ORACLE

]avaOne

ORACLE

Collections:
New Tricks for Old Dogs

Stuart Marks
Oracle Java Platform Group

Twitter: @stuartmarks

«

= la ao e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

— ORACLE'

#CollectionsNewTricks

Acknowledgement

Significant material in this talk was derived from the JavaOne 2014 talk of
the same name, by:

Mike Duigou

OpenlDK Core Libraries Contributor
Twitter: @mjduigou

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

(_{.g JavaOner

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

‘gﬁ JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

#CollectionsNewTricks

Introduction

* Big Java 8 features were Lambda and Streams
* What about the good old Collections framework?

* Primary Java 8 Collections effort: enable collections as stream sources
— Collection.stream() and Collection.parallelStream()
—these are default methods, a new Java 8 language feature

* This talk:
— Many other new features added to Collections in Java 8 via default methods

— Sneak preview of features proposed for Collections in Java 9

* Tweet questions, comments, feedback with hashtag #CollectionsNewTricks

§) la\ie}g_ge Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

#CollectionsNewTricks
Default Methods Background

* Pre Java 8, interface methods were all abstract
— method signature & contract (specification)

* Implementing class needed to implement all methods
* Methods basically were never added to interfaces — incompatible!
— AbstractMethodError

* Java 8 solution to evolving an interface: default methods
—in addition to method signature & contract, provide an implementation
—inherited by all implementing classes
—can be overridden by implementing class

§) la\ie}g_ge Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

#CollectionsNewTricks

Default Methods in Collections-related Interfaces

* Mostly taking advantage of Lambda expressions
* Convenience methods

* Mutating bulk operations
— compare to streams operations, which don’t mutate the source

* Transactional operations
— multiple operations fused into a single method
— possibly conditional
— concurrent collections have atomic implementations

* New features automatically apply to all existing collections!

(;") la\ie}g_ge Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

#CollectionsNewTricks

lterable Interface

* |terable.forEach

// OLD

List<String> list = ... ;

for (String str : list)
System.out.println(str);

// NEW
list.forEach(s -> System.out.println(s)); // lambda
list.forEach(System.out::println); // method reference

* Collection is a subinterface of Iterable, so this works for all Collections

gg)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

#CollectionsNewTricks

lterator Interface

* Iterator.forEachRemaining

* [terator.remove

“.;.') l%glﬁne Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

#CollectionsNewTricks

Iterator.forEachRemaining

* Why “forEachRemaining” ?
— can be invoked part way through an iteration
—also, avoid name collision with Iterable.forEach

* Example: print all except first

Iterator<String> it = list.iterator();
if (it.hasNext())

it.next();
it.forEachRemaining(System.out: :println);

:ﬁJavaOne . o
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

#CollectionsNewTricks

Iterator.remove
* Most Iterators don’t support removal, so everybody had to write:

@Override
public void remove() {
throw new UnsupportedOperationException();

}

* Default implementation for remove() does exactly this

* To write a non-removing lterator, just omit remove() !

gi)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

#CollectionsNewTricks

Collection Interface

* Collection.stream, parallelStream methods mentioned previously

* Collection.removelf — bulk mutating operation

// OLD
for (Iterator<String> it = list.iterator() ; it.hasNext() ;) {
String str = it.next();
if (str.startsWith("A"))
it.remove();

}

// NEW
list.removelf(str -> str.startsWith("A"));

gi)lavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13

#CollectionsNewTricks

Collection.removelf()

* Suppose the list is an ArrayList
— (nobody uses LinkedList anymore, do they?)

* Conventional loop is O(n?) !
— each removal copies the tail of the array forward one position

* ArrayList.removelf() overrides Collection.removelf()
—two pass algorithm
— first pass tests each element and remembers removals in a BitSet
—second pass removes all in one sweep
—no element is copied more than once

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 14

#CollectionsNewTricks

List Interface

* List.replaceAll

* List.sort

t‘:)]%gge Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

#CollectionsNewTricks
List.replaceAll

* Bulk mutation operation

* Transforms each element in-place

// OLD
for (ListIterator<String> it = list.listIterator() ; it.hasNext() ;)

it.set(it.next().toUpperCase());

for (int i = @; i < list.size(); i++)
list.set(i, list.get(i).toUpperCase());

// NEW
list.replaceAll(String: :toUpperCase)

g)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 16

#CollectionsNewTricks

List.replaceAll

* Limitation: cannot change the type of the element

* If you need to change the element type, use a stream pipeline:

List<String> list = ... ;

List<Integer> result = list.stream()
.map(Integer::valueOf)
.collect(toList());

:ﬁJavaOne . o
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 17

#CollectionsNewTricks

List.sort

* Sorts a List in-place

* Example

// OLD
Collections.sort(list, comparator);

// NEW
list.sort(comparator);

* Big deal! Oris it?

:ﬁJavaOne . R
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 18

#CollectionsNewTricks

List.sort

* Collections.sort
— one algorithm, must work for all list implementations
—three step process

* copy into an temporary array
* sort the array in-place
* copy back to the list
* List.sort
— default does exactly the above
— ArrayList.sort overrides and sorts in-place — no copying!
— Collections.sort(list, cmp) now just calls list.sort(cmp) — everybody benefits!

(_{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 19

#CollectionsNewTricks

Map Interface Enhancements

* Lots of 'em
* Simple fused operations
* Lambda-based transactional operations

* Bulk operations
* Transactional operations are atomic for ConcurrentMap implementations

;‘) l%?ﬁne Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 20

#CollectionsNewTricks

Map Interface — Simple Fused Operations

* Map.getOrDefault

* Map.putifAbsent

* Map.remove

* Map.replace(k, v)

* Map.replace(k, oldV, newV)

<§) l%&ne Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

#CollectionsNewTricks
Map.getOrDefault(key, defaultValue)

// OLD

String s;
if (map.containsKey("key"))

s = map.get("key");
else

s = "defaultValue";
// NEW

String s = map.getOrDefault("key", "defaultValue");

“.;.') la\LEAQ_De Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 22

Map.putlfAbsent(key, newValue)
// OLD
String s = map.get("key");
if (s == null)
s = map.put("key", "newValue");
return s;

// NEW

String s = map.putIfAbsent("key", "newValue");

#CollectionsNewTricks

<) -
t‘.:) ava 0 n e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 23

ORACLE

#CollectionsNewTricks

Map.remove(key, value)
// OLD

if (map.contains("key") && map.get("key").equals("value"))
map.remove("key");

// NEW

map.remove("key", "value");

:ﬁJavaOne . R
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 24

#CollectionsNewTricks

Map.replace(key, value)
// OLD

if (map.contains("key"))
map.put("key", "value");

// NEW

map.replace("key", "value");

“.;.')]%gge Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 25

#CollectionsNewTricks

Map.replace(key, oldValue, newValue)

// OLD

if (map.contains("key") && map.get("key").equals("oldValue"))
map.put("key", "newValue");

// NEW

map.replace("key", "oldValue", "newValue");

“.;.') la\LEAQ_E e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 26

#CollectionsNewTricks

Map Interface — Lambda-based Operations

* New transactional operations
— Map.compute(key, (key, oldValue) -> newValue)
— Map.computelfAbsent(key, key -> value)
— Map.computelfPresent(key, (key, oldValue) -> newValue)
— Map.merge(key, newValue, (oldValue, newValue) -> mergedValue)

* (examples of compuetlfAbsent and merge follow)

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 27

#CollectionsNewTricks
Map.computelfAbsent(key, key -> value)

* Conditional execution of lambda

* If key is absent
— evaluates the lambda to get value
— puts key & value into map

* If key is present
— does nothing

* Operation is atomic for ConcurrentMap implementations

(_{.g JavaOner

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 28

#CollectionsNewTricks
Map.computelfAbsent(key, key -> value)

// Multi-valued map example
Map<String, List<String>> map = new HashMap<>();
// OLD
List<String> tempList = map.get("key");
if (tempList == null) {
tempList = new ArraylList<>();
map.put("key", templList);
}
tempList.add("value");
// NEW

map.computeIfAbsent("key", k -> new ArrayList<>()).add("value");

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 29

#CollectionsNewTricks

Map.merge(key, newValue, (oldV, newV) -> mergeV)

* More conditional execution

* If key is absent
—simply stores key and newValue

* If key is present
— fetches the old value
—invokes merge function on old and new values to produce merged value

—stores the key and merged value

* Operation is atomic for ConcurrentMap implementations

ﬁ) JavaOne . o
= ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 30

#CollectionsNewTricks

Map.merge Example
// store or append a string to an existing value
Map<String,String> map = new HashMap<>();
// OLD
String oldValue = map.get("key");
if (oldvalue == null)
map.put("key", "newValue");

else
map.put("key", oldValue + "newValue");

// NEW

map.merge("key", "newValue", String::concat);

:ﬁJavaOne . R
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 31

#CollectionsNewTricks

Map Interface — Bulk Operations

* Map.forEach
* Map.replaceAll

32

<;‘.:)]%gge Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

#CollectionsNewTricks
Map.forEach

// OLD

for (Map.Entry<String,String> entry : map.entrySet())
System.out.printf("key=%s value=%s%n", entry.getKey(), entry.getValue());

// NEW

map.forEach((k, v) -> System.out.printf("key=%s value=%s%n", k, v));

JﬁJavaOne . R
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 33

#CollectionsNewTricks

Map.replaceAll
// OLD

for (Map.Entry<String,String> entry : map.entrySet())
entry.setValue(entry.getValue().toUpperCase());

// NEW

map.replaceAll((k, v) -> v.toUpperCase());

:ﬁJavaOne . s affites. Al
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 34

#CollectionsNewTricks
Comparator

* Anybody enjoy writing comparators?

* Comparators are difficult because there are lots of conditionals and
repeated code

* Java 8 adds static and default methods to Comparator that:
—avoid repeated code

— allow composition of arbitrary comparators to make more complex ones
— easily create null-friendly comparators

* (by the way, in Java 8 interfaces can have static methods too)

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 35

#CollectionsNewTricks

Comparator Example 1
// Goal: sort List<Student> by last name

// OLD - anonymous inner class
Collections.sort(students, new Comparator<Student>() {
@Override
public int compare(Student s1, Student s2) {
return sl.getlLastName().compareTo(s2.getLastName());
}

1)

// NEW - use lambda expression
students.sort((sl, s2) -> sl.getLastName().compareTo(s2.getLastName()));

// NEWER - use "comparing" utility
students.sort(Comparator.comparing(Student::getLastName));

ggJavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 36

#CollectionsNewTricks

Comparator Example 2
// two-level sort: sort students by last name, then first name
// OLD

students.sort((s1l, s2) -> {
int r = sl.getLastName().compareTo(s2.getLastName());

if (r 1= 09)
return r;
return sl.getFirstName().compareTo(s2.getFirstName());
1)
// NEW

students.sort(Comparator.comparing(Student::getLastName)
.thenComparing(Student: :getFirstName));

JﬁJavaOne . R
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 37

#CollectionsNewTricks

Comparator Example 3

// two-level sort: sort students by last name, then by
// *nullable* first name, nulls first

// OLD

students.sort((sl, s2) -> {
int r = sl.getLastName().compareTo(s2.getLastName());
if (r 1= 09)
return r;
String f1 = sl.getFirstName();
String f2 = s2.getFirstName();
if (f1 == null) {
return f2 == null ? @ : -1;
} else {
return f2 == null ? 1 : f1.compareTo(f2);
}

1)

ggJavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 38

#CollectionsNewTricks

Comparator Example 3
// NEW

students.sort(Comparator.comparing(Student::getLastName)
.thenComparing(Student: :getFirstName,
Comparator.nullsFirst(Comparator.naturalOrder())));

// NEW, static imports

students.sort(comparing(Student::getLastName)
.thenComparing(Student: :getFirstName,
nullsFirst(naturalOrder())));

“natural order” is result of calling
compareTo() to compare two
objects of type Comparable

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 39

#CollectionsNewTricks

Comparator Interface Enhancements Summary

* Use of functional composition to build complex comparators
—instead of writing out tedious conditional logic
— mixture of static methods and default methods

* Key extractors
— Comparator.comparing for objects, also int, long, double

* Composition
— Comparator.thenComparing for objects, also int, long, double

— nullsFirst, nullsLast, reversed

* Access to natural order (for Comparable objects)
— Comparator.naturalOrder, Comparator.reverseOrder

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 40

#CollectionsNewTricks

Java 9 Sneak Preview

* Java lacks convenient ways to create and populate collections
—no “collection literals” like other languages

* Java lacks immutable collections
— can use unmodifiable wrappers
— but they aren’t really immutable

* Collections can have high per-element cost
—also high per-collection cost
— significant for small collections

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

#CollectionsNewTricks

Examples

// Python
letters = { 'a', 'b', 'c' }

// Java

Set<String> letters = new HashSet<>();
letters.add("a");

letters.add("b");

letters.add("c");

letters = Collections.unmodifiableSet(set);

// Java 9
Set<String> letters = Set.of("a", "b", "c");

ggJavaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 42

#CollectionsNewTricks

Static Factory Methods Proposed for Java 9
* List
— List.of(el, e2, e3, ...)

* Set
—Set.of(el, e2, €3, ...)

* Map
— Map.of(k1, v1, k2, v2, k3, v3, ...)
— ok, the Map case is actually more complicated

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 43

{.g JavaOner

#CollectionsNewTricks
Map Static Factory Methods

* Several fixed-arg factories up to a limit:
— Map.of()
— Map.of(k1, v1)
— Map.of(k1, v1, k2, v2)

— Map.of(k1, v1, k2, v2, k3, v3, k4, v4, k5, v5)

* Factory method entry() for creating Map.Entry instances
— Map factory with Map.Entry varargs parameter
— Map.ofEntries(entry(k1, v1), entry(k2, v2), ..., entry(kN, vN))

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 44

#CollectionsNewTricks

More Examples

List<Integer> piDigits = List.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3);

Set<Integer> primes = Set.of(2, 7, 31, 127, 8191, 131071, 524287);

// create a map with few key-value pairs

Map<Integer, String> platonicSolids = Map.of(4, "tetrahedron",
6, "cube",
8, "octahedron",
12, "dodecahedron",
20, "icosahedron");

// what if you have more key-value pairs than the limit?

:ﬁJavaOne . s affites. Al
— oo Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 45

#CollectionsNewTricks
Map Factory with Arbitrary Number of Pairs

Map<String, TokenType> tokens = Map.ofEntries(

entry("for", KEYWORD),
entry("while", KEYWORD),
entry("try", KEYWORD),

entry("catch", KEYWORD),
entry("finally", KEYWORD),

entry(":", COLON),

entry("+", PLUS),

entry("-", MINUS),

entry(">", GREATER),

entry("<", LESS),

entry("::", PAAMAYIM NEKUDOTAYIM),
entry("(", LPAREN),

entry(")", RPAREN),

/] ...

)5

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

#CollectionsNewTricks

Where are the New Collection Implementations?

* Implementations accessible only via the static factory methods
—returned collection objects are all instances of private classes

* Collections from the new factories have these characteristics:
—all are immutable
—all prohibit null elements
— set and map factories throw lllegalArgumentException on duplicates
—sets and maps have undefined (and potentially randomized) iteration order
—all serializable

— space-efficient implementations
* both per-collection and per-element

{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 47

#CollectionsNewTricks
Why Immutable?

* Large set of use cases for immutability
* No need to make defensive copies

* Thread-safe by default

* Allow space efficiency optimizations

* No need for wrappers: Collection.unmodifiableList()/Set()/Map()
— not truly immutable!
—they are unmodifiable views
— changes to underlying collection are visible

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 48

#CollectionsNewTricks
Why Prohibit Nulls?

* Allowing nulls originally was mostly considered a mistake

* Dubious semantics
— null usually means “absent” so what does it mean if it’s present?

* None of the concurrent collections allow nulls
* No recent collections have supported nulls

* Disallowing nulls provides opportunities for optimization
— fewer special cases in code

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 49

#CollectionsNewTricks

Why Throw Exceptions on Duplicates?

* Duplicate checking
— elements passed to Set.of()
—keys passed to Map.of() and Map.ofEntries()

* Factory methods are modeled on collection literals

* If you’'re explicitly listing all the keys or elements, duplicates are a
programming error

— catch programming errors early
— can’t check at compile time, but fail-fast at runtime

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 50

#CollectionsNewTricks
Map Factory with Arbitrary Number of Pairs

Map<String, TokenType> tokens = Map.ofEntries(

entry("for", KEYWORD),
entry("while", KEYWORD),
entry("try", KEYWORD),

entry("catch", KEYWORD),
entry("finally", KEYWORD),
entry(":" COLON),

entry("+", PLUS),

entry("-", MINUS),

entry(">", GREATER),

entry("<", LESS),

entry(":", PAAMAYIM_NEKUDOTAYIM),

entry (" (", LPAREN),

i?try('l)'l’ RPAREN) Spot the error...

)5

gg)]avaOnew

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 51

#CollectionsNewTricks

Why Keep Implementations Private?

* Different implementations chosen based on collection size
—e.g., field-based, linear array-based, hashed array-based

* Can change implementations from release to release
— better algorithms
— better tuning to current JVM and hardware characteristics
— improvements transparent to applications

* Reduced “API footprint” means fewer compatibility worries

g) JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 52

#CollectionsNewTricks

Summary

* Java 8 not just about Lambda and Streams!
— many enhancements to the Collections Framework
— go to javadoc page for your favorite collections interface
—look under the Default Methods tab

* More to come in Java 9
—immutable collections
— convenient
— null-safe
—thread-safe
— space efficient

(_{.g JavaOner

ORACLE Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 53

]avaOne

ORACLE

ORACLE

