
Big Data Engineering
The Hitchhikers Guide

Abdelmonaim Remani

@PolymathicCoder
PolymathicCoder@gmail.com

mailto:PolymathicCoder@gmail.com

@PolymathicCoder

Database?
A system allowing for storing data and consistently

reading back it in a later time

The file system is the simplest database / data store

Flat-File Databases

No Concurrent Access
▶ Data Not Always Available!

Consistency ▶ No Concurrent Access

Relational Databases

No Redundancy ▶ Normalization

Consistency and Availability ▶ No Redundancy

Relational Databases

• Increased Application Complexity

▶ OOP

▶ O/R Mismatch

▶ ORM Frameworks

• More Data & Complex Queries

▶ Decreased Performance

▶ OLAP/OLTP Schism

▶ Vertical Scaling

Relational Databases

• Even More Data & More Complex Queries

▶ Decreased Performance

▶ Horizontal Scaling

(Master/Slave & Data Sharding)

RDBMS as a Distributed System
▶ No Consistency and No Availability

CAP Theorem

Eric A. Brewer

CAP Theorem

Consistency

Availability

Partition
Tolerance

Distributed
Systems

CAP Theorem

Consistency

Availability

Partition
Tolerance

! "

Availability?

A

CAP Theorem

Consistency

Availability

Partition
Tolerance

Write

"

Consistency?

C

CAP Theorem

Consistency

Availability

Partition
Tolerance

Read

Consistency?

C

CAP Theorem

Consistency

Availability

Partition
Tolerance

Partition
Tolerance?

P

CAP Theorem

CAP Theorem

Consistency

Availability

Partition
Tolerance

Sounds like Relational Databases!

CA

CAP Theorem

Consistency

Availability

Partition
Tolerance

Is that what flat file databases were?

CP

CAP Theorem

Consistency

Availability

Partition
Tolerance

Is an AP datastore even possible?

AP

“Because partitions are rare, there is little reason to forfeit C or A
when the system is not partitioned. Second, the choice between
C and A can occur many times within the same system at very

fine granularity; not only can subsystems make different choices,
but the choice can change according to the operation or even the

specific data or user involved. Finally, all three properties are
more continuous than binary. Availability is obviously continuous

from 0 to 100 percent, but there are also many levels of
consistency, and even partitions have nuances, including

disagreement within the system about whether a partition exists.”
- Eric A. Brewer

CAP Theorem

Is an AP datastore even possible?

CAP Theorem

Consistency

Availability

Partition
Tolerance

Is an AP datastore even possible?

Eventual
Consistency

AP

CAP Theorem

Availability

Partition
Tolerance

Yuki

Is an AP datastore even possible?

!

"

#

$

❤

&

❤

❤
❤

❤
❤

Mohammad

Jane

Patrick

Sarah

❤ ❤

❤

AP
Consistency

CAP Theorem

Availability

Partition
Tolerance

Is an AP datastore even possible?

!

"

#

$

❤

&

❤

❤
❤

❤
❤

Mohammad

Jane

Patrick

Sarah

Yuki

❤ ❤

❤

😥

AP
Consistency

CAP Theorem

Availability

Partition
Tolerance

Is an AP datastore even possible?

!

"

#

$
💔

❤

&

❤

❤
❤

❤

💔

💔
❤

Mohammad

Jane

Patrick

Sarah

Yuki

😳

💬

😥

AP
Consistency

CAP Theorem

Availability

Partition
Tolerance

Is an AP datastore even possible?

!

"

#

$
💔

&

💔

💔
❤

Mohammad

Jane

Patrick

Sarah

Yuki

💔

💔

💔

💔

💔

😃

😐

-

😳

💬

😥

AP
Consistency

CAP Theorem

Availability

Partition
Tolerance

Is an AP datastore even possible?

!

"

#

$
💔

&

💔

💔

Mohammad

Jane

Patrick

Sarah

Yuki

💔

💔

💔

💔

💔

💔
😱

😃

😳

😐

-

💬

😥

AP
Consistency

NoSQL

• Key-Value Stores

• Document Stores

• Columnar Stores

• Graphs Stores

Big Data?

Big Data?

• A broad term

• Datasets that are

• Too large

OR

• Too complex

• For traditional data processing applications

Big Data Characteristics

• “Big Data is high volume, high velocity, and/or high
variety information assets that require new forms of
processing to enable enhanced decision making,
insight discovery and process optimization.”
“The Importance of Big Data: A Definition”
By Mark Beyer and Douglas Laney of Gartner Inc. (2012)
https://www.gartner.com/doc/2057415/importance-big-data-definition

https://www.gartner.com/doc/2057415/importance-big-data-definition

Big Data Characteristics
• Three characteristics known as V3

• Volume

• How much data?

• Velocity

• How fast is the data generated?

• How fast does it need to be processed?

• Variety

• How many different types, formats, or any other criterion it may be
categorized under?

Big Data Characteristics
• Variability

• How consistent or inconsistent is the data?

• Veracity

• How accurate is the data?

• Complexity

• Where it is from (Multitude of sources r a single source?)

• How does it relate to other data?

• Is it easy to make sense of?

• Etc…

Problem

• Too much data

• Complex queries

Solution

Apache Hadoop
https://hadoop.apache.org/

https://hadoop.apache.org/

History
• 2004

• “MapReduce: Simplified Data Processing on Large Clusters”

• Published by Jeffrey Dean and Sanjay Ghemawat of Google

• http://research.google.com/archive/mapreduce.html

• 2005

• Apache Hadoop (Includes a Java Implementation of MapReduce)

• Implemented by Doug Cutting and Mike Cafarella of Yahoo while
working on Apache Nutch (https://nutch.apache.org/)

https://nutch.apache.org/

Overview
Data Storage Model

HDFS
(Hadoop Distributed File System)

• Reliable data storage model on cheap and unreliable
commodity hardware

• Reliability through Redundancy

• High-throughput and optimized for large dataset

• Large black sizes (64MB or 128 MB)

Overview
Data Processing Model

MapReduce

• Data transfer overhead

• Data sampling Not good-enough or possible

• Data Proximity

• Taking processing to data rather than bringing
data to processing

Overview
Data Processing Model

MapReduce

• MapReduce Algorithm

• Map

• Queries are split and distributed across parallel nodes
and processed in parallel

• Reduce

• Results of queries are gathered and delivered

Overview
Data Processing Model

MapReduce

The path of the righteous man
is beset on all sides by the
inequities of the selfish and

the tyranny of evil men.

Blessed is he who, in the name
of charity and good will,

shepherds the weak through
the valley of the darkness.

For he is truly his brother's
keeper and the finder of lost

children. And I will strike down
upon thee with great

vengeance and furious anger
those who attempt to poison
and destroy my brothers. And
you will know I am the Lord

when I lay my vengeance upon
you.

The path of the righteous man
is beset on all sides by the
inequities of the selfish and

the tyranny of evil men.

Blessed is he who, in the name
of charity and good will,

shepherds the weak through
the valley of the darkness.

For he is truly his brother's
keeper and the finder of lost

children. And I will strike down
upon thee with great

vengeance and furious anger
those who attempt to poison
and destroy my brothers. And
you will know I am the Lord

when I lay my vengeance upon
you.

the 5
is 1

the 4
is 1

the 2
is 1

you 2

is 1
is 1
is 1

you 2

Map Reduce

the 5
the 4
the 2

the 11

is 3
you 2

the 11
is 3

you 2

Architecture

Job
Tracker

Data
Node

Name
Node

Data
Node

Data
Node

Task
Tracker

Task
Tracker

Task
Tracker

HDFS MapReduce

Master

Slave

Secondary
Name Node

Hadoop 1.0

Architecture

Job
Tracker

Data
Node

Name
Node

Data
Node

Data
Node

Task
Tracker

Task
Tracker

Task
Tracker

HDFS MapReduce

Master

Slave

Secondary
Name Node

Hadoop 1.0

SPoF

Architecture

Hadoop 1.0

Courtesy of Hortonworks

Architecture

Hadoop 1.0

Courtesy of Hortonworks

Coupling

Architecture

Hadoop 2.0

Courtesy of Hortonworks

Architecture

Courtesy of edureka!

Interface

• Java Framework / API

• CLI (Command Line Interface)

• Apache Thrift API (Support for many languages)

• Streaming API (Support for many languages)

Problem
• Writing Java MapReduce sucks!

• Simple parametrized queries

• ETL (Extract, Transform, and Load)

• Sequenced Data Transformations (Filtering, grouping, partitioning,
joining, etc…)

Solution
• A higher-level language to hide the complexity of MapReduce Java Code

• An ad-hoc way to create and execute MapReduce jobs

Solution

Apache Pig
https://pig.apache.org/

https://pig.apache.org/

History

• 2006

• Developed Apache Pig at Yahoo

• 2007

• Donated to the Apache Software Foundation

Overview

• Dataflow Programming

• “A paradigm that models a program as a directed
graph of the data flowing between operations” -
Wikipedia

• Some features of functional languages

Overview
• Pig Latin

• A scripting language

• Declare schema for data (complex data types,
collections, etc…)

• Projections (foreach … generate)

• Declare execution plans

• DAG (Directed Acyclic Flow) data pipelines as
opposed to sequential pipelines (Supports splits)

Overview

• Generates machine-optimized MapReduce jobs (Lazy
evaluations, etc…)

• Perfect for ETL jobs

• Extendable

• UDFs (User-Defined Functions)

• DataFu a UDF library by LinkedIn http://
data.linkedin.com/opensource/datafu

http://data.linkedin.com/opensource/datafu

Interface

• Java API

• grunt shell (CLI - Command Line Interface)

Solution

Apache Hive
https://hive.apache.org/

https://pig.apache.org/

History

• Donated to the Apache Pig at Facebook

• 2008

• Donated to the Apache Software Foundation

Overview

• Hive can own and manage storage files on HDFS

• Metastore

• Metadata to manage files in a directory structure

• A relational DB (Apache Derby by default, MySQL,
etc…)

Overview
• HiveQL

• Declarative

• Similar syntax to SQL

• DDL for defining data schema

• Operations on databases, internal tables, external tables, partitions, etc…

• Complex data types and collections

• DML for manipulating data

• No support for insert, update, or delete

• Query result can be inserted into tables

Overview

• Hive driver compiles queries, optimizes them, and
executes them by invoking MapReduce jobs

• ETL (Extract, Transform, and Load) jobs require
temporary tables or nested queries

• Extendable

• UDFs (User-Defined Functions)

• Custom SerDes (Serializer/Deserializer)

Interface

• Java API

• Hive CLI (Command Line Interface)

• Web Interface

• Apache Thrift API (Support for many languages)

• JDBC/ODBC facades

vs.

• ETL with Pig

• Query with Hive

• Learning Curve

• Pig Latin > HiveQL

Problem
• Workflow & scheduling can be a nightmare

• Building data pipelines / Job coordination and execution

• On a regular basis

• As data becomes available

• Depending on the outcome of another job

• Shell scripts & cron

• Seriously!!!

Solution
Apache Oozie

https://oozie.apache.org/

Apache Azkaban
http://azkaban.github.io/azkaban

https://oozie.apache.org/
http://azkaban.github.io/azkaban

History

• Apache Oozie

• 2008

• Donated to the Apache Software Foundation

Overview

• Apache Oozie

• A workflow scheduling system to manage Hadoop
jobs

• Scaleable

• Reliable

• Extendable

Architecture

• Apache Oozie

• Oozie Workflow

• DAGs (Directed Acyclic
Graph of actions)

• Oozie Coordinator

• Triggers workflow by
time and data availability

Architecture
• Azkaban

Interface
• Apache Oozie

• Java API

• Declarative XML Configuration

• Azkaban

• Azkaban CLI (Command Line Interface)

• Declarative Configuration (Property files and pre-
defined directory structure)

Problem
• Batch Processing is high-latency

• Need real time solutions for real time problems

• An architecture based on queues and workers (Pub/Sub)
sucks

• Complex and tedious to deal with (Routing,
serialization, partitioning, etc…)

• Message brokers are slow and have scalability issue

• Producers and downstream services are coupled

Solution

Apache Storm
https://storm.apache.org/

https://storm.apache.org/

History

• 2011

• Implemented by Nathan Marz and team at BlackType
(Acquired by Twitter)

Overview

• A higher level of abstraction than message passing

• Written in Clojure and Java

• The most watched JVM project on GitHub (At some
point)

Overview

• A distributed real-time computation system

• Ideal for stream processing and continuous
computation

• Processing unbound streams of data at real-time

• Fast, Scalable, Reliable, and Fault-tolerant

Architecture

• Nimbus (Analogous to Hadoop’s Job Tracker)

• Zookeeper (Cluster coordination)

• Supervisor (Analogous to Hadoop’s Task Tracker)

Architecture
• Topology

• Runs forever

• A DAG (Directed Acyclic Graph) representing a network of streams, spouts, and bolts

• Stream

• An unbounded stream of tuples

• Spout

• Taps into a data source

• Feeds data

• Bolt

• A Computation unit (func, filter, aggregation, joins, machine learning, etc…)

• Process input streams and produces output streams

Architecture
• Spouts and bolts are inherently parallelized and

communicate though message passing

Courtesy of Ran.ga.na.than Balashanmugam, ThoughtWorks!

Interface

• Java API

• Clojure API

• CLI (Command Line Interface)

Problem
• Batch Processing is high-latency

• Need real time solutions for real time problems

• An architecture based on queues and workers (Pub/Sub)
sucks

• Complex and tedious to deal with (Routing,
serialization, partitioning, etc…)

• Message brokers are slow and have scalability issue

• Producers and downstream services are coupled

Solution

• Decoupling producers and data pipelines to
downstream service

• Producers to send all to one system

Solution

Apache Kafka
https://kafka.apache.org/

https://kafka.apache.org/

History

• 2011

• Open-sourced by LinkedIn

Overview

• Decoupling producers and data pipelines to
downstream service

• Producers to send all to one system

• Pub/Sub messaging implemented as a distributed
commit log

• Distributed, partitioned, replicated, and scalable

Architecture

• Broker

• A cluster of one or more servers

• Producer

• Publishes data to topics

• Consumer

• Reads messages under a topic

Architecture
• Topic

• The category under which the message is stored and published

• Partition

• Multiple partitions per topic

• Each contains messages replicated across multiple servers

• Uniquely identified by an offset within the partition

• There is one leader per partition to handle read/write request
and passively replicate to the followers

• One a leader dies, another is elected

 Pub.Sub vs.

Pub/Sub
Messaging

Broker
Producer

Consumer

Consumer

Consumer

Push

Push

Push

 Pub.Sub vs.

Producer

Consumer

Consumer

Consumer

Pull

Pull

Pull

Scaling out consumers without impaction the broker

Interface

• Java API

• CLI (Command Line Interface)

Lambda Architecture

λ

Lambda Architecture

• The term was coined by Nathan Marz

• http://www.datasalt.com/2014/01/lambda-
architecture-a-state-of-the-art/

• Decoupling batch processing and real-time
processing

http://www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/

Lambda Architecture

Lambda Architecture
• Data is dispatched to either

• The Batch Layer

• Managing the master dataset (Immutable append-only set of raw
data)

• Pre-compute batch view

• The Serving Layer

• Indexes the batch view to support low-latency and ad-hoc queries

• The Speed Layer

• Deals with recent data only

Problem
• This really sucks, especially if you are a data scientist with no specific

queries

• Write code, compile, build, and package

• Deploy

• Run

• Wait …

• Output

• Error/Wrong Query

• Start over

Solution

Apache Spark
https://spark.apache.org/

https://spark.apache.org/

History

• 2010

• “Spark: Cluster Computing with Working Sets”

• Published by Matei Zaharia, Mosharaf
Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica at UC, Berkeley

• http://www.cs.berkeley.edu/~matei/papers/
2010/hotcloud_spark.pdf

http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf

Overview

• Written in Scala

• Interactive/Real-time processing

Overview
• A Data analytics cluster computing framework

• In-memory cluster computing

• Allows applications to load data into the memory of a cluster
and query it repeatedly

• Built atop of HDFS but not tied to MapReduce

• Faster than MapReduce

• 100x in-memory

• 10x on disk

Overview

• A unified platform on top of Spark execution engine

• Shark (Full Hive support)

• Spark Streaming

• GraphX

• MLib (Machine Learning Library out of the box)

Overview

• Upcoming

• Java 8 support

• Spark SQL (Not just Hive)

• BlinkDB for approximations (Approximate queries)

• Spark R (R wrapper for Spark)

• Spork (Porting Pig Scripts to Spark)

vs.

• Spark is

• Much higher throughput

• Much faster

Architecture
• RDD (Resilient Distributed Datasets)

• Immutable, In-memory, and Fault-tolerant

• Operations on parallelized collections of element

• Transformations

• map, filter, union, sample, groupBy, join, etc…

• Actions

• collect, count, first, takeSample, forEach, etc…

• Persist/Caching

• Multiple storage levels (memory, disk, both)

• DAG (Directed Acyclic Graph) execution engine

Interface

• Interactive shell

• spark-shell (Scala)

• pyspark (Python)

Enterprise Data Lake

Enterprise Data Lake
• All data is stored in a centralized Hadoop repository

• All data is raw

• Schema on-read as opposed to schema on-write

• No upfront data modeling

• All data is accessible

• All other data processing systems are downstream
including the data warehouse

Flat-File Database

Relational Database

Data Warehouse
(OLAP)

Relational Database
(OLTP)

NoSQLBig Data

File System

BatchReal-Time
StreamingInteractive Key-Value ColumnarDocument Graph

Transactions
Analytics

Big Data
Analytics

Big Data
Transactions

Thank You!

@PolymathicCoder

