b
;BB&J_,) Wsm:i@?
——

AOP For Development

Kabir Khan

March 8, 2005

© JBoss Inc. 2005

AOP For Development

Architectural constraints

R
\B(}So_,) World

Overview

= Ensuring architectural constraints
- Design By Contract
« Testing

/.
‘Bc,sa_\,) World

N —

AOP For Development

Architectural constraints

= Most projects have certain
architectural constraints. E.g.

v Make sure data layer classes don’t call
business layer classes

v Avoid calls to "broken” library methods

e Team lead needs to communicate and
ensure constraints are kept

vl
JBoss. World

Architectural constraints

R
\B(}So_,) World

Automatic checking

» declare-error
v Weaver throws error and stops execution
« declare-warning

v Weaver logs warning and continues
execution

vl
JBoss. World

Declare error example

<pointcut name=“b-ctors” expr=*“call(com.acme.business->new(..)"/>
<pointcut nam -methods™ ex all(com.acme.business->*(..)"/>
<pointcut name=“b-calls™ expr=“b-ctors OR b-methods”/>

<declare-error pointcut=“b-calls AND within(com.acme.data.*)">
Do not call methods on business layer classes from data layer
</declare-error>

Declare warning example

<declare-warning
pointcut=“cal I(* com.thirdparty.SomeClass->uti

</declare-warning>

AND Iwithincode(* com.acme.Wrapper->utility(..))">
Do not call SomeClass.utility() directly, use
com.acme . Wrapper.utility() instead

JBoss) World
AOP For Development
Design by Contract
JBoss_ World
Design by Contract
public class MyMath {
public double squareroot(double d){
return Math.sqrt(a);
public double z‘_ntiply(duuble a, double b){
B return a S
X
74
JBoss. World

Design by Contract

= Origin in the Eiffel language
» Classes define their responsibility e.g.:
v' Preconditions: Arguments to squareroot()

must be > 0

v Postconditions: Return type of multiply()

method must be product of arguments

v Invariants: Guaranteed state of object

between public calls

/-
JBoss) World

10

DbC — Advice per method

<aop:

<bind
<advice aspect="lyMathAspect” advice="squareroot”/>
</bind>

</aop>

publiic class MyMathDbcAspect{
public Object squareroot(Methodinvocation inv){
doublle arg = ((Double)inv.args[0]).doublevalue()
double ret;
try{
//Check preconditions
assert(arg> 0);
return ret = inv.invokeNext():

X

Tinally{
//check post conditions
assert(ret * ret == arg)

>
<aspect class="lyMathDbcAspect™/>

execution(double MyMath->squareroot(double d))”>

.BOSS_\,)/WO{_{Q‘

DbC — Supplied aspect

<aop>
<aspect class="org.jboss.aspects.dbc.DesignByContractAspect™
scope="PER_JOINPOINT*/>
<bind pointcut="execution(* $instanceof{@org.jboss.aspects.dbc.Dbc}->*(..)) /
E o

OR execution($inst: {@org._ jboss. aspec -
<advice aspect="org. jboss.aspects.dbc.DesignByContractaAspect” name="invoke"/>
</bind>
</aop>
@Dbe

public class MyMath {
@preCond (“$0>0")
@PostCond (“$rtn * $rtn == $0™)
public double squareroot(double d){
return Math.sqrt(a);

@PostCond (“$rtn = $0 * $17)
public double multiply(double a, double b){
return a * b;

AOP For Development

Testing Exception Handling

<aop>

<aspect class="SQLDeadlockExceptioninjector”/>
<bind pointcut="call(* $i {iava.sql ()
<advice aspect ="SQL ioninj name=""thr />
</bind>
</aop>

public class SQLDeadlockExceptioninjector{
public Object throwbeadlock(Invocation invocation) throws Throwable {
throw new SQLException(“Oracle Deadlock”, “RETRY", ORACLE_DEADLOCK_CODE);
T

X

e Can use cflow, within and withincode
to further narrow down where
exceptions are thrown

N/
‘B{}s:s_,) World

Testing

Testing - Injecting Mock Objects

AOP

« Architectural constraints
= Design by Contract
= Testing

N
.B{}s:s_,) World

17 —

e Want to return a mock object instead
of a "real” implementation

< Normally have to modify the creation
code

< An advice can intercept creation for
you and return the mock object

N/
‘B{}s:s_,) World

16

