a worst case of X msec, 99% of the time”

“Mostly” Concurrent, “Mostly” Incremental

Translation: “Will at times exhibit long monolithic stop-
the-world pauses”

“Fairly Consistent”

Translation: “Will sometimes show results well outside
this range”

“Typical pauses in the tens of milliseconds”

Translation: “Some pauses are much longer than tens of
milliseconds”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Actually measuring things

(e.g. jHiccup)

©2015 Azul Systems, Inc.	 	 	 	 	 	

Incontinuities in Java platform execution

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1665.024&

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

©2015 Azul Systems, Inc.	 	 	 	 	 	

C4: Solving Stop-The-World

©2015 Azul Systems, Inc.	 	 	 	 	 	

We needed to solve the right problems

Motivation: Scale is artificially limited by responsiveness

Responsiveness must be unlinked from scale:

Heap size, Live Set size, Allocation rate, Mutation rate

Transaction Rate, Concurrent users, Data set size, etc.

Responsiveness must be continually sustainable

Can’t ignore “rare” events

Eliminate all Stop-The-World Fallbacks

At modern server scales, any STW fall back is a failure

©2015 Azul Systems, Inc.	 	 	 	 	 	

The problems that needed solving
(areas where the state of the art needed improvement)

Robust Concurrent Marking

In the presence of high mutation and allocation rates

Cover modern runtime semantics (e.g. weak refs, lock deflation)

Compaction that is not monolithic-stop-the-world

E.g. stay responsive while compacting ¼ TB heaps

Must be robust: not just a tactic to delay STW compaction

[current “incremental STW” attempts fall short on robustness]

Young-Gen that is not monolithic-stop-the-world

Stay responsive while promoting multi-GB data spikes

Concurrent or “incremental STW” may both be ok

Surprisingly little work done in this specific area

©2015 Azul Systems, Inc.	 	 	 	 	 	

Azul’s “C4” Collector  
Continuously Concurrent Compacting Collector

Concurrent guaranteed-single-pass marker

Oblivious to mutation rate

Concurrent ref (weak, soft, final) processing

Concurrent Compactor

Objects moved without stopping mutator

References remapped without stopping mutator

Can relocate entire generation (New, Old) in every GC cycle

Concurrent, compacting old generation

Concurrent, compacting new generation

No stop-the-world fallback

Always compacts, and always does so concurrently

©2015 Azul Systems, Inc.	 	 	 	 	 	

 C4’s Prime Directives

Always do the same thing

Avoid the temptation to “solve” things by delaying them

Avoid rare code paths

Running under load for an hour should exercise the whole thing

Don’t be in a hurry

Avoid the “if we don’t do this quickly it will get worse” trap

e.g. multi-pass marking

or pauses that depend on scale metrics

or being consistently slow during an entire phase of GC

Allow collector to be “lazy” and run at a “relaxed pace”

Keeping up with allocation rate should be the only reason for “pace”

©2015 Azul Systems, Inc.	 	 	 	 	 	

Good Latency vs. Good Throughput

Why “vs.”?

We can have both!

©2015 Azul Systems, Inc.	 	 	 	 	 	

The secret to GC efficiency

100%

CPU%

Heap size
Live set

Heap size vs.
GC CPU %

©2015 Azul Systems, Inc.	 	 	 	 	 	

What empty memory controls

Empty memory controls efficiency (amount of collector
work needed per amount of application work
performed)

Empty memory controls the frequency of pauses (if
the collector performs any Stop-the-world operations)

Empty memory DOES NOT reduce pause times (only
their frequency)

In fact, *IF* you do GC work in a pause, more empty
memory usually means larger pauses

With C4, we get the upside with no downside…

©2015 Azul Systems, Inc.	 	 	 	 	 	

 C4 algorithm highlights
Same core mechanism used for both generations

Concurrent Mark-Compact

A Loaded Value Barrier (LVB) is central to the algorithm

Every heap reference is verified as “sane” when loaded

“Non-sane” refs are caught and fixed in a self-healing barrier

Refs that have not yet been “marked through” are caught

Guaranteed single pass concurrent marker

Refs that point to relocated objects are caught

Lazily (and concurrently) remap refs, no hurry

Relocation and remapping are both concurrent

Uses “quick release” to recycle memory

Forwarding information is kept outside of object pages

Physical memory released immediately upon relocation

“Hand-over-hand” compaction without requiring empty memory

©2015 Azul Systems, Inc.	 	 	 	 	 	

Benefits

ELIMINATES Garbage Collection as a
concern for enterprise applications

©2015 Azul Systems, Inc.	 	 	 	 	 	

GC Tuning

©2015 Azul Systems, Inc.	 	 	 	 	 	

Java GC tuning is “hard”…
Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g

 -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC

 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0

 -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled

 -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12

 -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M

-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy

-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled

-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled

-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly

-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

A	few	more	GC	tuning	flags

Source:	Word	Cloud	created	by	Frank	Pavageau	in	his	Devoxx	FR	2012	presentaGon	Gtled	“Death	by	Pauses”

©2015 Azul Systems, Inc.	 	 	 	 	 	©2013 Azul Systems, Inc.	 	 	 	 	 	

The complete guide to
modern GC tuning**

java -Xmx20g

java -Xmx10g

 java -Xmx5g

java -Xmx40g

©2015 Azul Systems, Inc.	 	 	 	 	 	

An example of “First day’s run” behavior
E-Commerce application

©2015 Azul Systems, Inc.	 	 	 	 	 	

A production FX trading system over a whole week

©2015 Azul Systems, Inc.	 	 	 	 	 	

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

©2015 Azul Systems, Inc.	 	 	 	 	 	

Cassandra Query behavior
(newgen-only)

HotSpot @ 10K, 20K, 40K, 60K

Zing @20K, 40K, 60K

Lots of conclusions can be drawn from the above…
E.g. C4 delivers a consistent 100x reduction in the

rate of occurrence of >20msec query times

©2015 Azul Systems, Inc.	 	 	 	 	 	

0%# 90%# 99%# 99.9%# 99.99%# 99.999%#
0#

10#

20#

30#

40#

50#

60#

70#

80#

90#

La
te
nc
y(
(m

ill
is
ec
on

ds
)(

(
(

Percen3le(

Latency(by(Percen3le(Distribu3on(

Comparing latency behavior under different throughputs, configurations
latency sensitive messaging distribution application

HotSpot&10K&&&

HotSpot&15K&

HotSpot&5K&

HotSpot&1K&

Zing&15K&
Zing&10K&
Zing&5K&
Zing&1K&
&

Required&
Service&Level&

©2015 Azul Systems, Inc.	 	 	 	 	 	

Fun with jHiccup

©2015 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

©2015 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Drawn to scale

©2015 Azul Systems, Inc.	 	 	 	 	 	

OpenJDK: 200-1400 msec stalls

Zing (drawn to scale)

Service timeResponse Time Response TimeService time

cassandra-stress

©2015 Azul Systems, Inc.	 	 	 	 	 	

This is Cassandra on HotSpot

This is Cassandra on Zing

Any Questions?

A simple visual summary

©2015 Azul Systems, Inc.	 	 	 	 	 	

http://www.azulsystems.com

http://www.jhiccup.com

http://giltene.github.com/HdrHistogram

Any Questions?

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

