
1

© JBoss Inc. 2005

AOP For Development

Kabir Khan

March 8, 2005

2

Overview

• Ensuring architectural constraints
• Design By Contract
• Testing

3

AOP For Development

Architectural constraints

4

AOP For Development

Architectural constraints

5

Architectural constraints

• Most projects have certain
architectural constraints. E.g.

Make sure data layer classes don’t call
business layer classes
Avoid calls to ”broken” library methods

• Team lead needs to communicate and
ensure constraints are kept

6

Automatic checking

• declare-error
Weaver throws error and stops execution

• declare-warning
Weaver logs warning and continues
execution

2

7

Declare error example

<pointcut name=“b-ctors” expr=“call(com.acme.business->new(..)”/>
<pointcut name=“b-methods” expr=“call(com.acme.business->*(..)”/>
<pointcut name=“b-calls” expr=“b-ctors OR b-methods”/>

<declare-error pointcut=“b-calls AND within(com.acme.data.*)”>
Do not call methods on business layer classes from data layer

</declare-error>

8

Declare warning example

<declare-warning
pointcut=“call(* com.thirdparty.SomeClass->utility(..) /

AND !withincode(* com.acme.Wrapper->utility(..))”>
Do not call SomeClass.utility() directly, use
com.acme.Wrapper.utility() instead

</declare-warning>

9

AOP For Development

Design by Contract

10

Design by Contract

• Origin in the Eiffel language
• Classes define their responsibility e.g.:

Preconditions: Arguments to squareroot()
must be > 0
Postconditions: Return type of multiply()
method must be product of arguments
Invariants: Guaranteed state of object
between public calls

11

Design by Contract

public class MyMath {

public double squareroot(double d){
return Math.sqrt(a);

}

public double multiply(double a, double b){
return a * b;

}
}

12

DbC – Advice per method

<aop>
<aspect class=“MyMathDbcAspect”/>
<bind pointcut=“execution(double MyMath->squareroot(double d))”>

<advice aspect=“MyMathAspect” advice=“squareroot”/>
</bind>
…

</aop>

public class MyMathDbcAspect{
public Object squareroot(MethodInvocation inv){

double arg = ((Double)inv.args[0]).doubleValue()
double ret;
try{

//Check preconditions
assert(arg> 0);
return ret = inv.invokeNext();

}
finally{

//check post conditions
assert(ret * ret == arg)

}
}

}

3

13

DbC – Supplied aspect

<aop>
<aspect class="org.jboss.aspects.dbc.DesignByContractAspect“
scope="PER_JOINPOINT“/>

<bind pointcut="execution(* $instanceof{@org.jboss.aspects.dbc.Dbc}->*(..)) /
OR execution($instanceof{@org.jboss.aspects.dbc.Dbc}->new(..))">
<advice aspect="org.jboss.aspects.dbc.DesignByContractAspect“ name="invoke"/>

</bind>
</aop>

@DbC
public class MyMath {

@PreCond (“$0>0”)
@PostCond (“$rtn * $rtn == $0”)
public double squareroot(double d){

return Math.sqrt(a);
}

@PostCond (“$rtn = $0 * $1”)
public double multiply(double a, double b){

return a * b;
}

}

14

AOP For Development

Testing

15

Testing Exception Handling

<aop>
<aspect class=“SQLDeadlockExceptionInjector”/>
<bind pointcut=“call(* $instanceof{java.sql.Statement}->execute*(..))”>

<advice aspect =“SQLDeadlockExceptionInjector” name=“throwDeadlock”/>
</bind>

</aop>
public class SQLDeadlockExceptionInjector{

public Object throwDeadlock(Invocation invocation) throws Throwable {
throw new SQLException("Oracle Deadlock", "RETRY", ORACLE_DEADLOCK_CODE);

}
}

• Can use cflow, within and withincode
to further narrow down where
exceptions are thrown

16

Testing - Injecting Mock Objects

• Want to return a mock object instead
of a ”real” implementation

• Normally have to modify the creation
code

• An advice can intercept creation for
you and return the mock object

17

AOP

• Architectural constraints
• Design by Contract
• Testing

