
WebSocket Perspectives 2015
Clouds, Streaming, Microservices and the Web of Things

@frankgreco

Background

§  Director of Technology
§  Chairman NYJavaSIG (javasig.com)
§  Largest Java UG in NA 8k+ members
§  First Java UG ever! Sept 1995
§  email: frank.greco@kaazing.com
§  Twitter: @frankgreco
§  Yell: “Hey Frank!”

WIN A COPY!

1.  Introduction to HTML5 WebSocket
2.  The WebSocket API
3.  The WebSocket Protocol
4.  Building Instant Messaging and Chat over

WebSocket with XMPP
5.  Using Messaging over WebSocket with STOMP
6.  VNC with the Remote Frame Buffer Protocol
7.  WebSocket Security
8.  Deployment Considerations

WIN A COPY!

§  Web Communications Then and Now
§  Web APIs

§  Communications Models, Protocols, Frameworks

§  Where WebSocket Fits
§  IoT/WoT

§  Microservices Transports

§  Cloud Connectivity

Outline – Things to Consider

tcp http

web server
and/or

app server

app protocols

Web – “over the firewall” (early 90’s – 2011)

Page and Visitor hits used to be the report card

You are visitor ßRemember these?

The Hidden Web – Most of the Web is Not Visible

http://thumbs.dreamstime.com/x/iceberg-23503494.jpg

browsers

APIs

3,617,293,229 You are API call # today

2,391 You are visitor # this year

2015

2012

§  APIs from Everywhere, Consumed by Every [one|thing]

§  ~14K public APIs and even more Mashups
§  programmableweb.com/apis/directory

§  Amazon, Facebook, LinkedIn, AT&T, Google, Microsoft,
NYTimes, Orange, SalesForce, Telefonica, Twitter, Visa,
Vodafone, Bloomberg, NYSE, Thomson-Reuters, etc.

§  Over time, more will be event-based

§  Enterprise and B2B APIs

§  Services… Services… Services…

Explosion of Open Web APIs

Chuck Norris has an API and It can Kill you

% groovy -e \
'println new URL(\"http://api.icndb.com/jokes/random\").getText()”
| grep joke | tr -d "{}" | sed -e 's/.*joke": "//' -e 's/".*$//’

Chuck Norris compresses his files by doing a flying round
house kick to the hard drive.

% groovy -e \
'println new URL(\"http://api.icndb.com/jokes/random\").getText()”
| grep joke | tr -d "{}" | sed -e 's/.*joke": "//' -e 's/".*$//’

Chuck Norris played Russian Roulette with a fully loaded gun
and won.

Using the Web without a Browser

% REPO=kaazing/gateway

% printf 'As of %s, repo [%s] has %s forks\n' \
 "`date +%D`”\
 $REPO\
 `curl --user ”XXXXX:YYYYY" https://api.github.com/repos/$REPO 2>&1\
 grep -i forks_count |\
 cut -d: -f2 |\
 tr -d ,`

As of 10/16/15, repo [kaazing/gateway] has 34 forks

Services integration from anywhere on the planet
to any device.

Services integration is important.
Asynchronicity is next.

History

History

A Primary Tenet of Computing

If History Repeats Itself, Is There No Future?

Reactive Programming, Streams and Events – The Alive Web

Reactive programming is programming
with asynchronous data streams.

Functional Reactive Programming

Web Communication Protocols for Event-Driven World

HTTP/1.1 – 1997
RFC 2068

Great for caching, synchronous req/
resp, XHR for client async polling
(AJAX), Comet for push

HTTP/2 – 2015
RFC 7540

Binary, mux over TCP, header
compression, server can push into
client cache, AJAX/Comet, 30-50%+

WebSocket – 2011
RFC 6455

Binary/Text, full-duplex, persistent
connection, TCP for the Web
JSR 356/JEE7

SSE HTML5 – 2009
W3C

Standardization of Comet (push),
uni-directional, uses HTTP

Web Communication Mechanisms for Event-Driven World

Web Notifications
2015 - W3C

Browser Notifications outside webpage, can
use with Service Workers (and WS)

Push API
2015 - W3C

Scripted access to push data, use with
Service Workers (and WS)

2007

User-defined HTTP callbacks (POST)

Event-driven architecture, non-blocking I/O
API, JS for server

2009

Java/WebSocket JSR 356 – Glassfish OpenMQ
Java/C API

2013-2014

Do I Still Use WebSocket with HTTP/2?

§  WebSocket is not a REST (JAX-RS/Jersey)
replacement.

§  WebSocket is complementary to HTTP (and REST)

§  Simple Notifications can be easily done with HTTP

§  Higher level APIs for Polyglot world Needed (e.g., JS)

§  WebSocket used for Full-duplex Persistent
connection… a TCP for the Web

§  Non-Browser use is where it gets interesting

§  Kaazing
§  Java EE – JSR 356, Project Tyrus, Grizzly
§  Node.js/socket.io/SockJS/engine.io
§  ActiveMQ
§  Tomcat
§  Jetty
§  Oracle Glassfish
§  Play Framework – Reactive Apps
§  Rabbit MQ
§  JBoss
§  IIS/ASP .NET 4.5
§  PHP, Objective-C, Ruby, Python, C/C++, JVM-

langs…
§  Many more… (100+ implementations)

WebSocket Projects

WebSocket

TCP/IP

JMS XMPP AMQP B2B FTP VNC MQTT etc

Browser and Native Applications

WebSocket
Gateway

Internet

WebSocket
Gateway

Protocol Layering is Possible

WebSocket is a
 Transport layer

Protocols are the
key to

Integration

Who handles retries?

How do we handle publish/
subscribe semantics?

How do we handle market data?

How can we guarantee
delivery?

What do we do with slow
consumers, last value cache, etc?

What if the client is not
currently active?

What about partial
data?

How do I handle
entitlements? ACL?

What do Protocols give us?

Internet of Things (IoT) – Java ME
+

 Heterogeneity + Scale + Usability

WoT Now?

Communication

Presentation Music

Logistics

Big
Data

Risk
Management

Home
Security

Health
Monitoring

Intelligent
Appliances

Local
Transportation

Monitoring/
Management

Remote
control

The World is Naturally Event-based (“real-time”)

Web of Things – Its All About SERVICES!

http://www.w3.org/2014/02/wot/

§  No formal API standards

§  Many protocol standards – interoperability low

§  No common, wide-reaching frameworks

§  No composition possibilities

§  Difficult to leverage economies of scale

§  Barrier to entry is high for millions of app developers

IoT/IIoT – Connectivity isn’t Sufficient

§  IoT – Internet of Things

Embedded computing endowed with Internet connectivity

§  WoT – Web of Things

Application and Services layer over IoT

IoT

WoT

Developers!

Here’s Where the Web Comes In

§  Apply the benefits of the Web to IoT

§  WoT is a uniform interface to access IoT functionality

§  Provides the abstraction for control/monitoring
(sensors/actuators)

§  Accelerates innovation

§  Deployment, development, interoperability, economy of
scale…

Here’s Where the Web Comes In

§  Disadvantages of HTTP Request/Response
§  Lack of resiliency and robustness
§  Enterprise events retrieved by resource intensive polling

techniques
Ø Much bandwidth is wasted
Ø  Information can be delayed

§  Composite services brittle and lack transactionality
§  Enterprises learned advantages of ESB 10+ years ago
§  See failures of CORBA, Sun RPC, etc.
§  Clumsy AJAX/Comet workarounds to simulate real-time

But Is HTTP the Right Choice?

“…terse, self-classified
messages, networking overhead
isolated to a specialized tier of
devices, and publish/subscribe
relationships are the only way
to fully distill the power of the
coming Internet of Things” –
Francis daCosta

The Message is the Medium

Typically an App
Server and DB

App Server is
probably not the

right
architecture

Human
Web

WoT

Large data to client

Small data to server

Data Flow – Human Web vs WoT

Do human-readable protocols make sense for non-humans?

Why are we talking about Microservices?

§  It’s an SOA (lightweight SOA)
§  It’s SOA without WS-*, SOAP, etc, crap
§  Older technique now useful with modern

infrastructure
§  An App is a Collection of Services
§  Nothing really “micro” about Microservices
§  If you need more than two pizzas to feed the

team with the largest service, its not small
enough

Monoliths vs Microservices

§  Long builds, complex internals, scale issues
§  Scale by replicating entire monolith on multiple

servers
§  Hard to modify
§  Not necessarily bad – depends on team

Monoliths

Monoliths vs Microservices

§  Small services – more agile
§  Scale by replicating services
§  Independent distributed services
§  The Unix way

§  % cat myfile | tr "A-Z" "a-z" | tr -cs 'a-z' '\n' | sort | uniq

§  Requires more management
§  Still early

Microservices

But we’ve had this idea for a while…
Let’s take a step back

A Trip Down Memory Lane…

In the beginning…

IBM VM/370

History of Separate, Protected Environments

•  IBM VM/370 – 1972
•  hypervisor emulated a machine
•  Separate addr space, virtual devices, fs

•  Unix chroot(2) – 1979 Unix V7
•  Created a virtual root of fs
•  Useful for testing a clean environment
•  Shared users, procs, network – imperfect

•  BSD Jails - 2000
•  Virtual root fs, hostname, IP addr, users, su
•  Still shared host OS

History of Separate, Protected Environments

•  Solaris – Zones/Containers - 2004
•  Totally isolated, secure system resources
•  “Zones” renamed “Containers” then back to “Zones”
•  Separate CPU resources, memory and network
•  Very low overhead. No hypervisor required

•  LXC – Linux Containers – 2008
•  Run multiple Linux instances on a single Linux
•  Uses cgroups – to manage cpu, memory, i/o, of a

collection of processes

•  Docker – 2013
•  Auto deployment
•  Adds its own libcontainer for linux virtualization
•  Rides PaaS trend

Containers vs Virtual Machines (VM)

Server

Host OS

Hypervisor

Server

Host OS

Guest OS Guest OS Guest OS

bin/libs bin/libs bin/libs

App A App B App C

bin/libs

App
A

App
B

bin/libs

App
C

App
D

App
E

container container

Containers vs Virtual Machines (VM)

Server

Host OS

Hypervisor

Server

Host OS

Guest OS Guest OS Guest OS

bin/libs bin/libs bin/libs

App A App B App C

bin/libs

App
A

App
B

bin/libs

App
C

App
D

App
E

container container

Container Engine

Clouds and Microservices – the bottom line

§  More services per an OS
§  Greater Services Mobility – dev and ops
§  Easier application patching
§  Faster provisioning

§  10 min for VM, 10 sec (or less) for microservice
§  Container internals visible to help maximize

optimization
§  Avoids cloud framework lock
§  Intercloud portability
§  Allows services to be located most appropriate

part of architecture
§  Allows policies to be applied per container

Clouds and Microservices – the bottom line

§  The Microservices Synchronicity Penalty

§  Many ecommerce sites use 150-200
microservices for personalization. Amazon.com

§  Many are REST-based… ie, synchronous (wait for
a reply). And many are chained, so the penalty
is additive.

§  Significant resources are needed for high levels
of scalability (S = G/C)

Enterprise
Customer

Service	

• Access must be on-demand, secure and real-time
• Requires lengthy VPN installation process, open ports or worse

Service	

Cloud services frequently require on-premises access

VPN
TCP

WebSocket for Hybrid Cloud Connectivity

Click to Edit Master Title Style

Demos

WIN A COPY!

1.  Introduction to HTML5 WebSocket
2.  The WebSocket API
3.  The WebSocket Protocol
4.  Building Instant Messaging and Chat over

WebSocket with XMPP
5.  Using Messaging over WebSocket with STOMP
6.  VNC with the Remote Frame Buffer Protocol
7.  WebSocket Security
8.  Deployment Considerations

WIN A COPY!

Stretching Web Communication to Its Limits

Browser - Server

Stretching Web Communication to Its Limits

TodoMVC – Angular with WebSocket

Browser - Server
Native (mobile, desktop) - Server

Stretching Web Communication to Its Limits

In a single 3½ hour race,
[racing company] broadcasts

over 6 times as many messages
as Twitter does in an entire day

Twitter
Traffic
(Daily)

NASCAR
Traffic

(One race)

0

1 billion

2 billion

3 billion

M
es

sa
ge

s
pe

r
da

y

1.5 billion

2.5 billion

3.5 billion

0.5 billion

Over a Billion Messages an Hour

Browser - Server
Native (mobile, desktop) - Server

IoT/Embedded - Server

Stretching Web Communication to Its Limits

Browser - Server
Native (mobile, desktop) - Server

IoT/Embedded - Server
Server - Server

Stretching Web Communication to Its Limits

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

Cloud On-Premise

LDAP Server

SaaS
Application

LDAP Client

A2A for B2B. No VPN Needed.

1.  Introduction to HTML5 WebSocket
2.  The WebSocket API
3.  The WebSocket Protocol
4.  Building Instant Messaging and Chat over

WebSocket with XMPP
5.  Using Messaging over WebSocket with STOMP
6.  VNC with the Remote Frame Buffer Protocol
7.  WebSocket Security
8.  Deployment Considerations

WIN A COPY!

Raffle time

% echo $(($RANDOM % 50 + 1))
45

Thank You!

@frankgreco

