
Develop a Fully Functional
Business Application in Hours with

CUBA Platform

2

Objectives
This document will guide you through the key features of the CUBA Platform framework and show how you can
accelerate development of enterprise applications in the format of Hands-on-Labs.

Estimated time to complete this lab is 3 hours.

The estimation is given for developers,
who have general (basic) knowledge
of Java SE.

3

What is CUBA Platform?
A high level Java framework for rapid enterprise software development. The platform provides a rich set of
features:

● Rich web/desktop UI
● CRUD
● Role based and row level security
● Reporting
● Charts
● Full text search
● REST-API
● Scalable deployment

https://www.cuba-platform.com/

4

What we are going to automateWhat we are going to automate

5

Application for a small bicycle workshop

The data model

Short functional specification from the application:

● Store customers with their name, mobile phone and email

● Customer email to be used to notify about order status

● Record information about orders: price for repair

and time spent by mechanic

● Keep track of spare parts in stock and enable

search for parts

● Automatically calculate price based on spare parts used and

time elapsed

● Control security permissions for screens, CRUD operations and

records' attributes

● Audit of critical data changes

● Charts and reports

What we are going to automate

6

Application features
Our application will:

● Have Rich Web UI, with Ajax communication
● Perform basic CRUD operations
● Contain the business logic for calculating prices
● Manage user access rights
● Present data in the form of reports and charts
● Have audit capabilities
● Allow us to create mobile applications

or website using REST-API

Just two hours -
and we are ready for production!

What we are going to automate

7

Environment and tools

8

Development environment
1. Download CUBA Studio https://www.cuba-platform.com/download
2. Install IntelliJ IDEA
3. Install CUBA Plugin for IntelliJ IDEA

Environment and tools

https://www.cuba-platform.com/download

9

How to install CUBA Plugin for IntelliJ IDEA
1. Run IntelliJ IDEA
2. Open menu Configure - Plugins

Environment and tools

10

How to install CUBA Plugin for IntelliJ IDEA
3. Click on Browse repositories

Environment and tools

11

How to install CUBA Plugin for IntelliJ IDEA
4. Find CUBA plugin

5. Click Install

Environment and tools

12

Getting started

13

What is CUBA Studio?
CUBA Studio – a web based development tool that

● Offers a quick way to configure a project and describe data model
● Manages DB scripts
● Enables scaffolding and visual design for the user interface
● Works in parallel with your favorite IDE:

IntelliJ IDEA or Eclipse

Getting started

14

Start CUBA Studio
1. Run CUBA Studio
2. Click Start in the launcher window
3. Go to the browser by clicking the Arrow button

Getting started

15

Create a new project
1. Click Create New on welcome screen
2. Fill up project name: workshop
3. Click OK and you’ll get into the CUBA Studio workspace

Getting started

16

CUBA Studio workspace
Using CUBA Studio you can easily create Entities, Screens and stubs for Services.
You can hide/show the Help panel using menu Help - Show help panel

1. Click Edit in the Project Properties section

Getting started

17

Project properties screen
This is a page where we configure our project.
The CUBA Platform supports PostgreSQL, MS SQL, Oracle and HSQL databases.

Getting started

18

Studio will automatically add necessary

dependencies and regenerate project files for

IDE.

Use required modules
1. Select checkboxes for reports, fts (full text search) and charts in the Base projects section
2. Click OK in the upper part of the page
3. Studio will warn us about changing the project build file, just click OK.

Getting started

19

Data model

20

Create the data model
1. Open the Entities section of the navigation panel
2. Click New entity
3. Input Class name: Client
4. Click OK

Data model

21

Entity designer
Here we can specify a parent class and corresponding table in the database, define attributes for an entity and
manage other options.

Our class inherits StandardEntity, the service class which supports Soft Deletion and contains a number of
platform internal attributes (createTs, createdBy and others).

Data model

22

Attribute editor
1. Add a new attribute by clicking New
2. Enter Name: name
3. Select the Mandatory checkbox
4. Click on Add

Attribute editor enables us to create or edit attribute
and its parameters, such as Attribute type, Java Type,
Read only, Mandatory, Unique, etc.

Data model

23

Client entity and its attributes
Similarly, we add phoneNumber and email.

1. Add phoneNumber as a mandatory attribute with the length of 20 and unique flag
2. Add email as a mandatory attribute with the length of 50 and flagged as unique

Data model

24

Instance name
Instance name is a default string representation of Entity for user interface (tables, dropdown lists, etc).

1. Go to the Instance name tab
2. Select name and phoneNumber

Data model

25

Generated source code for the Client entity
1. Click on the Source tab of the Entity designer

This is a regular Java class, annotated with the javax.persistence annotations and supplemented by CUBA
annotations.

You can change source code of an entity manually
and the Studio will read your changes and apply those
back to model.

Data model

26

DDL Scripts
1. Click on DDL Preview tab of the Entity designer
2. Click OK to save the Client entity

This tab illustrates preview of SQL script for corresponding table creation.

Data model

27

Mechanic entity
1. Click New entity
2. Input Mechanic as entity name and click OK
3. Create New attribute
4. Set attribute name to user
5. Set Attribute type: ASSOCIATION
6. Set Type: User [sec$User]
7. Set Cardinality: MANY_TO_ONE
8. Select Mandatory checkbox
9. Click Add

The User entity is a standard entity used to operate with
system users in the CUBA Platform.

Data model

28

Mechanic entity — hourlyRate attribute
1. Click New to create attribute
2. Set Name: hourlyRate
3. Set Type: BigDecimal
4. Select Mandatory checkbox
5. Click the Add button

Data model

29

Mechanic entity — instance name
1. Go to the Instance name tab
2. Select user for the Mechanic's instance name
3. Save the Mechanic entity by clicking OK

Data model

30

SparePart entity
1. Create New entity with Class name: SparePart
2. Add the title attribute as a mandatory and unique String
3. Add the description attribute: String; clean up the value of length field, so description will have unlimited

length
4. Add the price attribute: mandatory, BigDecimal

Data model

31

SparePart entity — instance name
1. Go to the Instance name tab
2. Select the title attribute for the SparePart instance name
3. Click OK to save the entity

Data model

32

OrderStatus enum
To create the Order entity we’ll need to create the OrderStatus enum first.

1. Go to the Enumerations section in the navigation panel
2. Click New
3. Enter Class Name: OrderStatus
4. Add values:

NEW 10
IN_PROGRESS 20
READY 30

Data model

33

OrderStatus enum — source code
1. Similar to entities, we can check the generated Java code in the Source tab
2. Click OK to save the enum

You can change source code of enum manually
here and the Studio can read it back from
the source to its enum model.

Data model

34

Order entity
1. Go to the Entities section of the navigation panel
2. Create new entity
3. Set Order as the Class name
4. Add new attribute named: client

Attribute type: ASSOCIATION
Type: Client
Cardinality: MANY_TO_ONE
Mandatory: true

5. Similarly add the mechanic attribute with
Type: Mechanic

Data model

35

Order entity — description, hoursSpent, amount
1. Add description attribute: String, clean up the value of length field, so description will have unlimited length
2. Add hoursSpent attribute: Integer
3. Add amount attribute: BigDecimal

Data model

36

Order entity — parts attribute
1. Create a New attribute: parts

Attribute type: ASSOCIATION
Type: SparePart
Cardinality: MANY_TO_MANY

2. Click on the Add button
3. The Studio will offer to create a reverse attribute

from the SparePart entity to link it to Order,
just click No

Data model

37

Order entity — status attribute
1. Create New attribute: status
2. Set Attribute type: ENUM
3. Set Type: OrderStatus
4. Click Add

Data model

38

Order entity — done
1. Set Instance name for the Order entity to its description attribute
2. Check the attributes list of the Order entity: client, mechanic, description, hoursSpent, amount, parts, status
3. Click OK to save the entity

Data model

39

Database

40

Generate DB scripts
1. Click the Generate DB scripts link In the bottom of the Entities section
2. The CUBA Studio has generated a script to create tables and constraints
3. Click Save and close
4. The Studio has saved the scripts into a special directory of our project, so we will be able to access them if

needed

Database

41

1. Invoke the Run — Create database action from the menu to create a database
2. The CUBA Studio warns us that the old DB will be deleted, click OK

The Studio outputs process stages to the log. When Build Successful message is shown, our DB is created.

Create database

Database

42

User Interface

43

Screens scaffolding
Now let’s create standard browser and editor screens for the SparePart entity.

1. Select SparePart in the navigation panel
2. Click on the Create standard screens link
3. Click Create

On this screen we can specify where to place
the screens and which menu item
will be used to open the browser screen.

The following terminology is used:
● Browser screen — screen with list of records
● Editor screen — simple edit form for record

User Interface

44

Screen designer
The Studio has generated 2 screens. Let’s have a look at sparepart-edit.xml.

1. Select sparepart-edit.xml in the Screens section
2. Click Edit
3. The CUBA Studio features a built-in WYSIWIG

screens editor to speed up UI development
4. Click Close

User Interface

45

Data binding
Components are connected with data sources, which are configurable from the Datasources tab.

1. Select sparepart-browse.xml
2. Click Edit
3. Go to the Datasources tab

Datasources use JPQL queries to load data.

User Interface

46

Declarative UI definition
1. UI is described declaratively using XML, we can see an example of the descriptor in the XML

tab

The XML view is synchronized with
the graphical design, and if we make
changes in XML, then the graphical
view will be updated and vice versa.

UIUser Interface

47

Screen controller
1. Go to the Controller tab
2. Apart from XML, the Studio creates a controller for each screen, which is a Java class that implements the

logic and handling component events
3. Click Close

UIUser Interface

48

Generate screens for Client entity
1. Open the Entities section of the navigation panel
2. Select the Client entity
3. Click Create standard screens
4. Click Create

UIUser Interface

49

View. Loading of entity graphs from DB
The Mechanic entity is linked to User. So, we need to load related User entity to display it in the browser and
editor screens. In CUBA, this is done via special object — View, which describes what entity attributes should be
loaded from the database. Let’s create a view for the Mechanic entity, which will include User.

1. Select the Mechanic entity
2. Click New view
3. Choose Extends view: _local, as we want to

include all local attributes
4. Select the user attribute,

specify _minimal view for this attribute
_minimal view includes only attributes
that are specified in the
Instance Name of an entity

5. Click OK to save the view

UIUser Interface

50

Generate screens for Mechanic
1. Select the Mechanic entity
2. Click Create standard screens
3. Choose mechanic-view for browser and editor screens
4. Click Create

UIUser Interface

51

View for Order browser and editor
Now we need to create screens for the Order entity. We’ll also need to create a special view.

1. Open the Entities section of the navigation panel
2. Select the Order entity
3. Click New view
4. Set Extends to _local to include

all local properties
5. Tick client, mechanic and

select the _minimal view for them
6. Tick title and price for parts
7. Click OK to save the view

UIUser Interface

52

Generate screens for the Order entity
1. Select the Order entity
2. Click Create standard screens
3. Choose order-view for browser and editor screens
4. Click Create

UIUser Interface

53

Let's test it
Our application is done, of course, to a first approximation.
Let’s compile and launch it!

1. Invoke the Run - Start application action from the menu.
2. Studio will deploy a local Tomcat instance in the

project subdirectory, deploy the compiled
application there and launch it.

3. Open the application by clicking a link
in the bottom part of the Studio.

UIUser Interface

54

First launch and CRUD

55

Login screen
The system login screen has appeared. This is a standard CUBA screen, which can be customized, as everything
in CUBA, to meet specific requirements.

1. Click Submit to login

First launch and CRUD

56

Order browser
Since we have not changed the application menu, our items are displayed by default under the Application
menu.

1. Open Application — Orders from the menu

This is a standard browser screen with a filter
on top and a table below.

First launchFirst launch and CRUD

57

Order edit screen
1. Click Create and enter the description
2. Select Status: New
3. Click button […] to select a client for the order

UIFirst launchFirst launch and CRUD

58

Client browser
So far we don’t have any clients. Let's create one.

1. Click Create
2. Fill attributes of the new client

Name: Alex
Phone number: 999-99-99
Email: alex@test.com

3. Click OK
4. Click Select to set client to the order

UIFirst launchFirst launch and CRUDFirst launch and CRUD

mailto:alex@test.com

59

Assign mechanic for the order
You are now back to the Order editor screen

1. Click button […] at the right of the mechanic field in the Order editor
2. Click Create to add a new mechanic
3. Enter hourly rate
4. Select admin user for this mechanic
5. Click OK
6. Select mechanic for the order

You can go back to any of opened screens
using navigation at the top of screen.

UIFirst launchFirst launch and CRUD

60

CRUD application
1. Click OK to save the order

This is a small working CRUD application that writes data to the database and allows you to simply keep track of
orders.

We can search for orders using our Filter.

Table component enables us to hide
and change width of columns. Also
our table is sortable.

UIFirst launchFirst launch and CRUD

61

Integration with IDE and project structure

62

Go to the IDE
Keep your application up and running and follow the steps:
1. Launch IntelliJ IDEA. The IDE should be up and running to enable integration with the CUBA Studio
2. Go to the Studio and click the IDE button in the Project properties section

The project will come up in the IDE.

Integration with IDE and project structure

63

Project structure
By default any project consists of 4 modules: global, core, web, gui.

The global module contains data model classes, core - middle tier services, gui - screens and components, web
- web client-specific code.

You can have other clients in your project,
such as a desktop application or a web portal,
which will be placed in separate modules.

The project root directory contains
the application build scripts.

Applications are built using Gradle.

Integration with IDE and project structure

64

CUBA Studio IDE integration
1. Go to the Screens section of the navigation panel in the CUBA Studio
2. Select the order-edit.xml screen
3. Click the IDE button on top of the section

IntelliJ IDEA will open the order-edit.xml file.
We can edit any file of the project manually
using IntelliJ IDEA (or your favorite IDE).

Integration with IDE and project structure

65

Set default Status for an order
Stay in the IDE and follow the steps:

1. Hold Ctrl button and click on OrderEdit in class attribute of the XML descriptor to navigate to its
implementation

2. Override method initNewItem
3. Set status OrderStatus.NEW to the passed order

public class OrderEdit extends AbstractEditor<Order> {

 @Override

 protected void initNewItem(Order item) {

 super.initNewItem(item);

 item.setStatus(OrderStatus.NEW);

 }

}

Integration with IDE and project structure

66

Hot deploy
1. Open our application in the browser
2. Open/Reopen Application — Orders screen
3. Click Create
4. We see our changes, although we haven’t restarted the server
5. The CUBA Studio automatically detects and the

hot-deploys changes, except for the data
model, which saves a lot of time while
UI development

Integration with IDE and project structure

67

Generic filter

68

Filter component
1. Add a few orders to the system
2. Click Add new condition
3. Select Client
4. Set Alex as value for condition for the Client attribute
5. Select Description
6. Change [=] operation to [contains]
7. Enter a word to Description field
8. Click Search

The filter is a versatile generic tool for
filtering lists of entities, typically used on
browser screens.

It enables quick data filtering by arbitrary
conditions and saving them for repeated use.

Generic filter

69

Actions

70

Standard actions
The standard screens contain Create, Edit, and Remove actions by default.
Let’s add an action to export the order list to Excel.

1. Open order-browse.xml screen in the Studio.
2. Select table component, go to properties panel
3. Click the edit button in the actions property
4. Add a new action row to the list
5. Specify id as excel for this action
6. Click OK

Actions

71

Excel action
1. Add a new button to the button panel (drug and drop it into the hierarchy of components)
2. Select ordersTable.excel action for button using properties panel
3. Save the screen
4. Open/Reopen the Orders screen
5. Click Excel to export your orders to an xls file

The platform has standard actions for
common operations: Create, Edit, Remove,
Include, Exclude (for sets), Refresh, Excel,
and you can create your own actions.

Actions

72

Security

73

Security subsystem
The platform has built-in functionality to manage users and access rights. This functionality is available from the
Administration menu.

The CUBA platform security model is role-based and controls CRUD permissions for entities, attributes,
menu items and screen components and supports
custom access restrictions.

All security settings can be configured at runtime.
There is also an additional facility to control
row level access.

Security

74

Mechanic role
We need the Mechanic role for our application. A Mechanic will be able to modify an order and specify the
number of hours they spent, and add or remove spare parts. The Mechanic role will have limited administrative
functions. Only admin will be allowed to create orders, clients and spare parts.

1. Open Administration — Roles from the menu
2. Click Create
3. Set Name: Mechanic

Security

75

Screen permissions
We want to restrict access to Administration screens for all Mechanic users, so let’s forbid the Administration
menu and Reports menu items. Also, mechanics don’t need access to the mechanics and clients browsers,
let’s forbid the corresponding screens.

1. Select Reports row in the table with Screens
2. Select deny checkbox at the right
3. Similarly deny access for Administration,

Clients and Mechanics

Security

76

CRUD permissions
1. Open the Entities tab
2. Unset the Assigned Only checkbox
3. Click Apply
4. Select the Client entity and forbid create, update and delete operations
5. Same for the Mechanic and SparePart entities
6. For Order, we’ll restrict only create and delete

Security

77

Attribute permissions
1. Open the Attributes tab
2. Unset the Assigned Only checkbox
3. Click Apply
4. Select Order row and tick read only for client,

mechanic and description
5. Set hide for amount attribute
6. Click OK to save the role

Security

78

New user
1. Open Administration — Users from the menu
2. Click Create
3. Set Login: jack
4. Specify password and password confirmation
5. Set Name: Jack
6. Add the Mechanic role to user Roles
7. Click OK to save the user
8. Click on exit icon at the top right corner of

application window

Security

79

Role-based security in action
1. Login to the system as jack
2. Reports and Administrations menus are now hidden
3. Open Application — Orders from the menu
4. Edit existing order
5. The description, client and mechanic fields

are readonly
6. The amount field is hidden

Security

80

Row level security
What about the visibility of orders for the mechanic?
Let’s limit the list of displayed orders to the logged in mechanic's orders only. We will use the access group
mechanism for this.

1. Log out from the system
2. Log in as admin
3. Open Administration — Access Groups

from the menu

The groups have hierarchical structure, where
each element defines a set of constraints,
allowing controlling access to individual entity
instances (at row level).

Security

81

Create an access group
1. Click Create — New
2. Set Name: Mechanics
3. Click OK

Security

82

Add constraint for the access group
1. Open the Constraints tab for the newly created group
2. Click Create in the Constraints tab
3. Select Entity Name: workshop$Order
4. Enter condition to Where Clause as following

{E}.mechanic.user.id = :session$userId

,where {E} is a generic alias for the entity

Security

83

Assign group to the user
1. Click OK to save the constraint
2. Open Administration — Users from the menu
3. Edit the user with login: jack
4. Click on button […] at the right of the Group field
5. Select the Mechanics group
6. Click Select
7. Click OK to save the user

Security

84

Create a mechanic for the user
1. Open Application — Mechanic from the menu
2. Click Create
3. Set Hourly Rate
4. Select user: jack
5. Click OK to save the mechanic

Security

85

Create an order for the mechanic
1. Open Application — Orders from the menu
2. Create order for Jack
3. Log out from the system

Security

86

Row level security in action
1. Log in to the system as jack
2. Open Application — Orders from the menu
3. We see only one order for Jack!

We have restricted access for particular
orders only to the mechanics who perform them.
The access groups functionality allows you to configure
the Row-level security in your application
completely transparent for your application code
without interfering with a screen code.

Security

87

Services

88

Services
As the next step, let’s add business logic to our system to calculate the order price when we save it in the edit
screen. The amount will be based on the spare parts price and time spent by the mechanic.

To use mechanic hourly rate, we’ll need to load this attribute, so we need to add it to order-view.

1. Switch to the Studio
2. Open the Entities section of the Studio

navigation panel
3. Edit order-view
4. Include the hourlyRate attribute to the view
5. Click OK to save the view

Services

89

Generate Service stub
Business logic changes can happen very often, so it would be better to put it in a separate class - a service that
different system parts will be able to invoke to calculate the price for repair. Let’s create a stub for such service
from the Studio and implement the price calculation logic there. And in our screen, we’ll create the method to
invoke this service.

1. Go to the Services section in the Studio
2. Click New
3. Change the last part of Interface name to

OrderService

Services

90

Service interface and bean generation
In the Interface tab we can see the source code of the service interface, the Bean tab shows its
implementation. The interface will be located in the global module, its implementation - in the core module.

The service will be available for invocation for all clients that are connected to the middle tier of our application
(web-client, portal, mobile clients or integration
with third-party applications).

Services

91

Add method to a service
1. Click OK to save interface stub
2. Select the OrderService item in the navigation panel
3. Click IDE
4. In the Intellij IDEA, we’ll see the service interface, let’s add the amount calculation method to it

BigDecimal calculateAmount(Order order)

package com.company.workshop.service;

import com.company.workshop.entity.Order;

import java.math.BigDecimal;

public interface OrderService {

 String NAME = "workshop_OrderService";

 BigDecimal calculateAmount(Order order);

}

Services

92

Service method implementation
1. Go to OrderServiceBean using the green navigation icon at the left
2. Implement the method

package com.company.workshop.service;

import com.company.workshop.entity.*;

import org.springframework.stereotype.Service;

import java.math.BigDecimal;

@Service(OrderService.NAME)

public class OrderServiceBean implements OrderService {

 @Override

 public BigDecimal calculateAmount(Order order) {

 BigDecimal amount = new BigDecimal(0);

 if (order.getHoursSpent() != null) {

 amount = amount.add(new BigDecimal(order.getHoursSpent())

 .multiply(order.getMechanic().getHourlyRate()));

 }

 if (order.getParts() != null) {

 for (SparePart part : order.getParts()) {

 amount = amount.add(part.getPrice());

 }

 }

 return amount;

 }

}

Services

93

Call the service method from UI
1. Go back to the Studio
2. Select the order-edit.xml screen in the Screens section of the navigation panel
3. Click IDE
4. Go to the screen controller (OrderEdit class)
5. Add OrderService field to class and annotate it

with @Inject annotation
6. Override the preCommit() method and

invoke the calculation method of OrderService

public class OrderEdit extends AbstractEditor<Order> {

 @Inject

 private OrderService orderService;

 // ...

 @Override

 protected boolean preCommit() {

 Order order = getItem();

 order.setAmount(orderService.calculateAmount(order));

 return super.preCommit();

 }

}

Services

94

Test the service call
1. Restart your application using the Run — Restart application action from the Studio
2. Open Application — Orders from the menu
3. Open editor screen for any order
4. Set Hours Spent
5. Click OK to save order
6. We can see a newly calculated value

of the amount in the table

Services

95

Charts

96

Charts
Let’s assume our mechanic uses and likes the application but now he wants to add statistics. He wants a chart
showing the amount of orders per mechanic to reward them at the end of the month.

To implement this functionality we’ll use the charts
module of the CUBA platform, based on AmCharts.
It allows us to display interactive charts in
a web application based on system data
and specify chart configuration via XML.

Charts

97

Add chart component to screen
Let’s place the work distribution chart on the mechanics browser screen.

1. Open mechanic-browse.xml screen in the Studio
2. Place the cursor into the components palette, type Chart
3. The Studio will filter the component list and show

us components to display charts
4. Drag PieChart and drop it to the UI editor area
5. Set id for chart: ratingChart
6. Set width 100% and height 200px

using Properties panel
7. Click OK to save the screen

Charts

98

Load data for chart
To load data for our chart, let’s declare a new method in OrderService.

1. Go to OrderService from the Studio by selecting the service and clicking the IDE button

2. Add the method definition to the interface:

package com.company.workshop.service;

import com.company.workshop.entity.Mechanic;

import com.company.workshop.entity.Order;

import java.math.BigDecimal;

import java.util.Map;

public interface OrderService {

 String NAME = "workshop_OrderService";

 BigDecimal calculateAmount(Order order);

 Map<Mechanic, Long> getMechanicOrdersStats();

}

Charts

99

CUBA Persistence
The method will retrieve the number of orders for each mechanic from the database using a JPQL query.

Persistence interface is responsible for interaction with the database and allows you to create transactions and

execute operations using EntityManager.

1. Open the OrderServiceBean class

2. Inject the Persistence object into the class

3. Add stub for getMechanicsOrdersStats method

Charts

100

JPQL Query
We’ll use the following trivial JPQL query to get the number of orders for each mechanic:

select o.mechanic, count(o.id) from workshop$Order o group by o.mechanic

It aggregates orders by the mechanic field

and returns the number of orders for each

mechanic.

The complete implementation of the method is

available on the next slide.

Charts

101

Data loading using CUBA Persistence
@Override

@Transactional

public Map<Mechanic, Long> getMechanicOrdersStats() {

 EntityManager em = persistence.getEntityManager();

 Query query = em.createQuery(

 "select o.mechanic.id, count(o.id) " +

 "from workshop$Order o group by o.mechanic");

 List<Object[]> resultList = query.getResultList();

 Map<Mechanic, Long> stats = new HashMap<>();

 for (Object[] o : resultList) {

 UUID mechanicId = (UUID) o[0];

 Mechanic mechanic = em.find(Mechanic.class,

 mechanicId, View.MINIMAL);

 stats.put(mechanic, (Long)o[1]);

 }

 return stats;

}

Charts

102

Inject chart component to a screen
1. Go to the mechanic-browse screen using the Studio IDE button

2. Open Java controller (MechanicBrowse class)

3. Use Alt-Insert shortcut to inject ratingChart object to the controller

Charts

103

Data binding for chart
We can connect the chart to data in two ways. The first way is to use a data source returning a list of CUBA

entities. If we don't have an entity, that describes the content of a chart item we cannot follow this way.

The second way is to use the DataProvider interface, which allows us to use arbitrary data in a form that is

understood by the chart.

Our data model doesn’t have an entity

that describes the stats on mechanics,

so we’ll use the second way.

1. Override the init() method

Use Ctrl-O to quick override

2. Add OrderService field with @Inject annotation

Charts

104

Connect chart with data
Set data to chart using ListDataProvider. The implementation of the init(...) method is printed below:

@Override

public void init(Map<String, Object> params) {

 super.init(params);

 Map<Mechanic, Long> stats =

 orderService.getMechanicOrdersStats();

 List<DataItem> chartItems = new ArrayList<>();

 for (Map.Entry<Mechanic, Long> entry : stats.entrySet()) {

 MapDataItem dataItem = new MapDataItem();

 dataItem.add("mechanic",

 InstanceUtils.getInstanceName(entry.getKey()));

 dataItem.add("ordersCount", entry.getValue());

 chartItems.add(dataItem);

 }

 ratingChart.getConfiguration()

 .setDataProvider(new ListDataProvider(chartItems));

}

Charts

105

Field mapping for chart
We have connected the data collection, but how will the chart know which fields to use for illustration?

Open mechanic-browse.xml in the IDE

1. Specify two attributes of the chart: valueField

and titleField. They determine which fields

will be used in the chart

2. Add a legend element to set position of the

legend for the chart:

<chart:pieChart id="ratingChart"

 height="200px"

 width="100%"

 valueField="ordersCount"

 titleField="mechanic">

 <chart:legend position="LEFT"/>

</chart:pieChart>

Charts

106

Open screen with chart
1. Restart the application using the Studio

2. Open Application — Mechanics from the menu

Now we know exactly who should get a bonus.

Charts

107

Reporting

108

Reports
A rare business application goes without reports. That’s why our mechanic has asked us to make a report,

showing undertaken work for a certain period of time.

1. Open Reports — Reports from the menu

2. Click Create — Using wizard

3. Select Entity: Order (workshop$Order)

4. Set Template type: XLSX

5. Set Report Name: Orders

6. Select Report type: Report for list of entities

by query

7. Click Set query

Reporting

109

Report query builder
Report Wizard allows us to create a query using the graphical expressions constructor.

1. Click Add

2. Select the Created at attribute

3. Change operation for created condition to [>=]

4. Click Add once again

5. Select the Created at attribute

6. Change operation for created condition to [<=]

7. Click OK

8. Click Next

Reporting

110

Select attributes for report
1. Select Order attributes that the report will contain: Created At, Description, Hours Spent, Status

2. Click OK

3. Click Next

Reporting

111

Save report
1. Click Save to save the report

Reporting

112

Change parameter names
The Wizard will open the report editor so that we can make additional changes, if needed.

1. Open Parameters and Formats tab

2. Edit the CreateTs1 parameter

3. Set Parameter Name: Start date

4. Click OK

5. Edit the CreateTs2 parameter

6. Set Parameter Name: End date

7. Click OK

8. Click Save and close

Reporting

113

Run report
1. Expand General report group

2. Select the report

3. Click Run

4. Enter Start date and End date

5. Click Run report

The system has generated an XSLX file, we can

download it and view its content. Due to the

fact that the report templates have the same

format as the one that is required for the output,

we can easily prepare templates from

customer’s report examples.

Reporting

114

Report editor
You can also create reports manually using the Report editor. Data can be extracted via SQL, JPQL or even

Groovy scripts.

The template is created in XLS(X), DOC(X), ODT, HTML formats using standard tools.

Report output can be converted to PDF.

Also using the Report editor you can specify users

who will have access to the report, and system

screens where it should appear.

Reporting

115

Full Text Search

116

Full Text Search
Our system stores information about spare parts, but there are quite a few of them. It would be useful to search

them simply by typing a string like we google in a browser.

The CUBA Platform includes the Full Text Search module

based on Apache Lucene. It indexes content,

including files of different formats, and enables

text search using this index.

Search results are filtered according to security

constraints.

Full Text Search

117

Adding spare parts
1. Open Application — Spare Parts from the menu

2. Add spare parts:

Shimano Saint MX80 Flat Race Pedals

Shimano XT SPD XC Race M780 Pedals

Look KEO 2 MAX Road Pedals

3. Add these spare parts to random orders

Full Text Search

118

Configure Full Text Search Index
1. Open the Studio

2. Go to Others section of the navigation panel

3. Click Edit for Full-Text Search configuration

4. By default, the Studio has added all our entities to the index configuration.

From this screen we can manage entities and fields

that will be indexed

5. Click OK

Full Text Search

119

Enable Full Text Search for the application
Further configuration will be done via the CUBA interface.

1. Open Administration — JMX Console from the menu

2. This is a web version of the console for the

JMX interface; it allows us to manage internal

system mechanisms

3. Find FtsManager using the

Search by ObjectName field

4. Open FtsManager

5. Change the Enabled property to true

Full Text Search

120

Add records to index
1. Scroll down to see reindexAll and processQueue methods of FtsManager

2. Invoke the FtsManager reindexAll() method

3. Invoke the FtsManager processQueue() method

4. The system will display the current indexed

number of records

5. Click Close

Full Text Search

121

FTS in action
1. Log out from the system

2. Log in again

3. In the application top panel, the search field will appear, allowing you to search through all added to FTS

objects

4. Let's find something, for example: race

5. You will see the screen with search results,

which contains not only spare parts, but also

orders that have spare parts with this word in

its name

Full Text Search

122

FTS integration with filters
But what if we want to search only for spare parts?

1. Open Application — Spare Parts from the menu

2. Select Full Text Search checkbox in the filter panel

3. The text field will appear

4. Let's enter something, for example: road

5. Click Search

6. The table will display records that contain road

in their description

So, now mechanics will be able to find spare parts

by description quickly

Full Text Search

123

Audit

124

Audit
It happens when one day someone has accidentally erased the order description. It is not appropriate to call

the client on the phone, apologize and ask them to repeat the what needs to be done. Let’s see how this can

be avoided. CUBA has a built-in mechanism to track entity changes, which you can configure to track

operations with critical system data.

Let’s apply it for logging order changes.

1. Open Administration — Entity log from the menu

2. Go to the Setup tab

3. Click Create

4. Set Name: Order (workshop$Order)

Auto: true

Attributes: all

5. Click Save

Audit

125

Audit in action
1. Let's change an order description (or even clean it up)

2. Open Administration — Entity Log

3. Click Clear to reset security records filter

4. Click Search

The table shows changes and the user that made

them, the changed fields and their new values.

By sorting the changes by date and filtering them

for a particular record, we’ll be able to restore

the entire chronology of events.

Audit

126

REST-API

127

Portal module
Let’s try to add one more type of interface to our project - web portal. Similar to the web client, a portal can be

deployed separately from the middle tier. Similar to the web client, it will have access to the middle layer

services, even in distributed configuration. The portal is intended for a customer faced clients such as mobile

devices or fancy web pages.

1. Open the Studio

2. Stop the application

3. Go to the Project properties section

4. Click the Create portal module link

5. Confirm action by clicking OK

6. At the bottom of the Studio window, we’ll see

a new link to the Web portal page

REST-API

128

Generic REST API
The portal is a classic Spring MVC application that has access to the entities and services of the main

system. A new module, portal, will be added to our project. It will have the source code of Spring MVC

controllers and configuration files.

In addition to classic Spring MVC application based on the portal module, you can build AJAX

applications that use the REST interface to access the data. The universal REST-API of the platform allows

to load and save all entities defined in the application data model by sending simple HTTP requests.

This provides an easy way to integrate with a wide range of third-party applications – from the JavaScript

code, executed in the browser, to mobile applications or arbitrary systems running Java, .NET, PHP or any

other platform.

REST-API

129

REST API — obtaining session id
1. Start application

2. Let’s try to get a list of orders using REST-API. To start working with REST-API, you need to get the middle layer

session using the login method. You can invoke the login method right from the browser address bar.

Try this GET request: http://localhost:8080/app-portal/api/login?u=admin&p=admin

REST-API

http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin
http://localhost:8080/app-portal/api/login?u=admin&p=admin

130

REST API — JPQL query
Let’s load the list of new orders in JSON using the following query:

select o from workshop$Order o where o.status = 10

REST-API

REST-API request:

http://localhost:8080/app-portal/api/query.json?e=

workshop$Order&q=select+o+from+workshop$Order+o+

where+o.status=10&s=e9c5e533-8c04-4ef9-08c1-8875b2a

91ab8

Note: change session id (s parameter) to your actual

value

If we change json to xml in the request, then we’ll get

the same data in XML. Apart from GET requests, you can

use POST for all operations.

http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58
http://localhost:8080/app-portal/api/query.json?e=workshop$Order&q=select+o+from+workshop$Order+o+where+o.status=10&s=9b47bca1-d449-28a5-ff54-599dbf9e2a58

131

Summary
This is very small application for bicycle workshop management. It is simple, but can be applied for a real

local workshop.

You can run it in production environment (including clouds) as is and it will be suitable for its purpose.

You can add much more functionality using CUBA additional modules, and this enables you to grow your

application to big strong solution.

132

We have many more features!

In this session covers just a few features of CUBA, but

the platform has many more...

If you want to learn more about additional modules

and components just take a look at CUBA

documentation:

https://www.cuba-platform.com/manual

https://www.cuba-platform.com/manual

133

Questions?

Visit our forum

https://www.cuba-platform.com/support

https://www.cuba-platform.com/support

	Fully Functional Business Application with CUBA Platform
	Objectives
	What is CUBA Platform?
	What we are going to automate
	What we are going to automate - 1
	What we are going to automate - 2
	Environment and tools
	Environment and tools - 1
	Environment and tools - 2
	Environment and tools - 3
	Environment and tools - 4
	Getting started
	Getting started - 1
	Getting started - 2
	Getting started - 3
	Getting started - 4
	Getting started - 5
	Getting started - 6
	Data model
	Data model - 1
	Data model - 2
	Data model - 3
	Data model - 4
	Data model - 5
	Data model - 6
	Data model - 7
	Data model - 8
	Data model - 9
	Data model - 10
	Data model - 11
	Data model - 12
	Data model - 13
	Data model - 14
	Data model - 15
	Data model - 16
	Data model - 17
	Data model - 18
	Data model - 19
	Database
	Database - 1
	Database - 2
	User Interface
	User Interface - 1
	User Interface - 2
	User Interface - 3
	User Interface - 4
	User Interface - 5
	User Interface - 6
	User Interface - 7
	User Interface - 8
	User Interface - 9
	User Interface - 10
	User Interface - 11
	First launch and CRUD
	First launch and CRUD - 1
	First launch and CRUD - 2
	First launch and CRUD - 3
	First launch and CRUD - 4
	First launch and CRUD - 5
	First launch and CRUD - 6
	Integration with IDE and project structure
	Integration with IDE and project structure - 1
	Integration with IDE and project structure - 2
	Integration with IDE and project structure - 3
	Integration with IDE and project structure - 4
	Integration with IDE and project structure - 5
	Generic filter
	Generic filter - 1
	Actions
	Actions - 1
	Actions - 2
	Security
	Security - 1
	Security - 2
	Security - 3
	Security - 4
	Security - 5
	Security - 6
	Security - 7
	Security - 8
	Security - 9
	Security - 10
	Security - 11
	Security - 12
	Security - 13
	Security - 14
	Services
	Services - 1
	Services - 2
	Services - 3
	Services - 4
	Services - 5
	Services - 6
	Services - 7
	Charts
	Charts - 1
	Charts - 2
	Charts - 3
	Charts - 4
	Charts - 5
	Charts - 6
	Charts - 7
	Charts - 8
	Charts - 9
	Charts - 10
	Charts - 11
	Reporting
	Reporting - 1
	Reporting - 2
	Reporting - 3
	Reporting - 4
	Reporting - 5
	Reporting - 6
	Reporting - 7
	Full Text Search
	Full Text Search - 1
	Full Text Search - 2
	Full Text Search - 3
	Full Text Search - 4
	Full Text Search - 5
	Full Text Search - 6
	Full Text Search - 7
	Audit
	Audit - 1
	Audit - 2
	REST-API
	REST-API - 1
	REST-API - 2
	REST-API - 3
	REST-API - 3
	Summary
	Explore other features of CUBA Platfrorm
	Need support?

