Conversing worlds

LUMINIS

R

N D ——

k SR A -.-.

VRO PR IR I AL EE o
C L A Al e e o o B L

TRV IS AP RP PPN TETw e

' L AR AR

e

mmm
LA T T
e =0 EmIm R A
o l.!l.llll.

00181 00601 66 ta 1eF

.
[.

m.

P
D
O
>
o
D
P
O
-
O

e

\Y/

JavaOne

e

Bl

NIS

NIS

Conversing worlds

Director at Luminis Technologies

Member of the Apache Software F&mdation

@mA4rr5 y marcel.offermans@luminis.eu

mailto:marcel.offermans@luminis.eu?subject=

o Case: Entertainment System

e Build, run and deploy microservices

* Internet of Things

VIinelr

\VlIicroservices

Design

 Business Capabilities are leading when splitting
an application into microservices.

 The only constant is Change. Abstract interfaces.
Version them. Consider rate of change, high
conhesion, low coupling.

* Things will fail. Design for tailure and be explicit
about how a microservice will deal with and recover

from fallure.

Anatomy

Microservices communicate via services, which provide
a public, versioned contract. Implementations are hidden.

Microservices have their own life cycle, so they can be
separately deployed.

Microservices own their own data. This can lead to
polyglot persistence and that is fine.

Py '.--". . : / -’,- _':/ \ k
| S

- = ' » Lide Lé
e ciBRING & BBl eal o

AR LA AW

. . i & 2| @
Microservices use transaction-less coordination and -“*—‘u
are built for eventual«consistency.
| .
‘ ” 'p'a".r .r-:' (L b

Orchestration

Microservices offer strong decoupling, leaving us free to
choose implementation languages.

There is less need for formal standards, as long as you
agree on service Interaction. -

n,—"""""-
““

Microservices tend to communicate over “dumb ... « =
pipes” such as REST / HTTP or lightweight messaging

Microservices need automated and continuous
deployment.

| \\\ -
— ,.'/

TR

Process

 Make the team responsible for the whole life
cycle of a product or component.

« Remember Conway’s Law!

Any organization that designs a system will
produce a design whose structure is a copy of
the organization's communication structure.

Melvyn Conway, 1967

The case for
modularity

At all levels

A X

“1t’s turtles all the way down”™

Case: Entertainment SysS

ey

Architecture

Dashboard
———J Dashboard
Application Application " -ist applications
| state(appID) : Map
— exec(applD, cmd) : String
Music Player ﬁVeather Report —— haa '

Application |

| state() : Map
| exec(String) : String |

CP Application CP Application
/ ,
| Phone Navigation

W Application
()

state() : Map
exec(String)

Queue playLi

St
etNextSong() : Song
dd(Song)
d addFolder(File)

()

AN

IsPlaying()
isDone()

What is OSGi?

Provides a container where modules can be easily
deployed and versionead

Within a module, hides implementation details and
allows explicit, versioned sharing of code

Provides a service reqgistry that allows modules to
oublish and consume services to interact

t's the de-facto module system for Java: proven
technology, works on all Java versions, usable from
embedded to enterprise

What i1Is Amdatu?

Amdatu is a set of open source components and tools to build
modular applications in Java.

Lessons

Philosophy Al I ldatu

Book

News Amdatu is a set of open source components and tools to build modular
Articles applications in Java.

Getling startec Modularity is key to maintainable code and OSGi is the defacto standard when it
What is Amdatu comes to modularity in Java. Amdatu provides open source components and tools
Get started to make modular development of enterprise/web/cloud applications easy. Amdatu
FAQ also provides many resources to learn about modularity and OSGi. Get started with
Repository the videos below!

Amdatu Boots AD

Introduction LeSSOnS

Creating plugins

demo

RunnNiNg MIcroservi

Remote Services

service registry service registry
S,
| ' | | | | |
© © © © © © ©
C C C (- C (- C
> > > - > - >
@) @) ®) @) @) @) @)
OSGi framework OSGi framework OSGi framework

lava virtual machine lava virtual machine lava virtual machine

demo

Apache ACE is a software distribution
framework that allows you to centrally
manage and distribute software
modules to target systems.

Continuous Deployment:

1. Checkout and build the code

2. Upload modules to Apache ACE

3. Group them Into microservices

4. Assign microservices to distributions
5. Assign distributions to target systems

demo

“Things”

* Machines
* Appliances
* Vehicles

* Buildings
* Plants

* Humans

* Animals

|dentification

e |Important to uniquely identify each thing

e |Pvb provides unigueness:
“enough addresses for every atom on earth... times 100”

- .Sensors

* Position

* Temperature
* Motion

* RFID

* Sight

* Sound

-

Communication

&3 Bluetooth

Autonomous

Challenges

* More data to process and store
* Huge security concerns
* Privacy?

* Internet of things will change the world

Deploying microservices to
o[devices

e all microservices are installed on the same device
e the device Is typically resource constrainead

e software updates have to be done over Iimited
connections (speed/bandwidth)

demo

Wrapping up

e explored microservices and modularity

e built a microservices Java application using OSGi
and Amdatu

 packaged, deployed and ran this application in
different ways

e seen how we can reduce the footprint of the
application for an loT device

Provisioning Server Cloud OSGi

| SGi services .

http J/ace.apache.org/ hitp://www.amdatu.org/ Et(;“pse OSGi plugin
p://bndtools.org/

@

bndtools

A.. Apache |
M m
| @& amdatu

Practical Modularit

- | That'sus
http://luminis.eu/

Luminis

Conversing worlds

e, WK

Pfy o

| Demo code
S https://bi
z | //bltbucket.org/marrs/microservices-for-the-iot/

M-
mﬂ.
o~

Microservices for Mortals [CON2488]
Bert Ertman

R e RTSRNTN. -Swea

