e
MS The Professional
Open Source Company

®e

EJB 3.0

BOF

© JBoss Inc. 2005

Goals of EJB 3.0

= EJB 2.1 is too “noisy”

v
v

v
v

Too many interfaces to implement

“XML Hell” too many complex deployment
descriptors

API is too verbose
API too complicated in general

= Simplify the EJB programming model

= Focus on ease of use

« Facilitate Test Driven Development

= Make it simpler for average developer

- |ncrease developer base .BOSS

‘e
3

Overall Agenda

e Goals of EJB 3.0

< JDK 5.0 Annotations
= Session Beans

- Entity Beans

= Interceptors

e Callback Listeners

‘e

JDK 5.0 Annotations

public @interface MyMetadata {
String value() default “hello”;

}

import org.acme.MyMetadata;

@MyMetadata(“stuff") public class MyClass {

}

public void){-}

e

JDK 5.0 Annotations

= XDoclet like metadata, C#-like metatags
v Typesafe, compiler-checked
= Syntax you can add to the Java language

= Metadata you can attach to class, method,
field, constructor, or parameter

v Metadata is compiled into class file
v Available at compile time and/or runtime

= EJB 3.0 makes extensive use of annotations to
replace XML

e
4
MS The Professional
Open Source Company
o0

Session Beans

© JBoss Inc. 2005

EJB 3.0: Goals

= Remove unnecessary interfaces

= Remove unnecessary callbacks

= Make deployment descriptors optional
= Make beans pojo-like

= Use default values where they make
sense

Required Interfaces

= Homeless
= Methods don’t throw RemoteException
= No verbose interface implementations

(@Remote public interface Calculator {
public int add(int x, int y);
public int subtract(int x, int y);

public class C: Bean il Calculator {
public int add(int x, int y) {
return x +y;
}
public int subtract(int x, int y) {
Return x-y;

}

JBoss
e
7
Stateful Beans
= Still homeless
v Created as they are looked up
= @Remove replaces EJBObject.remove
= Stateful bean is removed after method called
(@Remote public interface ShoppingCart {
public void additem(int prodld, int quantity);
public void checkout();
}
public class ingCartBean i ingCart {
@Remove
public void checkout() {
}
JBoss
e

MDBs

= Just implements MessagelListener
= XML turns to annotations

(@MessageDriven(
activation={ActivationSpecAttribute(name="destinationType”,

value="javax.jms.queue”)})

public class EmailBean implements MessageListener {

void onMessage(Message msg) { }
public int add(int x, int y) {
return x +y;

}

10

Transactions and Security

@Stateful public class ShoppingCartBean implements ShoppingCart {

@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer"})
public void checkout() {

} .

11

Dependency Injection

= Bean class specifies dependencies instead of
lookup

= Facilitates Test Driven Development

@Stateful public class ShoppingCartBean implements ShoppingCart {
@Inject private SessionContext ctx;

@EJB(name="CreditProcessorEJB")
private CreditCardProcessor processor;

private DataSource jdbc;

@Resource(jndiName="java:/DefaultDS™)
public void setDataSource(DataSource db) { this.jdbc = db; }

12

EJB 3.0: Callbacks on demand

 Callback methods still available
< Annotate on an as-needed basis

public class F: i Facade {
@EjbTimeout void li ired(Timer t) {...} // ittee is leaning towards this

@PostCreate public void initialize() {} // currently in public draft

EJB 3 Deployment Descriptors

= Believe it or not, people like XML
deployment descriptors

e Externalize configuration
- Externalize system architecture

e Although not in draft, XML DDs are
optional

< Replace annotations with XML and
you get pure POJOs

14

JBoss
ve
13
EJB 3 Deployment Descriptors
@Remote public interface ShoppingCart {
public void additem(int prodid, int quantity);
public void checkout();
}
@Stateful public class ShoppingCartBean implements ShoppingCart {
@Inject private EntityManager manager;
@Remove
@TransactionAttribute(REQUIRED)
@MethodPermission({“valid_customer”})
public void checkout() {
}
JBoss
ve
15
e®
MS The Professional
Open Source Company
o9

Entity Beans

POJO based persistence

© JBoss Inc. 2005

EJB 3 Deployment Descriptors

public interface ShoppingCart {
public void additem(int prodid, int quantity);
public void checkout();

public class ingCartBean i ingCart {
private EntityManager manager;

public void checkout() {

}

N

16

Goals of Entity Beans

= Same goals as session beans

v" Fewer interfaces, optional XML DDs, etc.
= No required interfaces or subclassing
* Plain Java based

v Allow new()
= Provide full Object/Relational mapping
* Supports Inheritance
= Expanded EJBQL

v Fully featured

v Parallel SQL

v Polymorphic Queries

18

e

o @
Defining Entity Beans

MS The Professional
Open Source Company

Full Object/Relational Database
Mapping

© JBoss Inc. 2005

Entity Annotations

private long id;

private String description;

private String productName;

private Set<Bid> bids = new HashSet();
private User seller;

@Id(generate=GeneratorType.AUTO) auto-key generation
@Column(name=“ITEM_ID")

public long getld() {
return id;

}

public void setld(long id) {
this.id = id;

}

@Entity
@Table(name="AUCTION_ITEM") relational table declaration
public class Item {

23

JBoss
21 -
Entity Annotations

@Entity create table AUCTION_ITEM
@Table(name="AUCTION_ITEM")
public class Item { ITEM_ID Number,

private long id; DESC varchar(500),

private String description; ProductName varchar(255),

private String productName; OWNER_ID Number

private Set<Bid> bids = new HashSet();)

private Owner owner;

@Id(generate=GeneratorType.AUTO)

@Column(name="ITEM_ID")

public long getld() {

return id;
}
public void setld(long id) {
this.id = id;
}
“ 3SS
oe

EJB 3.0 Entity Beans

= O/R Mapping Metadata as annotations
v Table mappings, @Table, @SecondaryTable
v' Column mappings, @Column, @JoinColumn
v Relationships, @ManyToOne, @0neToOne,

@OneToMany, @ManyToMany

v' Multi-Table mappings, @SecondaryTable

Embedded objects, @Dependent

v Inheritance, @Inheritance,
@DiscriminatorColumn

v ldentifier + Version properties, @1d,
@Version

<

20

Entity Annotations

@Entity create table AUCTION_ITEM
@Table(name="AUCTION_ITEM")
public class Item {

private long id;

(

ITEM_ID Number,

DESC varchar(255),

private String description; ProductName varchar(255),
private String productName; USER_ID Number

private Set<Bid> bids = new HashSet(); I

private User seller;

@Id(generate=GeneratorType.AUTO)
@Column(name=“ITEM_ID")
public long getld() {

return id;

}

public void setld(long id) {
this.id = id;

}

Entity Annotations

@Column(name=“DESC", length=500)
public String getDescription() {
return description;

public void setDescription(String desc) {
this.description = desc;

public String getProductName() {s intuitive defaults
return productName;

}

protected void setProductName(String name) {
this.productName = name;

Entity Annotations

@Column(name="DESC”, nullable=false,
length=500)
public String getDescription() {
return description;

create table AUCTION_ITEM

(

ITEM_ID Number,

DESC varchar(500),
ProductName varchar(255),
OWNER_ID Number

)
public void setDescription(String desc) {
this.description = desc;

public String getProductName() {
return productName;

protected void setProductName(String name) {
this.productName = name;

- ve
Entity Relationships
@OneToOne(fetch=LAZY) lazyleager loading
@Column(name=“OWNER_ID")
public Owner getOwner() {
return owner;
protected void setOwner(Owner owner) {
this.owner = owner;
Ty csaten)
@JoinColumn(name=“ITEM_ID")
protected Set<Bid> getBids() {
return bids;
}
protected void setBids(Set<Bid> bids) {
this.bids = bids;
}
27 -
Multi-Table

= Multi-Table Mappings,
v Entity can be stored in one or
more tables

v @SecondaryTables, @SecondaryTable

29

Relationships

* Relationships,

v @ManyToOne, @OneToOne, @OneToMany,
@ManyToMany

v Supports lazy and eager loading of
relationships

v Cascades: delete, create, and
merge

v No CMR: You must manage the
relationships somewhat.

26

Entity Relationships

(@0neToOne(fetch=LAZY) create table AUCTION_ITEM

@Column(name="OWNER_ID") (
public Owner getOwner() { ITEM_ID Number,
return owner; DESC varchar(255),

ProductName varchar(255),
OWNER_ID Number
protected void setOwner(Owner user) {)
this.owner = owner;
create table BID

@OneToMany(cascade=ALL) .
@JoinColumn(name="ITEM_ID") ITEM_ID Number
protected Set<Bid> getBids() {

return bids;)

}

protected void setBids(Set<Bid> bids) {
this.bids = bids;

}

28

Multi-table Mappiings

@Entity create table OWNER
@Table(name="OWNER") (
@SecondaryTable(name=“ADDRESS" OWNER_ID Number,
NAME varchar(255),

join={@JoinColumn(name="ADDR_ID")}))
public class Owner {

private long id; create table ADDRESS

private String name; (

private String street; ADDR_ID Number,

private String city; STREET varchar(255),

private String state; CITY varchar(255),

STATE varchar(255)

@Id(generate=GeneratorType.AUTO))

@Column(name="OWNER_ID")

public long getld() {

return id;
}
public void setld(long id) {
this.id = id;
}

30

Multi-Table Mappings

@Column(name=“STREET”,
secondaryTable="ADDRESS”)
public String getStreet() {

return street;

}
public void setStreet(String street) {
this.street = street;

}

@Column(name=“CITY",
secondaryTable="ADDRESS”)
public String getCity() {
return city;

}
protected void setCity(String city) {
this.city = city;

create table OWNER

(

OWNER_ID Number,
NAME varchar(255),
)

create table ADDRESS

(

ADDR_ID Number,
STREET varchar(255),
CITY varchar(255),
STATE varchar(255)
)

Embedded Objects

= Embedded Objects
v Aggregated objects whose
properties can be mapped

v @Dependent, @DependentObject

JBoss
‘e
32
Entity Annotations
@Dependent({
@DependentAttribute(name="street”, @Column(name="STREET")),
@DependentAttribute(name="city”, @Column(name=“CITY")),
@DependentAttribute(name="state”, @Column(name=“STATE"))})
public Address getAddress() {
return address;
public void setAddress(Address address) {
this.address = address;
}
e

34

MS The Professional
Open Source Company

e

Interacting With Entity Bean

Plain Java Objects

0ss
‘e
31
Embedded Objects
@Entity @DependentObject
@Table(name="OWNER") Public class Address {
public class Owner { private String street;
private long id; private String city;
private String name; private String state;
private Address address;
public String getStreet() {
@Id(generate=GeneratorType.AUTO) return street;
@Column(name="CUST_ID")
public long getld() {
return id; public void setStreet(String street) {
} this.street = street;
public void setld(long id) {
this.id = id;
} public String getCity() {
return city;
@Column(name=“NAME")
public String getName() {
N ;
‘e
33
e®

© JBoss Inc. 2005

Entity Manager

= Entities created as any plain Java object
v' Customer cust = new Customer();
= Plain Java objects and homeless

= Can be detached and reattached to container

v Can be serialized to remote client

v Remote client can perform updates on local copy

v Copy can be sent back to server and merged back in

= Persisted by the EntityManager service
v All access through this service

v Creation, retrieval, removal, and merging

v Analogous to Hibernate Session

36

e

Create the objects

= Create the entities like you would any other object
= Allocate entire object graph like any other Java code

Item item = new Item();
item.setDescription(“O'reilly’s EJB 4% Edition”);
item.setProductName(“EJB 2.1 Book™);

Owner bill = new Owner();
bill.setName(“Bill”);
item.setOwner(bill);
Bid bid = new Bid();

HashSet<Bid> bids = new HashSet();
bids.add(bid);

Entity Manager

« All entities persisted by the
EntityManager service
v All access through this service
v Creation, retrieval, removal, and
merging
v Analogous to Hibernate Session

« Injected with dependency injection

item.setBids(bids);
JBoss
ve
37
EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {
@Inject private EntityManager em; Inject the EntityManager service ‘
public long create(ltem item) {
em.create(item);
return item.getld();
public Item findByld(long id) {
return (Item) em.find(ltem.class, id);
}
public void merge(Item item) {
em.merge(item);
}
ve
39
EntityManager
@Stateless public class temDAOImpl implements ItemDAORemote {
@Inject private EntityManager em;
public long create(ltem item) {
em.persist(item);
return item.getld();
= Item found with
public Item findByld(long id) { primary key
return (Item) em.find(Item.class, id); = Detached from
persistent storage at
tx completion
: . B « Can be serialized like
public void m_erge(ltem item) { Any otherobiect
em.merge(item);
}
ve

41

ve
£
EntityManager
@Stateless public class ItemDAOImpl implements ItemDAORemote {
@Inject private EntityManager em;
public long create(ltem item) { = Item allocated
em.persist(item); remotely
return item.getld(); = If cascade CREATE,
entire object graph
inserted into storage
public Item findByld(long id) {
return (Item) em.find(ltem.class, id);
}
public void merge(item item) {
em.merge(item);
}
ve
40
EntityManager
@Stateless public class temDAOImpl implements ItemDAORemote {
@Inject private EntityManager em;
public long create(Item item) {
em.persist(item);
return item.getld();
public Item findByld(long id) {
return (Item) em.find(Item.class, id);
= Item can be updated
public void merge(ltem item) { remotely and merged
em.merge(item); back to persistent
: storage
= Item instance is
} reattached to storage
with merge() call

42

Query API

= Queries may be expressed as EJBQL strings
v Embedded in code
v Externalized to metadata (named queries)
= Invoke via Query interface
v Named parameter binding

@Session public class ltemDAOImpl {

public List findByDescription(String description, int page) {
return em.createQuery(“from Item i where i.description like :d”)
.setParameter(<, description)
.setMaxResults(50)
.setFirstResult(page*50)
listResults();

43

EJB QL 3.0

= EJBQL 3.0 is very similar to HQL (Hibernate Query
Language)
= Aggregation, projection
v select max(b.amount) from Bid b where b.item
= :id
v select new Name(c.first, c.last) from
Customer c
= Fetching
v from Item i left join fetch i.bids
= Subselects
v from Item i join i.bids bid where bid.amount
= (select max(b.amount) from i.bids b)
= Group By, Having, Joins

44

Inheritance

« Persistence mapping supports
inheritance
v Single table per hierarchy —
SINGLE_TABLE
v Join table per subclass — JOINED
v Distinct table per subclass — UNION
= Queries on class hierarchy are
polymorphic

45

Inheritance — SINGLE_TABLE

create table Animal

(

1D Number,

TYPE varchar(255),
AVG_WEIGHT Number,
BREED varchar(255)

)i

47

Inheritance — SINGLE_TABLE

@Entity
@Table(name="Animal")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name="TYPE")
public class Animal {

@Id private int id;

@Column(name="AVG_WEIGHT")

private int averageWeight;

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public class Dog extends Animal{
@Column(name="BREED")
private String breed;

;

=

46

Inheritance — JOINED

@Entity —
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="TYPE")
(@Table(name="Animal")
public class Animal{
@Id private int id;
@Column(name="AVG_WEIGHT")
private int averageWeight;

@Entity
@InheritanceJoinColumn(name="DOGGY_ID")
(@Table(name="Doggy")
public class Dog extends Animal{
@Column(name="BREED")
private String breed;

;

N\ ”

48

Inheritance — JOINED

create table Animal

(

1D Number,

TYPE varchar(255),
AVG_WEIGHT Number
)i

create table Doggy
DOGGY_ID Number,

BREED varchar(255)
)i

49

‘e

Inheritance — UNION

create table Kitty

(

ID Number,

TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255),
LIVES Number

):

create table Doggy

(

DOGGY_ID Number,
TYPE varchar(255),
AVG_WEIGHT Number
BREED varchar(255)

)3

B\

‘e
50

New Features

The Professional
Open Source Company

EDR2 functionality

© JBoss Inc. 2005

Interceptors

= Interceptors intercept calls

= Interceptors sit between caller and a session
bean

= Analogous to servlet filters
= Can only be used with session and message

driven beans
= Precursor to full aspect-oriented programming

interceptor II

public class CartBean {
— public void buy(...) {}
}

cart.buy(producty——

‘e
52

Why Interceptors

Tracing

Pluggable auditing

= Custom security

Generic exception handling

53

e

Interceptors

= Interceptor is a plain Java class

= A method can be designated as the interceptor method
v @AroundInvoke

= That method must return Object and throw Throwable

= That method must also accept an InvocationContext

= InvocationContext hold information about the request

= Request can be aborted with an exception

= Exceptions can be caught from the bean class and
suppressed

= Return objects can be changed

= Arguments can be modified

e
54

Interceptors Exception handling

public class RuleBasedSecuritylnterceptor { public class OracleExceptionHandlerInterceptor {
boolean checkRule(...) { ...} public final static int ORACLE_DEADLOCK = ...;
@Aroundinvoke @AroundIinvoke
public Object i ionContext ctx) throws ion { public Object customSecurity(InvocationContext ctx) throws Exception {
if (checkRule(...) == false) { try {
throw new SecurityException(“Custom check failed”); return ctx.proceed();

} catch (SQLException ex) {
switch (ex.getErrorCode()) {

return ctx.proceed(); case ORACLE_DEADLOCK:
throw new DeadlockException(ex);
}
}
}
}
)
N\ A
JBoss
.e
Callback Listeners Callback Listeners
R R . public class CallbackTracer {
e Similar to interceptors
) @Po_slcre_sats
= Intercept EJB callback methods in a TN
log.trace(“postcreate”);
separate class
it 1 @PreUpdate
= Can be attached to entities, sessions, el A,
or M D BS log.trace(“preupdate”);
}
@Entity
POST CREATE EVENT— Callback _— public class CartBean {
Listener @PostCreate }
public void initialize(...) {}
}

JBoss
57 ‘1. 58
JBoss Inc.
= EJB 3.0 Preview Available NOW!
v Download at www.jboss.org
v Tutorial with code examples
v Mostly functional
e
59 e

