
Building a Trusted Gateway
with Java ME and a Secure
Element

Pierre Girard, Security Solution Expert
San-Francisco, October 27, 2015

CON9758

Agenda

Gemalto introduction

Bringing Trust to M2M with Secure Elements

The Trusted gateway use case

Developing the building block with Java ME and Java Card

Building a Trusted Gateway2

Our purpose

Building a Trusted Gateway3

We enable our clients to bring
trusted and convenient digital services

to billions of people

We are the world leader in digital security

Building a Trusted Gateway4

WE’RE UNIQUE. WE’RE GLOBAL. WE’RE INNOVATIVE

2,900
R&D ENGINEERS

114
NEW PATENTS
FILED IN 2014

180+
COUNTRIES WHERE
OUR CLIENTS ARE

BASED

14,000+
EMPLOYEES

116
NATIONALITIES OF
OUR EMPLOYEES

€2.5bn
2014 REVENUE

+2bn
END USERS

BENEFIT FROM
OUR SOLUTIONS

Digital security enables trusted interactions

Building a Trusted Gateway5

PEOPLE
who want to access

any service, with
any device – and need

to use a digital ID.

SERVICE PROVIDERS
who need to check the ID
is valid – and to manage
and protect the data
in their care.

Ensuring strong
identities and
securing data
from the edge
to the core

We secure and manage the entire trust chain

Building a Trusted Gateway6

Our seamless chain of software, products, platforms
and services

Building a Trusted Gateway7

Software
Vendors

Government

Enterprise

Internet of
Things

Financial Services
& Retail

Our secure
solutions

We enable our clients to deliver
secure digital services in mobile

identity, payment, online banking,
cloud access, transport ticketing,
eGovernment, vehicle telematics,

software monetization
and so on.

Mobile

We enable our clients to deliver a vast range of
services

Building a Trusted Gateway8

Transport

Building a Trusted Gateway9

30,000+
ENTERPRISES

450
MOBILE

OPERATORS

3000+
FINANCIAL

INSTITUTIONS

80+
eGOVERNMENT

PROGRAMS

Our clients are some of the world’s big brands

http://aws.amazon.com/
http://aws.amazon.com/

Agenda

Gemalto introduction

Bringing Trust to M2M with Secure Elements

The Trusted gateway use case

Developing the building block with Java ME and Java Card

Building a Trusted Gateway10

Typical M2M domains with high security requirements

Building a Trusted Gateway11

M2M : the raise of the connected machines
Subject to traditional Internet security concerns
+ massive deployments
+ run unmanned, in the field, 24x7 ...
+ long lifecycle

Most sensitive domains

Connected cars Smart energy e-health Smart home

Why do we need trust ?

12

Management of sensitive devices
Car engine, PV arrays, heat pump, home door, …

Management of sensitive transactions
Energy: (not) producing, (not) consuming, storing …
X as a Service: mobility, temperature …
Peer-to-peer transactions

Management of sensitive data
Location / presence, behavior / consumption patterns, live video
/ sound streaming, …

Building a Trusted Gateway

Trust relationships

13

Consumer

Service provider

Platform provider

The consumer is
not cheating on

his service usage

The service provider
is protecting my

data

The service is not
hurting my
platform

My service assets
are protected by

the platform

Building a Trusted Gateway

A gateway template

14

Services
management

API

S
er

vi
ce

S
er

vi
ce

S
er

vi
ce

Platform

Service
framework

OS / hardware layer

Framework
common
services

WAN

LAN
Services
management

API

Se
rv

ic
e

Se
rv

ic
e

Se
rv

ic
e

Secure
element

Service framework

OS / hardware layer

Framework
common
services

Services
isolation

Services
communicationPolicies, permissions,

users, authentication,
crypto…

Code integrity,
secure boot

Secure com.

Secure com.

Tamper resistant
execution environment

Building a Trusted Gateway

Software security Hardware security

Protected environment
Trusted users
Direct access to data

Unprotected environment
Non trusted users
No direct access to data
Tamper resistant devices

15 Building a Trusted Gateway

CPU

EEPROM R
O

M

R
A

M

Tamper resistance at chip level

Shield
Glue logic
No Buses visible
Memories and buses encryption
Sensors

Blocks can be easily identified
No shield
No glue logic
Buses clearly visible

16 Building a Trusted Gateway

HW architecture of a Secure Element

Building a Trusted Gateway17

ROM

EEPROM

RAM

CPU

Crypto

UART

ISO7816
SPI
…

Host

SE

6 x 5 mm

SW Architecture of a Secure Element

Building a Trusted Gateway18

Java Card VM

Operating System

Java Card API

A
pplet
1

A
pplet
2

G
lobal P

latform

APDU

Secure Element

Host

CPU

Example of a SE product

Building a Trusted Gateway19

Java Card VM

Operating System

Java Card API 3.0.1

PA
C

E

IA
S

4.2

G
lobal P

latform
Secure Element

Infineon SLE78

TLS 1.2 support
Data signature / verification
Data encryption / decryption
Certificates storage

RSA 4096
AES 256
SHA 512
ECC 521

ISO7816-4 communication

Building a Trusted Gateway20

Example: CLA INS P1 P2 Le
A0 B0 xx yy Le

P1, P2 : specify the data to be retrieved
Le : length of data to retrieve

READ BINARY (P1,P2,Le)

Data, SW1, SW2
Host

Integration in Java embedded

Building a Trusted Gateway21

Raspberry Pi

Java Card VM

Operating System

Java Card API 3.0.1

PA
C

E

IA
S

 4.2

G
lobal P

latform

Secure Element

Infineon SLE78

PC/SC lite

Raspbian

PKCS#11

APDU

PKCS#11 crypto provider

Java 8 embedded API

A
pp

Some actual crypto providers

Building a Trusted Gateway22

Java crypto framework
API

SPI

TLSv1.2
…

AES
RSA
…

SunJSSE SunJCE

ECDSA
…

SunEC

A
pp

ECDSA
RSA
PKCS11
…

JNI
PKCS#11

Su
nP
KC
S1
1

JKS
…

Sun

Instantiating the Secure Element provider

Building a Trusted Gateway23

// PKCS#11 configuration file for the Secure Element
private static final String PKCS11_CONFIG = "/home/pi/NetBeansProjects/TestPKCS11onPi/dist/GemaltoPKCS11.cfg";

// Create a PKCS#11 cryptographic provider which uses the Secure Element
Provider myPKCS11Provider = new sun.security.pkcs11.SunPKCS11(PKCS11_CONFIG);

// The PIN code protecting the Security Element
char [] myPIN = {'0','0','0','0'};

// Create a KeyStore corresponding to the Secure Element
KeyStore.PasswordProtection pinProtection = new KeyStore.PasswordProtection(myPIN);
KeyStore.Builder ksb = KeyStore.Builder.newInstance("PKCS11", myPKCS11Provider, pinProtection);
KeyStore ks = ksb.getKeyStore();

// Add the SE as a cryptographic provider (useful when it is not possible to pass a provider explicitly)
Security.addProvider(myPKCS11Provider);
…

Switching to hardware security is easy: EC signature

Building a Trusted Gateway24

Signing with software provider

char [] myPassword = {'1','2','3','4'};

// Let's sign a message
String s1 = "Les hommes naissent et demeurent libres et égaux en droits.";

// We sign with ECDSA
Signature ecSign = Signature.getInstance("SHA256withECDSA");

// Retreive the signature key in keystore by it’s alias
PrivateKey privKey = (PrivateKey) ks.getKey("SignKey", myPassword);

// And we sign !
ecSign.initSign(privKey);
ecSign.update(s1.getBytes());
byte[] signature = ecSignCard.sign();

Switching to hardware security is easy: EC signature

Building a Trusted Gateway25

Signing with Secure Element provider

char [] myPIN = {'0','0','0','0'};

// Let's sign a message
String s1 = "Les hommes naissent et demeurent libres et égaux en droits.";

// We sign with ECDSA
Signature ecSign = Signature.getInstance("SHA256withECDSA", myPKCS11Provider);

// Retreive the signature key in keystore by it’s alias
PrivateKey privKey = (PrivateKey) ks.getKey("SignKey", myPIN);

// And we sign !
ecSign.initSign(privKey);
ecSign.update(s1.getBytes());
byte[] signature = ecSignCard.sign();

Building a Trusted Gateway26

How about Java ME ?

Agenda

Building a Trusted Gateway27

Gemalto introduction

Bringing trust to M2M with Secure Elements

The trusted gateway use case

Developing the building block with Java ME and Java Card

Use case: connected home / alarm gateway

Building a Trusted Gateway28

Multiple industries are fighting to become the connected hub in the home:
example in US

Alarm System

MNO Broadband

Home Automation

Increased
volumes and

adoption
will increase

attractiveness of
hacking

Risks in today’s devices

Building a Trusted Gateway29

Lack of strong authentication of the device

Fake devices can be introduced in the system and interact with
Service provider backend

Basic ID Diversity scheme can be uncovered through brute force
or social engineering

Data is typically not strongly encrypted / authenticated

Lack of Hardware tamper resistance will allow motivated hackers
to enter the system either locally or remote

Secure Element added value in the gateway

Building a Trusted Gateway30

Tamper resistance
Personalization unique to each device: strong authentication of
the field devices to the server
Client authentication of the WAN client to the backend
Strong applicative encryption portable on various short range
technologies

Demo view
Home GatewayAlarm Panel

Sensorlogic
Platform

Lamp via
smart plug

Power
measure

Xbee
temp

and light
Sensor

Smart plug
On/off
power

measure

Zigbee

1 Alarm
Sensors

2 Short range home automation devices3 Activity reported on Sensorlogic platform
Alarm Sensor Status
Home automation Status

Cleod
Zigbee
remote

Cellular
TLS link

Zigbee Secured Link

Building a Trusted Gateway31

Hardware set-up for fast prototyping

Building a Trusted Gateway32

Gemalto concept board
• 2G/3G wireless module, Java ME
• Arduino compatible extension

Arduino XBee
• ZigBee

SE shield
• DIL prototypes
• SPI communication

Using SE for TLS client authentication

Building a Trusted Gateway33

Java Card VM
Operating System

Java Card API 3.0

applet

G
lobal

P
latform

Secure Element

CPU
APDU over SPI

Bouncy castle TLS stack

JSR#177 APDU API

SL agent
TLS

34

TLS handshake

RSA key pair for
client authentication

Building a Trusted Gateway

Agenda

Building a Trusted Gateway35

Gemalto introduction

Bringing trust to M2M with Secure Elements

The trusted gateway use case

Developing the building block with Java ME and Java Card

Developing the missing parts

Building a Trusted Gateway36

Generate the signature on the SE
Standard applets are available, but let’s build a demo one

Communication with the Secure Element
Provide JSR#177 standard library for APDU communication

Extension of Bouncy Castle to support an SE
Native Java ME TLS stack cannot use the SE

A simple Java Card applet for signing demo

Building a Trusted Gateway37

A simple Java Card applet for signing demo

Building a Trusted Gateway38

public void process(APDU apdu) {

// get the APDU buffer
byte[] apduBuffer = apdu.getBuffer();

switch (apduBuffer[ISO7816.OFFSET_INS]) {

// Sign raw RSA
case 0x03:

// P1, P2 and Lc checks here

// Receive the data
apdu.setIncomingAndReceive();

try {
rsa.init(privKey, Cipher.MODE_DECRYPT);
rsa.doFinal(apduBuffer, ISO7816.OFFSET_CDATA, (short) 128, result, (short) 0);
Util.arrayCopy(result, (short) 0, apduBuffer, (short) 0, (short) result.length);
apdu.setOutgoingAndSend((short)0 , (short) 128);

} catch (CryptoException e) {
Util.setShort(apduBuffer, (short) 0, e.getReason());
apdu.setOutgoingAndSend((short)0 , (short) 2);

}

ISOException.throwIt(ISO7816.SW_NO_ERROR);
break;

We are using raw RSA for demo purpose,
real applet process padding internally

JSR#177 SATSA: Security And Trust Services API

Building a Trusted Gateway39

Provides 4 independent and optional packages for Java ME

SATSA – APDU: API for APDU communication
No security as such, pure communication layer

SATSA –JCRMI: API for RMI on Java Card objects
Obsolete (JCRMI didn’t take off)

SATSA – PKI: API for data signature

SATSA – CRYTO
Provides crypto algorithms for encryption, hash, signature verification

JSR#177 on concept board

Building a Trusted Gateway40

Only SATSA-CRYTO is natively present
Software implementation only
No signature in the API

We decided to implement a SATSA-APDU in Java
Based on GPIO API
Provides javax.microedition.apdu.APDUConnection interface

41

Using Bouncy Castle TLS stack

SocketConnection sc = (SocketConnection) Connector.open("socket://myserver.com:443");
DataOutputStream os = sc.openDataOutputStream();
DataInputStream is = sc.openDataInputStream();
SecureRandom mySecureRandom = new SecureRandom();

TlsClientProtocol tlscp = new TlsClientProtocol(is, os, mySecureRandom);

TlsClient tlsc = new DefaultTlsClient(){
public TlsAuthentication getAuthentication() throws IOException {

return new TlsAuthentication() {

// Callback when receiving server certificate
public void notifyServerCertificate(Certificate serverCertificate) throws IOException {

// Check the certificate chain wrt to the Root CA certificate.
…

}

// Callback when client CertificateVerify shall be sent
public TlsCredentials getClientCredentials(CertificateRequest certificateRequest) throws IOException{

// Factory class can decide which credential to use based on TLS context (e.g. the server address)
// Can instatiate DefaultTlsSignerCredential or our SETlsSignerCredential
return TlsSignerCredentialsFactory.getInstance(context);

}

};
}

};

tlscp.connect(tlsc);

Building a Trusted Gateway

Bouncy Castle extension

Building a Trusted Gateway42

Seven classes added to Bouncy Castle
New SE RSA key parameters and the associated signature classes

Core RSA signature engine (simplified)

Building a Trusted Gateway43

Remove all actual RSA computations and delegate to SE
public BigInteger processBlock(BigInteger input)

{
byte[] signature = new byte[128];
byte[] toBeSigned = input.toByteArray();

// We check make sure that the input length is 128 bytes padded with leading 0 bytes
byte[] data = new byte[128];
System.arraycopy(toBeSigned, 0, data, 128 - toBeSigned.length, toBeSigned.length);

final String AID ="A0.0.0.0.18.50.0.0.0.0.0.0.52.41.44.41";
try {

APDU apdu = new APDU(AID);

// Sending the APDU to the SE: CLA=0x00, INS=0x03, P1=P2=0x00
byte[] response = apdu.sendAPDU((byte)0x00, (byte) 0x03, (byte) 0x00, (byte) 0x00, new byte[] {(byte)128}, new byte[] {(byte)128}, data);

// Copy result
System.arraycopy(response, 0, signature, 0, 128);

} catch (Exception e) {
System.out.println("Cannot connect to the SE");
e.printStackTrace();

}

return new BigInteger(signature);

}

Take away

Gemalto has the
techno bricks to

prototype quickly a
secure home

gateway

Secure Element
can be used to

secure
heterogeneous

networks

SensorLogic Cloud
Platform allows you

to quickly and
securely deploy
your prototypes

Building a Trusted Gateway44

Building a Trusted Gateway45

Thank you

	Building a Trusted Gateway with Java ME and a Secure Element
	Agenda
	Our purpose
	We are the world leader in digital security
	Digital security enables trusted interactions
	We secure and manage the entire trust chain
	Our seamless chain of software, products, platforms and services
	We enable our clients to deliver a vast range of services
	Our clients are some of the world’s big brands
	Agenda
	Typical M2M domains with high security requirements
	Why do we need trust ?
	Trust relationships
	A gateway template
	Software security Hardware security
	Tamper resistance at chip level
	HW architecture of a Secure Element
	SW Architecture of a Secure Element
	Example of a SE product
	ISO7816-4 communication
	Integration in Java embedded
	Some actual crypto providers
	Instantiating the Secure Element provider
	Switching to hardware security is easy: EC signature
	Switching to hardware security is easy: EC signature
	Diapositive numéro 26
	Agenda
	Use case: connected home / alarm gateway
	Risks in today’s devices
	Secure Element added value in the gateway
	Demo view
	Hardware set-up for fast prototyping
	Using SE for TLS client authentication
	TLS handshake
	Agenda
	Developing the missing parts
	A simple Java Card applet for signing demo
	A simple Java Card applet for signing demo
	JSR#177 SATSA: Security And Trust Services API
	JSR#177 on concept board
	Using Bouncy Castle TLS stack
	Bouncy Castle extension
	Core RSA signature engine (simplified)
	Take away
	Diapositive numéro 45

