—

=

JBoss Cache & A Use Case
Implementing JBoss/Tomcat Fine-
Grained Http Session Replication

Ben Wang & Bela Ban
JBoss Inc.

March 8, 2005

© JBoss Inc. 2005

Topic

What is JBoss Cache?

e Two modules
v TreeCache
v TreeCacheAOP
= TreeCache

v Stores and replicates values from a tree
structure (hence the name)

v Each value is associated with a path and key
= TreeCacheAOP

v' Can manage caching and replication on full Java
objects (POJOs)
v Object oriented cache

R :
.Bga;_,) World

3 -

e JBoss Cache
v Feature
v Architecture
v Configuration
= Http session clustering with Tomcat
v Goal
v Implementation detail
v Configuration

. '
|B\f‘::3_,) World

> -

What is JBoss Cache? (continue)

JBoss Cache Key Feature

= Local and Replication mode

v Synchronous (blocking until replication
completes)

v Asynchronous

= Fine-grained field-level replication
using TreeCacheAop component
v No need to declare POJO Serializable

/. .
.Bm;_,) Worid

5 -

e Uses JGroups as underlying transport
stack

« Available as stand-alone or
embeddable (MBean)

v TreeCacheAOP requires JBossAOP
runtime

v Can be used with other app servers as
well

R :
.Bga;_,) World

4 -

TreeCache Architecture

= Tree structure

v Each node has a name and
zero or more children

v Can be navigated
recursively from node to
node or using a fully
qualified name (/a/d/g)

v" Multiple roots per cache
allowed

v Each node is a map with
keys and values
Locking
v Isolation level per node\‘/
JBoss)\ World
3_,) e focd

6 -

JBoss Aop Features

= Aop is a modular way of defining and
applying cross-cutting concerns

e Current release 1.1

= Definition: Advice, Aspect, Jointpoint,
Interceptor, and Pointcut

= Define a rich set of metadata
language as pointcut

e Supports dynamic Aop

= Supports annotation (under JDK1.4
as well)

Use of Annotation

+ Can also use annotation instead of
jboss-aop.xml. Need to run
annotation compiler under 1.4.

import org.jboss.aop.Prepare;

o

* @@org.jboss.aop.Prepare (“field(* this->*)" ")
¥

!

Public class Address {

String city;

String street;

int zip;

Dynamic Aop

* Adding cache interceptor at runtime
HbdCachuhopjaa

’7 InstanceAdvisor advisor = ((Advised) obj)._getinstanceAdvisor();

advisor ptor(new Ci is, fan, type));

= Declare POJO to be instrumented

<aop>
<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Address}->*)" />

<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Person}->*)" />
<laop>

TreeCacheAop

TreeCacheAop

= Fine-grained field-level caching with
POJO style
v Object graph
- Sub-object reference
- Cross and multiple reference
v Polymorphism
v Inheritance
= Automatic Collections class support
v List, Map, and Set
v A proxy is generated for the Collections

« Use JBossAop’s dynamic aop feature
e A subclass of TreeCache
v all the features of TreeCache
= Eviction policy and replication pojo
style as well
v Requires a separate aop eviction policy

10

TreeCacheAop API

= Plain cache API
v put(FQN name, Object key, Object
value)

- Insert an object into cache under name fgn
with key in the hashmap

v Object get(FQN name, Object key)
- Retrieve object from name fqn
v remove(FQN name, Object key)
- Remove object from name fgn with key

TreeCacheAop API

= CacheAop API
v putObject(FQN name, Object pojo)
- Insert an ,,aspectized“ pojo into cache. Will

map the object graph recursively. Need to
do it only once.

v Object getObject(FQN name)

- Retrieve pojo from cache. Call this from the
failover node, e.g., only once.

v removeObject(FQN name)
- Remove it from cache

TreeCacheAop Mapping

= Object relationship management has
reference counting

v Object instance that is referenced more than once
is moved to an internal area

Person joe = new Person();
joe.setName("Joe Black");
joe.setAge(31);

Person mary = new Person();
M mary.setName("Mary White");

mary.setAge(30);
Husband Wife Address,
Address addr = new Address();

,{name Joe name| Mary city [Sunnyvale | | addr.setCity("Sunnyvale");
age 20 street| 123 AL, addr.setS‘treel("lzii Albert Ave");
addr. 4086);
zip | 94086

joe)
! mary.setAddress(addr);

N

TreeCacheAop Mapping

Person p (key=/husband)

name: ,Joe name_| Joe Person p (key=/wife)

D

zip: 95123 hobbies

2ip 95123

Tomcat Http Clustering/High
Availability

= Front-end load balancer
v Software based. Apache mod_jk
v Hardware based. Cisco, etc.
= Session replication
v Replication mode
v Sticky session during failover

JBoss Cache Configuration

replySync-service.xml
<server>

<mbean code="org.jboss.cache.aop.TreeCacheAop™
name="jboss.cache:service=TreeCacheAop">

<attribute

name="TransactionManagerLookupClass">org.jboss.cache.transaction.JBossTrans
actionManagerLookup</attribute>

<attribute name="|solationLevel">REPEATABLE_READ</attribute>
<I-- Valid modes are LOCAL, REPL_ASYNC and REPL_SYNC >
<attribute name="CacheMode">REPL_SYNC</attribute>

* Note that this file can be used both
inside JBoss and as standalone

16

JBoss™ Previous Session
Replication Solution

 Release 3.2.5 and before

e Distributed State Management on top
of JGroups channel

 EJB for in-memory store (and
persistence)

= Too complicated and difficult to
maintain

= Only supports a single replication
granularity (session)

New Http Session Replication Goal

= Leverage existing state replication software
stack (e.g., JBossCache)
v Replication mode
- Synchronous or Asynchronous
- Per server instance
v Provide persistency and memory usage control
for future releases
= Provide different levels of replication
granularity
v Session
v Attribute
v Field
= Replication frequency
v Snapshot manager: instant and interval

Replication Granularity Level:
Session

* Replication is on per http session
object. It is a blob of hash map.

< User can define whether a
getAttribute is dirty or not. Such that
object updates can be replicated
(albeit blindly).

* Implemented using TreeCache API

Pojo pojo = (Pojo)session.getAttribute(“pojo”);

pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Need to do this manually and replicates the session

Replication Granularity Level:
Attribute

* Replication is on session attribute
only. It is more efficient. Nonetheless,
user still needs to manage object
relationship.

= Implemented using TreeCache API

Pojo pojo = (Pojo)session.getAttribute(“pojo”);
pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Only attribute “pojo” gets replicated!

Replication Granularity Level:
Field

e Replication is on attribute pojo field
level where pojo is a user-specified
object that needs to be instrumented
with aop. Use TreeCacheAop API.

Multiple reference

Person joe = (Person)session.getAttribute(‘joe”);
joe.setName(“joe”); // Only this field gets replicated.
Address addr = new Address(“San Jose”, 95123);
Person mary = (Person)session.getAttribute(“mary”);
mary.setName(“mary”); // Only this field gets replicated.
joe.setAddress(addr);

Replication Granularity Level:
Field

= When a pojo object size is huge, e.g.,
a long List of size 100K, field level
replication is efficient!

Big pojo object

Subsription subs =
(Subscription)session.getAttribute(“subscription™);
/I What if list is size of 100K?

List mailingList = (List)subs.getMailingList();
Person joe = findSubsriber(“joe”);
joe.setZip(94086); // Only replicates this field!

mary.setAddress(addr);
addr.setZip(94086); // Only this field gets replicated.

22

Replication Granularity Level:

Field
AJP.
Node 1 Node 2

HTTP Session HTTP Session

JBoss Cache JBoss Cache

JGroUpS [l JGrOUPS

Before failover

Person joe = new Person(“joe”);

Person mary = new Person(“mary”);

Address addr = new Address(“San Jose”, 95123);
joe.setAddress(addr);

mary.setAddress(addr); After failover

sessgon.semrggu:EE‘_Joe . joe): x Person joe = (Person)session.getAttribute(“joe”);
EEEEREE R E I b Person mary = (Person)session.getAttribute(“mary”);
out.print(joe.getAddress().getZip(); // is 94086

2nd request out.print(mary.getAddress.getZip(); // is 94086

addr.setZip(94086); // Will get replicated I

Http Clustering Configuration

= Run “-c all” configuration

= tc5-cluster-service.xml
v Essentially a TreeCacheAop configuration xml

that defines the MBean service binding.

= jboss-aop.xml (or annotation in the Pojo)
v Needed if using Field level replication granularity
v Per web application

* Jboss-service.xml

v UselJK. If using mod_jk, can activate this to
append the node id to the session for failover.

v Per server instance

Http Clustering Configuration

* Jboss-web.xml

v Replication granularity level
- SESSION, ATTRIBUTE, FIELD
v Replication field batch mode

- If true, will do replication per request as a

batch mode
- Applies when granularity is FIELD
v Replication trigger
- SET_AND_GET, SET,
SET_AND_NON_PRIMITIVE_GET
v Per web application

Restriction In Current Release

e If using field level granularity, can’t
mixed “aspectized” pojo with
Serializable sub-objects

e Collections class uses proxy so you
will need to use the proxy reference
instead of the original one

Clustering Roadmap

 HA-JNDI
= Distributed State
- EJB

v SFSB and Entity

e cluster-service.xml vs. tc-cluster-
service.xml

e Unified JGroups management
interface

28

JBossCache Roadmap

= JBossCache roadmap
v Current at 1.2.1 release
v Buddy replication
v Optimistic locking

= http://jira.jboss.com/jira/browse/JBC
ACHE?report=com.atlassian.jira.plugi
n.system.project:roadmap-panel

Release

< Two different releases
v Replication granularity of SESSION and
ATTRIBUTE
- 3.2.6 and 4.0.x

v Additional granularity of FIELD (use of
Aop)
- >4.0.2 and head (5.0)

30

