
1

© JBoss Inc. 2005

EJB 3.0

BOF

2

Overall Agenda

• Goals of EJB 3.0
• JDK 5.0 Annotations
• Session Beans
• Entity Beans
• Interceptors
• Callback Listeners

3

Goals of EJB 3.0

• EJB 2.1 is too “noisy”
Too many interfaces to implement
“XML Hell” too many complex deployment
descriptors
API is too verbose
API too complicated in general

• Simplify the EJB programming model
• Focus on ease of use
• Facilitate Test Driven Development
• Make it simpler for average developer
• Increase developer base

4

JDK 5.0 Annotations

• XDoclet like metadata, C#-like metatags
Typesafe, compiler-checked

• Syntax you can add to the Java language
• Metadata you can attach to class, method,

field, constructor, or parameter
Metadata is compiled into class file
Available at compile time and/or runtime

• EJB 3.0 makes extensive use of annotations to
replace XML

5

JDK 5.0 Annotations
public @interface MyMetadata {

String value() default “hello”;
}
--
import org.acme.MyMetadata;

@MyMetadata(“stuff”) public class MyClass {
@MyMetadata public void someMethod() {…}

}

public @interface MyMetadata {
String value() default “hello”;

}
--
import org.acme.MyMetadata;

@MyMetadata(“stuff”) public class MyClass {
@MyMetadata public void someMethod() {…}

}

© JBoss Inc. 2005

Session Beans

2

7

EJB 3.0: Goals

• Remove unnecessary interfaces
• Remove unnecessary callbacks
• Make deployment descriptors optional
• Make beans pojo-like
• Use default values where they make

sense

8

Required Interfaces

@Remote public interface Calculator {
public int add(int x, int y);
public int subtract(int x, int y);

}
@Stateless public class CalculatorBean implements Calculator {

public int add(int x, int y) {
return x + y;

}
public int subtract(int x, int y) {

Return x – y;
}

}

@Remote public interface Calculator {
public int add(int x, int y);
public int subtract(int x, int y);

}
@Stateless public class CalculatorBean implements Calculator {

public int add(int x, int y) {
return x + y;

}
public int subtract(int x, int y) {

Return x – y;
}

}

• Homeless
• Methods don’t throw RemoteException
• No verbose interface implementations

9

Stateful Beans

@Remote public interface ShoppingCart {
public void addItem(int prodId, int quantity);
public void checkout();

}

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Remove
public void checkout() {

…
}

}

@Remote public interface ShoppingCart {
public void addItem(int prodId, int quantity);
public void checkout();

}

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Remove
public void checkout() {

…
}

}

• Still homeless
Created as they are looked up

• @Remove replaces EJBObject.remove
• Stateful bean is removed after method called

10

MDBs

@MessageDriven(
activation={ActivationSpecAttribute(name=“destinationType”,

value=“javax.jms.queue”)})
public class EmailBean implements MessageListener {

void onMessage(Message msg) { }
public int add(int x, int y) {

return x + y;
}

}

@MessageDriven(
activation={ActivationSpecAttribute(name=“destinationType”,

value=“javax.jms.queue”)})
public class EmailBean implements MessageListener {

void onMessage(Message msg) { }
public int add(int x, int y) {

return x + y;
}

}

• Just implements MessageListener
• XML turns to annotations

11

Transactions and Security

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer”})
public void checkout() {

…
}

}

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer”})
public void checkout() {

…
}

}

12

Dependency Injection

• Bean class specifies dependencies instead of
lookup

• Facilitates Test Driven Development
• Possible to test EJBs outside of container@Stateful public class ShoppingCartBean implements ShoppingCart {

@Inject private SessionContext ctx;

@EJB(name=“CreditProcessorEJB”)
private CreditCardProcessor processor;

private DataSource jdbc;

@Resource(jndiName=“java:/DefaultDS”)
public void setDataSource(DataSource db) { this.jdbc = db; }

}

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Inject private SessionContext ctx;

@EJB(name=“CreditProcessorEJB”)
private CreditCardProcessor processor;

private DataSource jdbc;

@Resource(jndiName=“java:/DefaultDS”)
public void setDataSource(DataSource db) { this.jdbc = db; }

}

3

13

EJB 3.0: Callbacks on demand

• Callback methods still available
• Annotate on an as-needed basis

@Stateless public class FacadeBean implements Facade {
@EjbTimeout void licenseExpired(Timer t) {…} // committee is leaning towards this

@PostCreate public void initialize() {} // currently in public draft
}

@Stateless public class FacadeBean implements Facade {
@EjbTimeout void licenseExpired(Timer t) {…} // committee is leaning towards this

@PostCreate public void initialize() {} // currently in public draft
}

14

EJB 3 Deployment Descriptors

• Believe it or not, people like XML
deployment descriptors

• Externalize configuration
• Externalize system architecture

• Although not in draft, XML DDs are
optional

• Replace annotations with XML and
you get pure POJOs

15

EJB 3 Deployment Descriptors
@Remote public interface ShoppingCart {

public void addItem(int prodId, int quantity);
public void checkout();

}
@Stateful public class ShoppingCartBean implements ShoppingCart {

@Inject private EntityManager manager;
…

@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer”})
public void checkout() {

…
}

@Remote public interface ShoppingCart {
public void addItem(int prodId, int quantity);
public void checkout();

}
@Stateful public class ShoppingCartBean implements ShoppingCart {

@Inject private EntityManager manager;
…

@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer”})
public void checkout() {

…
}

16

EJB 3 Deployment Descriptors
public interface ShoppingCart {

public void addItem(int prodId, int quantity);
public void checkout();

}

public class ShoppingCartBean implements ShoppingCart {
private EntityManager manager;
…

public void checkout() {
…

}
}

public interface ShoppingCart {
public void addItem(int prodId, int quantity);
public void checkout();

}

public class ShoppingCartBean implements ShoppingCart {
private EntityManager manager;
…

public void checkout() {
…

}
}

© JBoss Inc. 2005

Entity Beans

POJO based persistence

18

Goals of Entity Beans

• Same goals as session beans
Fewer interfaces, optional XML DDs, etc.

• No required interfaces or subclassing
• Plain Java based

Allow new()
• Provide full Object/Relational mapping
• Supports Inheritance
• Expanded EJBQL

Fully featured
Parallel SQL
Polymorphic Queries

4

© JBoss Inc. 2005

Defining Entity Beans

Full Object/Relational Database
Mapping

20

EJB 3.0 Entity Beans

• O/R Mapping Metadata as annotations
Table mappings, @Table, @SecondaryTable
Column mappings, @Column, @JoinColumn
Relationships, @ManyToOne, @OneToOne,
@OneToMany, @ManyToMany

Multi-Table mappings, @SecondaryTable
Embedded objects, @Dependent
Inheritance, @Inheritance,
@DiscriminatorColumn

Identifier + Version properties, @Id,
@Version

21

Entity Annotations
@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private User seller;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private User seller;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

relational table declaration

auto-key generation

22

Entity Annotations
@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private User seller;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private User seller;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(255),
ProductName varchar(255),
USER_ID Number
);

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(255),
ProductName varchar(255),
USER_ID Number
);

23

Entity Annotations
@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private Owner owner;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

@Entity
@Table(name=“AUCTION_ITEM”)
public class Item {

private long id;
private String description;
private String productName;
private Set<Bid> bids = new HashSet();
private Owner owner;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(500),
ProductName varchar(255),
OWNER_ID Number
);

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(500),
ProductName varchar(255),
OWNER_ID Number
);

24

Entity Annotations
…

@Column(name=“DESC”, length=500)
public String getDescription() {

return description;
}
public void setDescription(String desc) {

this.description = desc;
}

public String getProductName() {
return productName;

}
protected void setProductName(String name) {

this.productName = name;
}

…

…

@Column(name=“DESC”, length=500)
public String getDescription() {

return description;
}
public void setDescription(String desc) {

this.description = desc;
}

public String getProductName() {
return productName;

}
protected void setProductName(String name) {

this.productName = name;
}

…

column mapping

intuitive defaults

5

25

Entity Annotations
…

@Column(name=“DESC”, nullable=false,
length=500)

public String getDescription() {
return description;

}
public void setDescription(String desc) {

this.description = desc;
}

public String getProductName() {
return productName;

}
protected void setProductName(String name) {

this.productName = name;
}

…

…

@Column(name=“DESC”, nullable=false,
length=500)

public String getDescription() {
return description;

}
public void setDescription(String desc) {

this.description = desc;
}

public String getProductName() {
return productName;

}
protected void setProductName(String name) {

this.productName = name;
}

…

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(500),
ProductName varchar(255),
OWNER_ID Number
);

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(500),
ProductName varchar(255),
OWNER_ID Number
);

26

Relationships

• Relationships,
@ManyToOne, @OneToOne, @OneToMany,
@ManyToMany
Supports lazy and eager loading of
relationships
Cascades: delete, create, and
merge
No CMR: You must manage the
relationships somewhat.

27

Entity Relationships
@OneToOne(fetch=LAZY)
@Column(name=“OWNER_ID”)
public Owner getOwner() {

return owner;
}

protected void setOwner(Owner owner) {
this.owner = owner;

}

@OneToMany(cascade=ALL)
@JoinColumn(name=“ITEM_ID”)
protected Set<Bid> getBids() {

return bids;
}
protected void setBids(Set<Bid> bids) {

this.bids = bids;
}

@OneToOne(fetch=LAZY)
@Column(name=“OWNER_ID”)
public Owner getOwner() {

return owner;
}

protected void setOwner(Owner owner) {
this.owner = owner;

}

@OneToMany(cascade=ALL)
@JoinColumn(name=“ITEM_ID”)
protected Set<Bid> getBids() {

return bids;
}
protected void setBids(Set<Bid> bids) {

this.bids = bids;
}

various cascade types

lazy/eager loading

28

Entity Relationships
@OneToOne(fetch=LAZY)
@Column(name=“OWNER_ID”)
public Owner getOwner() {

return owner;
}

protected void setOwner(Owner user) {
this.owner = owner;

}

@OneToMany(cascade=ALL)
@JoinColumn(name=“ITEM_ID”)
protected Set<Bid> getBids() {

return bids;
}
protected void setBids(Set<Bid> bids) {

this.bids = bids;
}

@OneToOne(fetch=LAZY)
@Column(name=“OWNER_ID”)
public Owner getOwner() {

return owner;
}

protected void setOwner(Owner user) {
this.owner = owner;

}

@OneToMany(cascade=ALL)
@JoinColumn(name=“ITEM_ID”)
protected Set<Bid> getBids() {

return bids;
}
protected void setBids(Set<Bid> bids) {

this.bids = bids;
}

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(255),
ProductName varchar(255),
OWNER_ID Number
);

create table BID
(
…
ITEM_ID Number
…
);

create table AUCTION_ITEM
(
ITEM_ID Number,
DESC varchar(255),
ProductName varchar(255),
OWNER_ID Number
);

create table BID
(
…
ITEM_ID Number
…
);

29

Multi-Table

• Multi-Table Mappings,
Entity can be stored in one or
more tables
@SecondaryTables, @SecondaryTable

30

Multi-table Mappiings
@Entity
@Table(name=“OWNER”)
@SecondaryTable(name=“ADDRESS”

join={@JoinColumn(name=“ADDR_ID”)})
public class Owner {

private long id;
private String name;
private String street;
private String city;
private String state;

@Id(generate=GeneratorType.AUTO)
@Column(name=“OWNER_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

@Entity
@Table(name=“OWNER”)
@SecondaryTable(name=“ADDRESS”

join={@JoinColumn(name=“ADDR_ID”)})
public class Owner {

private long id;
private String name;
private String street;
private String city;
private String state;

@Id(generate=GeneratorType.AUTO)
@Column(name=“OWNER_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

….

create table OWNER
(
OWNER_ID Number,
NAME varchar(255),
);

create table ADDRESS
(
ADDR_ID Number,
STREET varchar(255),
CITY varchar(255),
STATE varchar(255)
);

create table OWNER
(
OWNER_ID Number,
NAME varchar(255),
);

create table ADDRESS
(
ADDR_ID Number,
STREET varchar(255),
CITY varchar(255),
STATE varchar(255)
);

6

31

Multi-Table Mappings
…

@Column(name=“STREET”,
secondaryTable=“ADDRESS”)

public String getStreet() {
return street;

}
public void setStreet(String street) {

this.street = street;
}

@Column(name=“CITY”,
secondaryTable=“ADDRESS”)

public String getCity() {
return city;

}
protected void setCity(String city) {

this.city = city;
}

…

…

@Column(name=“STREET”,
secondaryTable=“ADDRESS”)

public String getStreet() {
return street;

}
public void setStreet(String street) {

this.street = street;
}

@Column(name=“CITY”,
secondaryTable=“ADDRESS”)

public String getCity() {
return city;

}
protected void setCity(String city) {

this.city = city;
}

…

create table OWNER
(
OWNER_ID Number,
NAME varchar(255),
);

create table ADDRESS
(
ADDR_ID Number,
STREET varchar(255),
CITY varchar(255),
STATE varchar(255)
);

create table OWNER
(
OWNER_ID Number,
NAME varchar(255),
);

create table ADDRESS
(
ADDR_ID Number,
STREET varchar(255),
CITY varchar(255),
STATE varchar(255)
);

32

Embedded Objects

• Embedded Objects
Aggregated objects whose
properties can be mapped

@Dependent, @DependentObject

33

Embedded Objects
@Entity
@Table(name=“OWNER”)
public class Owner {

private long id;
private String name;
private Address address;

@Id(generate=GeneratorType.AUTO)
@Column(name=“CUST_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

@Column(name=“NAME”)
public String getName() {

….

@Entity
@Table(name=“OWNER”)
public class Owner {

private long id;
private String name;
private Address address;

@Id(generate=GeneratorType.AUTO)
@Column(name=“CUST_ID”)
public long getId() {

return id;
}
public void setId(long id) {

this.id = id;
}

@Column(name=“NAME”)
public String getName() {

….

@DependentObject
Public class Address {

private String street;
private String city;
private String state;

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getCity() {
return city;

}
…

@DependentObject
Public class Address {

private String street;
private String city;
private String state;

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

public String getCity() {
return city;

}
…

34

Entity Annotations
…

@Dependent({
@DependentAttribute(name=“street”, @Column(name=“STREET”)),
@DependentAttribute(name=“city”, @Column(name=“CITY”)),
@DependentAttribute(name=“state”, @Column(name=“STATE”))})

public Address getAddress() {
return address;

}
public void setAddress(Address address) {

this.address = address;
}

…

…

@Dependent({
@DependentAttribute(name=“street”, @Column(name=“STREET”)),
@DependentAttribute(name=“city”, @Column(name=“CITY”)),
@DependentAttribute(name=“state”, @Column(name=“STATE”))})

public Address getAddress() {
return address;

}
public void setAddress(Address address) {

this.address = address;
}

…

© JBoss Inc. 2005

Interacting With Entity Bean

Plain Java Objects

36

Entity Manager

• Entities created as any plain Java object
Customer cust = new Customer();

• Plain Java objects and homeless
• Can be detached and reattached to container

Can be serialized to remote client
Remote client can perform updates on local copy
Copy can be sent back to server and merged back in

• Persisted by the EntityManager service
All access through this service
Creation, retrieval, removal, and merging
Analogous to Hibernate Session

7

37

Create the objects

• Create the entities like you would any other object
• Allocate entire object graph like any other Java code

Item item = new Item();
item.setDescription(“O’reilly’s EJB 4th Edition”);
item.setProductName(“EJB 2.1 Book”);
…
Owner bill = new Owner();
bill.setName(“Bill”);
item.setOwner(bill);
Bid bid = new Bid();
…
HashSet<Bid> bids = new HashSet();
bids.add(bid);
item.setBids(bids);

Item item = new Item();
item.setDescription(“O’reilly’s EJB 4th Edition”);
item.setProductName(“EJB 2.1 Book”);
…
Owner bill = new Owner();
bill.setName(“Bill”);
item.setOwner(bill);
Bid bid = new Bid();
…
HashSet<Bid> bids = new HashSet();
bids.add(bid);
item.setBids(bids);

38

Entity Manager

• All entities persisted by the
EntityManager service

All access through this service
Creation, retrieval, removal, and
merging
Analogous to Hibernate Session

• Injected with dependency injection

39

EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.create(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.create(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

Inject the EntityManager service

40

EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

• Item allocated
remotely
• If cascade CREATE,
entire object graph
inserted into storage

41

EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

• Item found with
primary key
• Detached from
persistent storage at
tx completion
• Can be serialized like
any other object

42

EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

@Stateless public class ItemDAOImpl implements ItemDAORemote {

@Inject private EntityManager em;

public long create(Item item) {
em.persist(item);
return item.getId();

}

public Item findById(long id) {
return (Item) em.find(Item.class, id);

}

public void merge(Item item) {
em.merge(item);

}
}

• Item can be updated
remotely and merged
back to persistent
storage
• Item instance is
reattached to storage
with merge() call

8

43

Query API

• Queries may be expressed as EJBQL strings
Embedded in code
Externalized to metadata (named queries)

• Invoke via Query interface

Named parameter binding
Pagination control@Session public class ItemDAOImpl {

…
public List findByDescription(String description, int page) {

return em.createQuery(“from Item i where i.description like :d”)
.setParameter(“d”, description)
.setMaxResults(50)
.setFirstResult(page*50)
.listResults();

}

…

@Session public class ItemDAOImpl {
…
public List findByDescription(String description, int page) {

return em.createQuery(“from Item i where i.description like :d”)
.setParameter(“d”, description)
.setMaxResults(50)
.setFirstResult(page*50)
.listResults();

}

…

44

EJB QL 3.0

• EJBQL 3.0 is very similar to HQL (Hibernate Query
Language)

• Aggregation, projection
select max(b.amount) from Bid b where b.item
= :id
select new Name(c.first, c.last) from
Customer c

• Fetching
from Item i left join fetch i.bids

• Subselects
from Item i join i.bids bid where bid.amount
= (select max(b.amount) from i.bids b)

• Group By, Having, Joins

45

Inheritance

• Persistence mapping supports
inheritance

Single table per hierarchy –
SINGLE_TABLE
Join table per subclass – JOINED
Distinct table per subclass – UNION

• Queries on class hierarchy are
polymorphic

46

Inheritance – SINGLE_TABLE
@Entity
@Table(name="Animal")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="TYPE")
public class Animal {

@Id private int id;
@Column(name="AVG_WEIGHT")
private int averageWeight;

...
}

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public class Dog extends Animal{

@Column(name="BREED")
private String breed;

...
}

@Entity
@Table(name="Animal")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="TYPE")
public class Animal {

@Id private int id;
@Column(name="AVG_WEIGHT")
private int averageWeight;

...
}

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public class Dog extends Animal{

@Column(name="BREED")
private String breed;

...
}

47

Inheritance – SINGLE_TABLE
create table Animal
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number,
BREED varchar(255)
);

create table Animal
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number,
BREED varchar(255)
);

48

Inheritance – JOINED
@Entity
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="TYPE")
@Table(name="Animal")
public class Animal{

@Id private int id;
@Column(name="AVG_WEIGHT")
private int averageWeight;

...
}

@Entity
@InheritanceJoinColumn(name="DOGGY_ID")
@Table(name="Doggy")
public class Dog extends Animal{

@Column(name="BREED")
private String breed;

...
}

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="TYPE")
@Table(name="Animal")
public class Animal{

@Id private int id;
@Column(name="AVG_WEIGHT")
private int averageWeight;

...
}

@Entity
@InheritanceJoinColumn(name="DOGGY_ID")
@Table(name="Doggy")
public class Dog extends Animal{

@Column(name="BREED")
private String breed;

...
}

9

49

Inheritance – JOINED
create table Animal
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
);

create table Doggy
(
DOGGY_ID Number,
BREED varchar(255)
);

create table Animal
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
);

create table Doggy
(
DOGGY_ID Number,
BREED varchar(255)
);

50

Inheritance – UNION
create table Kitty
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255),
LIVES Number
);

create table Doggy
(
DOGGY_ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255)
);

create table Kitty
(
ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255),
LIVES Number
);

create table Doggy
(
DOGGY_ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255)
);

© JBoss Inc. 2005

New Features

EDR2 functionality

52

Interceptors

• Interceptors intercept calls
• Interceptors sit between caller and a session

bean
• Analogous to servlet filters
• Can only be used with session and message

driven beans
• Precursor to full aspect-oriented programming

interceptor
cart.buy(product)

public class CartBean {
public void buy(…) {}

}

53

Why Interceptors

• Tracing
• Pluggable auditing
• Custom security
• Generic exception handling

54

Interceptors

• Interceptor is a plain Java class
• A method can be designated as the interceptor method

@AroundInvoke
• That method must return Object and throw Throwable
• That method must also accept an InvocationContext
• InvocationContext hold information about the request
• Request can be aborted with an exception
• Exceptions can be caught from the bean class and

suppressed
• Return objects can be changed
• Arguments can be modified

10

55

Interceptors
public class RuleBasedSecurityInterceptor {

boolean checkRule(…) { …}

@AroundInvoke
public Object customSecurity(InvocationContext ctx) throws Exception {

if (checkRule(…) == false) {
throw new SecurityException(“Custom check failed”);

}

return ctx.proceed();
}

}

public class RuleBasedSecurityInterceptor {

boolean checkRule(…) { …}

@AroundInvoke
public Object customSecurity(InvocationContext ctx) throws Exception {

if (checkRule(…) == false) {
throw new SecurityException(“Custom check failed”);

}

return ctx.proceed();
}

}

56

Exception handling
public class OracleExceptionHandlerInterceptor {

public final static int ORACLE_DEADLOCK = …;

@AroundInvoke
public Object customSecurity(InvocationContext ctx) throws Exception {

try {
return ctx.proceed();

} catch (SQLException ex) {
switch (ex.getErrorCode()) {

case ORACLE_DEADLOCK:
throw new DeadlockException(ex);

…
}

}
}

}

public class OracleExceptionHandlerInterceptor {

public final static int ORACLE_DEADLOCK = …;

@AroundInvoke
public Object customSecurity(InvocationContext ctx) throws Exception {

try {
return ctx.proceed();

} catch (SQLException ex) {
switch (ex.getErrorCode()) {

case ORACLE_DEADLOCK:
throw new DeadlockException(ex);

…
}

}
}

}

57

Callback Listeners

• Similar to interceptors
• Intercept EJB callback methods in a

separate class
• Can be attached to entities, sessions,

or MDBs

Callback
Listener

POST CREATE EVENT
@Entity
public class CartBean {

@PostCreate
public void initialize(…) {}

}

58

Callback Listeners
public class CallbackTracer {

@PostCreate
public void tracePosCreate() {

log.trace(“postcreate”);
}

@PreUpdate
public void tracePreUpdate {

log.trace(“preupdate”);
}

…

}

public class CallbackTracer {

@PostCreate
public void tracePosCreate() {

log.trace(“postcreate”);
}

@PreUpdate
public void tracePreUpdate {

log.trace(“preupdate”);
}

…

}

59

JBoss Inc.

• EJB 3.0 Preview Available NOW!
Download at www.jboss.org
Tutorial with code examples
Mostly functional

