
Beyond the Coffee Cup:
Leveraging Java Runtime Technologies for

Polyglot

Daryl Maier

Senior Software Developer at IBM Canada

IBM Runtimes

maier@ca.ibm.com

About me…

• IBM Canada Lab in Toronto (-ish)

• Member of IBM Runtime Technologies
team

• Compiler and runtime optimizations for
20 years

• Leading a not-so-secret project to
open-source IBM compilation
technology

Trademarks, Copyrights, Disclaimers

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole
discretion. Information regarding potential future products is intended to outline our general product direction and it should
not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future
products may not be incorporated into any contract. The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is available on the
web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING
CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR
LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2015. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Additional Important Disclaimers
THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”,
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED
ON HARDWARE, SOFTWARE OR INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE
BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION
OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS

• Announced by Mark
Stoodley at JVMLS 2015

• See the complete talk here.

IBM to open-source a runtime technology
toolkit!

https://www.youtube.com/watch?v=kOnyJurioyw

{groan}
Oh, great – another common

runtime environment!

Polyglot VM Community

{cheer}
Woo hoo – a runtime toolkit that

integrates with my VM!

Polyglot VM Community

Motivation for a runtime toolkit

• Experiment with leveraging investment in J9 Java VM technology in a
way that facilitates integration of this technology into other VMs

• Compatibility with existing runtimes and their communities
• Lots of vibrant language communities can’t tolerate disruptive technologies
• Technology should be flexible enough to bend to the community rather than

the other way around
• Work with all the features that make that language great

• Simple consumption into existing runtimes

Unlock the “VM” from the J9 Java VM for
polyglot
• Refactor several J9 components to create a language-agnostic toolkit designed for

integration into language runtimes (including J9 JVM)
• Memory allocator, thread library, platform port library, event hook framework, VM and

application level trace engine, garbage collector, JIT compiler

• Experiments to bring capabilities from J9 to Ruby MRI, CPython, and CSOM
• Integration by specializing toolkit components with runtime details from MRI, CPython,

CSOM
• Gauge promise of this approach

• Not a research project: our JDK product development team aggressively
refactoring our VM, GC, and JIT technology

• Shipped IBM JDK8 from snapshot of refactored code base
• JDK9 development ongoing as we continue to experiment

Common
utilities

Thread
library

Port
library

Trace GC JIT

VM
Structures

…

Core
runtime

infrastructure

Tool
Agents

Transplanting J9 capabilities to other runtimes

Method profiling for Ruby MRI: introduce tracepoint to feed call stacks
samples to Health Center agent

Scalable garbage collector integration

• Integrated GC into Ruby MRI
• Type accurate, but used conservatively so extensions work as-is

• MRI: can move off-heap native memory into manageable heap

• Proof point: verbose GC
<cycle-start id="2" type="global" contextid="0" timestamp="2015-08-05T17:21:58.105" intervalms="5066.731" />

<gc-start id="3" type="global" contextid="2" timestamp="2015-08-05T17:21:58.105">

<mem-info id="4" free="596848" total="4194304" percent="14">

<mem type="tenure" free="596848" total="4194304" percent="14" />

</mem-info>

</gc-start>

<allocation-stats totalBytes="3596216" >

<allocated-bytes non-tlh="720016" tlh="2876200" />

</allocation-stats>

<gc-op id="5" type="mark" timems="4.881" contextid="2" timestamp="2015-08-05T17:21:58.110">

<trace-info objectcount="8914" scancount="7208" scanbytes="288320" />

</gc-op>

<gc-op id="8" type="sweep" timems="0.688" contextid="2" timestamp="2015-08-05T17:21:58.111" />

<gc-end id="9" type="global" contextid="2" durationms="5.896" usertimems="7.999" systemtimems="1.999" timestamp="2015-08-05T17:21:58.111" activeThreads="2">

<mem-info id="10" free="2508160" total="4194304" percent="59">

<mem type="tenure" free="2508160" total="4194304" percent="59" micro-fragmented="297048" macro-fragmented="723458" />

</mem-info>

</gc-end>

<cycle-end id="11" type="global" contextid="2" timestamp="2015-08-05T17:21:58.111" />

GC visualization for Ruby MRI via existing GC trace points
feeding GC events to Health Center agent

Garbage Collection Memory Visualizer for Ruby MRI with zero
changes to the tool

JIT integration

• Ruby MRI and CPython do not have JIT compilers

• Both environments are challenging for JIT compilers
• Highly dynamic
• Unmanaged direct use of internal data structures by extensions
• Design choices in the runtimes themselves (e.g., setjmp/longjmp)

• Our effort to date has particular emphases
• Compile native instructions for methods and blocks
• Avoid big changes to how MRI/CPython works (to ease adoption)
• Consistent behavior for compiled code vs. interpreted code
• No restrictions on native code used by extension modules
• No benchmark tuning or specials

• Compatibility success story: We can run Rails!

• Performance success story: 1.2x + on many Bench9k kernels on 3 architectures
without tuning

Proof point: IBM JDK 8

Health Center

enables remote

Bluemix performance

analysis

ORB optimizations

can show 3x

Improvements in

real-World banking

scenarios

Liberty and tWAS

Daytrader3 workload

increases (15% on

Linux Intel)
2x improvement per core

seen with SSL by using

SMT vs Java 7.1 on zEC12

Improved IBMJCE

crypto performance

New instruction exploitation

CPACF instructions: AES,

3DES, SHA1, SHA2 etc

Up to 50% less CPU to

ramp-up to steady state

JZOS Toolkit

enhancements

Public Key

improvements with ECC

Up to 25% faster Liberty

workload deployment

20% better ramp-up using

Runtime Instrumentation
NVIDIA GPU

support

IBMJCE crypto improvements on both AES and

ECC encryption using hardware exploitation

PERFORMANCE !
Java6

SR16 FP4

Java 6.1

SR8 FP4

Java 7

SR9

Java 7.1

SR3

Java 8

SR1
Apache Spark 1.4 Daytrader3 Linux Intel

Open community

• Create an open community of contribution based around a toolkit of components that can
be used to build VMs for any language

• Efficient place for individuals, communities, and companies to safely collaborate on core
VM infrastructure

• Enable everyone to focus more energy on innovation, not on building more wheels

• Build more robust core technology

– Fix bugs once

– Tested in many different scenarios

• Collection of best practices and shared learning

• Lower entry barrier for new languages and VM ideas

– Test ideas faster and more reliably

What this talk is about…

• Mark’s JVMLS talk focused on the “whys” and “whats”, this talk will
focus on the “hows”

• GC experience deep dive
• CON7863: What’s in an Object? Java Garbage Collection for the Polyglot

(Charlie Gracie)

• JIT experience with refactoring the “VM” from the “JVM”

Are there enough re-usable components in a
Java JIT to build a polyglot toolkit?

Sampling thread determines which methods
spend the most time executing

Add “hot” methods to compilation queue for
asynchronous compilation

Translate Java bytecode into compiler IR

Choose a method from the queue for
compilation

Choose a tiered optimization strategy

Perform high-level classical, speculative, and
Java-specific optimizations

Generate code (instructions from IR, register
assignment, binary encoding, relocations)

Publish method metadata

Bind method into VM

Direct interpreter and JIT call sites to newly
compiled body

Recompile at higher optimization level

Patch runtime assumption guards, polymorphic
inline caches, monitor speculative optimizations

Sampling thread determines which methods
spend the most time executing

Add “hot” methods to compilation queue for
asynchronous compilation

Translate Java bytecode into compiler IR

Choose a method from the queue for
compilation

Choose a tiered optimization strategy

Perform high-level classical, speculative, and
Java-specific optimizations

Generate code (instructions from IR, register
assignment, binary encoding, relocations)

Publish method metadata

Bind method into VM

Direct interpreter and JIT call sites to newly
compiled body

Recompile at higher optimization level

Patch runtime assumption guards, polymorphic
inline caches, monitor speculative optimizations

Choose methods or blocks to compile based on
invocation count

Chosen method is compiled synchronously on
application thread

Translate CRuby iseq to compiler IR

Choose a fixed optimization strategy

Perform high-level classical, speculative, and
Ruby-specific optimizations

Generate code (instructions from IR, register
assignment, binary encoding, relocations)

Publish method metadata

Bind method into VM

Direct interpreter and JIT call sites to newly
compiled body

Patch runtime assumption guards, polymorphic
inline caches, monitor speculative optimizations

Sampling thread determines which methods
spend the most time executing

Add “hot” methods to compilation queue for
asynchronous compilation

Translate Java bytecode into compiler IR

Choose a method from the queue for
compilation

Choose a tiered optimization strategy

Perform high-level classical, speculative, and
Java-specific optimizations

Generate code (instructions from IR, register
assignment, binary encoding, relocations)

Publish method metadata

Bind method into VM

Direct interpreter and JIT call sites to newly
compiled body

Recompile at higher optimization level

Patch runtime assumption guards, polymorphic
inline caches, monitor speculative optimizations

Choose methods or blocks to compile based on
invocation count

Chosen method is compiled synchronously on
application thread

Translate CRuby iseq to compiler IR

Choose a fixed optimization strategy

Perform high-level classical, speculative, and
Ruby-specific optimizations

Generate code (instructions from IR, register
assignment, binary encoding, relocations)

Publish method metadata

Bind method into VM

Direct interpreter and JIT call sites to newly
compiled body

Patch runtime assumption guards, polymorphic
inline caches, monitor speculative optimizations

Select a method to
compile

Compile a method with
appropriate optimizations

Dispatch to compiled body

Adapt compiled method
to changing environment

Life Cycle
JIT startup and shutdown; initialization and destruction of resources (compilation threads,
options processing, memory management, …)

Compilation Trigger
Logic for determining when a method should be compiled: runtime method sampling
at execution, sample processing, count-and-send targets

Infrastructure
Supporting infrastructure for compilation: data structures (CFGs, blocks, trees,
instructions, symbol reference tables, aliasing, code caches), tracing/logging, enabled
feature processing

VM/JIT Interface
API between VM and JIT. Ask/answer questions about environment (e.g., lookup class or method
info), language semantics (e.g., float association), available capabilities (e.g., GPU present), object
model (e.g., array header size), configuration (e.g., GC policy), runtime helpers

Compilation
Intermediate representation; data types; optimization frameworks; classical, dynamic, and
speculative optimizations; code generation; register assignment; instruction schedulers; binary
encoders; code cache management; relocation processing; stack mapping

Method Dispatch Dispatch to compiled method from interpreted and JITed call sites; call site fixup

Runtime Adaptation
Method meta data, runtime assumption managers, profiling, recompilation
framework, code patching

Components of a compiler toolkit

IBM creating a toolkit of extensible compiler
components
• Start with mature J9 Java just-in-time compiler (aka Testarossa, or TR)

• Isolate the Java parts from the generic parts

• Re-engineer source code to allow specialization

• TR technology has already proven to be highly-adaptable to different
compilation uses

• 8 different compiler technology products or use-cases

• Consumption model: clone VM; clone O/S JIT; make

Testarossa Java compiler technology

• Heritage is a dynamic JIT for embedded Java
• Clean room implementation

• Mix of C++, C, native assembler

• Design goals
• Fast startup time
• Miserly memory management
• Flexible to meet different footprint configurations

• Optimizations
• Configurable high-level optimization framework
• High performance code generation with deep platform exploitation

• Dynamic recompilation with profile-directed feedback
• Speculative optimizations and supporting runtime framework

Optimizer
Optimizations

cold warm hot FSDscorching AOT

Java Bytecode

…

IL Generators

x86
POWER

z Systems

Code Generators

Profile
Manager

Hardware
counters

Sampling
Thread

Interpreter
Profile Info

JIT
Profile Info

Profiler

..

Compile Time
Connectors

J9 JVM

• Connector Options

• Object Model

• Language Specific
Code Generators

• C library functions

• Threading

• Tracing

Testarossa
Reusable Compilation Components

codeMetadataRuntimeRT Connectors RT Helpers

very hot profiling

Specialization of compiler components

• Not straightforward how to distill generic functionality from core TR
components and allow specialization for polyglot

• Two main axes of specialization
• the kind of compiler you’re trying to build

• the processor architecture you’re targeting

• Goals
• Isolation of compiler features

• Minimize impact to key compilation metrics: startup, compile-time, and footprint

• Minimize future merge and integration costs of specializations (easy consumption)

• Permit future extensibility

Engineering for extensibility

• Some reorganization is necessary to facilitate building an extensible
model

• Code and source files organized into an ordered hierarchy of “projects” each
of which contains some specialization of compiler functionality

• Refactor core compiler technology classes into “extensible” C++
classes

• Follows a single-inheritance, composition model for specialization

• Static polymorphism for efficiency

• Makefile and include path determine which specializations to use

Compiler Sprocket (Open source project)

Power Extension
X86 Extension

i386 Ext

Compiler Sprocket (AwesomeVM Project)

X86
Ext

ARMv7 Ext Z Ext

Compiler Sprocket (MyOrg’s Multi-Language Runtime
Project)

X86
Ext

Power Ext

Compiler Sprocket (MyOrg’s C++ Compiler Project)

Power Ext X86 Ext

ARMv7 Ext

Effective Sprocket compositions

Compiler Sprocket (Open Source Project)

Compiler Sprocket X86 Extension (O/S)

Compiler Sprocket i386 Extension (O/S)

Compiler Sprocket (MyOrg MLR Project)

Compiler Sprocket (MyOrg C++ Project)

Compiler Sprocket X86 Extension (MyOrg C++)

Compiler Sprocket (Open Source Project)

Compiler Sprocket for i386 MyOrg C++ Build Compiler Sprocket for Power MyOrg C++ Build

Compiler Sprocket Power Extension (O/S)

Compiler Sprocket (MyOrg MLR Project)

Compiler Sprocket Power Ext (MyOrg MLR)

Compiler Sprocket (MyOrg C++ Project)

Compiler Sprocket Power Ext (MyOrg C++)

Compiler Sprocket Compiler Sprocket

Testarossa intermediate language

• Internal node opcodes and datatypes can be extended for different
projects and architectures

iload a
iload b
isub
bipush 2
imul
istore a

istore atreetop

iconst 2

imul

iload a

iload b

isub

Java Bytecode

• TR uses a tree-based intermediate representation, where the “tree”
represents a single expression or statement

IL generators

• Produce IL that can be consumed by JIT technology

• Highly specialized to the environment VM
• Depend largely on the input: bytecodes, instructions, etc.

• Consume and represent symbol information

• Each are generally independent, but shares IL construction utilities for
tree, node, and block creation

High-level IL optimizer

• Complete suite of classical and Java-specific optimizations

• Platform-neutral, each optimization consumes and produces IL

• Flexible configuration allows optimization strategies to be constructed
• Spend compile-time where and when it makes sense for each VM

• Most challenging to adapt for polyglot because some optimizations provide
VM- or architecture-specific specializations that are entwined with analysis
and transformation phases

• Make it easier to adapt by separating policy from mechanism in each
optimization, and then specializing both as necessary

Minimal compiler toolkit consumption model

1. Clone your favorite VM
2. Clone the open-source compiler toolkit
3. Implement a VM-specific extension to the compilation trigger and

method dispatch interface
4. Implement an IL generator for your VM, perhaps on a subset of all

possible “bytecodes” or “instructions”
5. Implement VM-specific extensions as needed to

• Core technology (e.g., IL nodes, opcodes, code generation, instructions)
• VM <-> JIT interface (e.g., Q&A about object model, name lookup, bytecode info)

6. Modify VM makefiles and include paths to integrate JIT technology
7. make

Implement richer support for all inputs and VM features once basic hookup is completed!

Longer term challenges

• Must optimize at a higher semantic level for maximum performance
• Optimizing for compatibility has a point of diminishing returns

• Can’t just optimize the connective tissue in the interpreter

• e.g., arithmetic operations

• Increase use of method meta data
• Don’t waste execution time maintaining interpreter state

• Leverage on-stack replacement to focus on what matters

• Build in fork tolerance
• Forking is the means by which some VMs achieve parallelism

• Difficult to manage compilation efficiently across multiple processes

The road to open-source

• Early results are very promising for all our technologies

• Next steps
• Some components in the toolkit are ready (Port, Thread, Trace, GC)

• Compiler technology needs more time

• Balance refactoring work against developing proof points

• Engage with runtime communities and partners

• I invite your feedback on our open proposal, our compiler toolkit, or
your interest in becoming involved

Daryl Maier
O/S JIT Lead
maier@ca.ibm.com

John Duimovich
CTO, IBM Runtime Technologies
John_Duimovich@ca.ibm.com

Mark Stoodley
O/S Project Lead
mstoodle@ca.ibm.com

Acknowledgements

• Clip art on slides 6 and 7 was sourced from
• https://openclipart.org/image/2400px/svg_to_png/92065/paro-AL-

calling.png

