
1

© JBoss Inc. 2005

JBoss Cache & A Use Case:
Implementing JBoss/Tomcat Fine-
Grained Http Session Replication

Ben Wang & Bela Ban
JBoss Inc.

March 8, 2005

2

Topic

• JBoss Cache
Feature
Architecture
Configuration

• Http session clustering with Tomcat
Goal
Implementation detail
Configuration

3

What is JBoss Cache?

• Two modules
TreeCache
TreeCacheAOP

• TreeCache
Stores and replicates values from a tree
structure (hence the name)
Each value is associated with a path and key

• TreeCacheAOP
Can manage caching and replication on full Java
objects (POJOs)
Object oriented cache

4

What is JBoss Cache? (continue)

• Uses JGroups as underlying transport
stack

• Available as stand-alone or
embeddable (MBean)

TreeCacheAOP requires JBossAOP
runtime
Can be used with other app servers as
well

5

JBoss Cache Key Feature

• Local and Replication mode
Synchronous (blocking until replication
completes)
Asynchronous

• Fine-grained field-level replication
using TreeCacheAop component

No need to declare POJO Serializable

6

TreeCache Architecture

• Tree structure
Each node has a name and
zero or more children
Can be navigated
recursively from node to
node or using a fully
qualified name (/a/d/g)
Multiple roots per cache
allowed
Each node is a map with
keys and values

• Locking
Isolation level per node

a

dc

e gf

h

2

7

JBoss Aop Features

• Aop is a modular way of defining and
applying cross-cutting concerns

• Current release 1.1
• Definition: Advice, Aspect, Jointpoint,

Interceptor, and Pointcut
• Define a rich set of metadata

language as pointcut
• Supports dynamic Aop
• Supports annotation (under JDK1.4

as well)

8

Dynamic Aop

• Adding cache interceptor at runtime

InstanceAdvisor advisor = ((Advised) obj)._getInstanceAdvisor();
advisor.appendInterceptor(new CacheInterceptor(this, fqn, type));
InstanceAdvisor advisor = ((Advised) obj)._getInstanceAdvisor();
advisor.appendInterceptor(new CacheInterceptor(this, fqn, type));

jboss-aop.xml

<aop>
<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Address}->*)" />
<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Person}->*)" />

</aop>

<aop>
<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Address}->*)" />
<prepare expr="field(* $instanceof{org.jboss.test.cluster.web.aop.Person}->*)" />

</aop>

TreeCacheAop.java

• Declare POJO to be instrumented

9

Use of Annotation

• Can also use annotation instead of
jboss-aop.xml. Need to run
annotation compiler under 1.4.

Person.java

import org.jboss.aop.Prepare;
/**
* @@org.jboss.aop.Prepare (“field(* this->*)" ")

*/
Public class Address {

String city;
String street;
int zip;

…
}

import org.jboss.aop.Prepare;
/**
* @@org.jboss.aop.Prepare (“field(* this->*)" ")

*/
Public class Address {

String city;
String street;
int zip;

…
}

10

TreeCacheAop

• Use JBossAop’s dynamic aop feature
• A subclass of TreeCache

all the features of TreeCache

• Eviction policy and replication pojo
style as well

Requires a separate aop eviction policy

11

TreeCacheAop

• Fine-grained field-level caching with
POJO style

Object graph
• Sub-object reference
• Cross and multiple reference

Polymorphism
Inheritance

• Automatic Collections class support
List, Map, and Set
A proxy is generated for the Collections

12

TreeCacheAop API

• Plain cache API
put(FQN name, Object key, Object
value)
• Insert an object into cache under name fqn

with key in the hashmap

Object get(FQN name, Object key)
• Retrieve object from name fqn

remove(FQN name, Object key)
• Remove object from name fqn with key

3

13

TreeCacheAop API

• CacheAop API
putObject(FQN name, Object pojo)
• Insert an „aspectized“ pojo into cache. Will

map the object graph recursively. Need to
do it only once.

Object getObject(FQN name)
• Retrieve pojo from cache. Call this from the

failover node, e.g., only once.

removeObject(FQN name)
• Remove it from cache

14

TreeCacheAop Mapping
Person p (key=/husband)

name: „Joe“

addr

hobbies

city: „ San Jose“

zip: 95123

/

husband

addr

city

zip 95123

San Jose
hobbies

1 20

wife

Person p (key=/wife)

name: „Mary“

addr

hobbies

name Joe name Mary

15

TreeCacheAop Mapping

• Object relationship management has
reference counting

Object instance that is referenced more than once
is moved to an internal area

Person joe = new Person();
joe.setName("Joe Black");
joe.setAge(31);

Person mary = new Person();
mary.setName("Mary White");
mary.setAge(30);

Address addr = new Address();
addr.setCity("Sunnyvale");
addr.setStreet("123 Albert Ave");
addr.setZip(94086);

joe.setAddress(addr);
mary.setAddress(addr);

Person joe = new Person();
joe.setName("Joe Black");
joe.setAge(31);

Person mary = new Person();
mary.setName("Mary White");
mary.setAge(30);

Address addr = new Address();
addr.setCity("Sunnyvale");
addr.setStreet("123 Albert Ave");
addr.setZip(94086);

joe.setAddress(addr);
mary.setAddress(addr);

Persons

Husband Wife

name Joe
age 31

name Mary
age 30

Internal

Address

city Sunnyvale
street 123 Al...

zip 94086

16

JBoss Cache Configuration

replySync-service.xml

<server>
<mbean code="org.jboss.cache.aop.TreeCacheAop"

name="jboss.cache:service=TreeCacheAop">
...
<attribute

name=“TransactionManagerLookupClass">org.jboss.cache.transaction.JBossTrans
actionManagerLookup</attribute>

<attribute name="IsolationLevel">REPEATABLE_READ</attribute>
<!-- Valid modes are LOCAL, REPL_ASYNC and REPL_SYNC -->
<attribute name="CacheMode">REPL_SYNC</attribute>

...

<server>
<mbean code="org.jboss.cache.aop.TreeCacheAop"

name="jboss.cache:service=TreeCacheAop">
...
<attribute

name=“TransactionManagerLookupClass">org.jboss.cache.transaction.JBossTrans
actionManagerLookup</attribute>

<attribute name="IsolationLevel">REPEATABLE_READ</attribute>
<!-- Valid modes are LOCAL, REPL_ASYNC and REPL_SYNC -->
<attribute name="CacheMode">REPL_SYNC</attribute>

...

• Note that this file can be used both
inside JBoss and as standalone

17

Tomcat Http Clustering/High
Availability

• Front-end load balancer
Software based. Apache mod_jk
Hardware based. Cisco, etc.

• Session replication
Replication mode
Sticky session during failover

18

JBoss’ Previous Session
Replication Solution

• Release 3.2.5 and before
• Distributed State Management on top

of JGroups channel
• EJB for in-memory store (and

persistence)
• Too complicated and difficult to

maintain
• Only supports a single replication

granularity (session)

4

19

New Http Session Replication Goal

• Leverage existing state replication software
stack (e.g., JBossCache)

Replication mode
• Synchronous or Asynchronous
• Per server instance
Provide persistency and memory usage control
for future releases

• Provide different levels of replication
granularity

Session
Attribute
Field

• Replication frequency
Snapshot manager: instant and interval

20

Replication Granularity Level:
Session

• Replication is on per http session
object. It is a blob of hash map.

• User can define whether a
getAttribute is dirty or not. Such that
object updates can be replicated
(albeit blindly).

• Implemented using TreeCache API

Pojo pojo = (Pojo)session.getAttribute(“pojo”);
pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Need to do this manually and replicates the session

Pojo pojo = (Pojo)session.getAttribute(“pojo”);
pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Need to do this manually and replicates the session

21

Replication Granularity Level:
Attribute

• Replication is on session attribute
only. It is more efficient. Nonetheless,
user still needs to manage object
relationship.

• Implemented using TreeCache API

Pojo pojo = (Pojo)session.getAttribute(“pojo”);
pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Only attribute “pojo” gets replicated!

Pojo pojo = (Pojo)session.getAttribute(“pojo”);
pojo.setName(“Ben”);
Session.setAttribute(“pojo”, pojo); // Only attribute “pojo” gets replicated!

22

Replication Granularity Level:
Field

• Replication is on attribute pojo field
level where pojo is a user-specified
object that needs to be instrumented
with aop. Use TreeCacheAop API.

Person joe = (Person)session.getAttribute(“joe”);
joe.setName(“joe”); // Only this field gets replicated.
Address addr = new Address(“San Jose”, 95123);
Person mary = (Person)session.getAttribute(“mary”);
mary.setName(“mary”); // Only this field gets replicated.
joe.setAddress(addr);
mary.setAddress(addr);
addr.setZip(94086); // Only this field gets replicated.

Person joe = (Person)session.getAttribute(“joe”);
joe.setName(“joe”); // Only this field gets replicated.
Address addr = new Address(“San Jose”, 95123);
Person mary = (Person)session.getAttribute(“mary”);
mary.setName(“mary”); // Only this field gets replicated.
joe.setAddress(addr);
mary.setAddress(addr);
addr.setZip(94086); // Only this field gets replicated.

Multiple reference

23

Replication Granularity Level:
Field

• When a pojo object size is huge, e.g.,
a long List of size 100K, field level
replication is efficient!

Subsription subs =
(Subscription)session.getAttribute(“subscription”);
// What if list is size of 100K?
List mailingList = (List)subs.getMailingList();
Person joe = findSubsriber(“joe”);
joe.setZip(94086); // Only replicates this field!

Subsription subs =
(Subscription)session.getAttribute(“subscription”);
// What if list is size of 100K?
List mailingList = (List)subs.getMailingList();
Person joe = findSubsriber(“joe”);
joe.setZip(94086); // Only replicates this field!

Big pojo object

24

Replication Granularity Level:
Field

HTTP SessionHTTP Session

JBoss CacheJBoss Cache

JGroupsJGroups

HTTP SessionHTTP Session

JBoss CacheJBoss Cache

JGroupsJGroups

Apache
AJP13

Apache
AJP13

Node 1 Node 2

Before failover

After failover

2nd request

Person joe = new Person(“joe”);
Person mary = new Person(“mary”);
Address addr = new Address(“San Jose”, 95123);
joe.setAddress(addr);
mary.setAddress(addr);
session.setAttribute(“joe”, joe);
session.setAttribute(“mary”, mary);

Person joe = new Person(“joe”);
Person mary = new Person(“mary”);
Address addr = new Address(“San Jose”, 95123);
joe.setAddress(addr);
mary.setAddress(addr);
session.setAttribute(“joe”, joe);
session.setAttribute(“mary”, mary);

addr.setZip(94086); // Will get replicatedaddr.setZip(94086); // Will get replicated

Person joe = (Person)session.getAttribute(“joe”);
Person mary = (Person)session.getAttribute(“mary”);
out.print(joe.getAddress().getZip()); // is 94086
out.print(mary.getAddress.getZip()); // is 94086

Person joe = (Person)session.getAttribute(“joe”);
Person mary = (Person)session.getAttribute(“mary”);
out.print(joe.getAddress().getZip()); // is 94086
out.print(mary.getAddress.getZip()); // is 94086

5

25

Http Clustering Configuration

• Run “-c all” configuration
• tc5-cluster-service.xml

Essentially a TreeCacheAop configuration xml
that defines the MBean service binding.

• jboss-aop.xml (or annotation in the Pojo)
Needed if using Field level replication granularity
Per web application

• Jboss-service.xml
UseJK. If using mod_jk, can activate this to
append the node id to the session for failover.
Per server instance

26

Http Clustering Configuration

• Jboss-web.xml
Replication granularity level
• SESSION, ATTRIBUTE, FIELD

Replication field batch mode
• If true, will do replication per request as a

batch mode
• Applies when granularity is FIELD

Replication trigger
• SET_AND_GET, SET,

SET_AND_NON_PRIMITIVE_GET

Per web application

27

Restriction In Current Release

• If using field level granularity, can’t
mixed “aspectized” pojo with
Serializable sub-objects

• Collections class uses proxy so you
will need to use the proxy reference
instead of the original one

28

Clustering Roadmap

• HA-JNDI
• Distributed State
• EJB

SFSB and Entity

• cluster-service.xml vs. tc-cluster-
service.xml

• Unified JGroups management
interface

29

JBossCache Roadmap

• JBossCache roadmap
Current at 1.2.1 release
Buddy replication
Optimistic locking

• http://jira.jboss.com/jira/browse/JBC
ACHE?report=com.atlassian.jira.plugi
n.system.project:roadmap-panel

30

Release

• Two different releases
Replication granularity of SESSION and
ATTRIBUTE
• 3.2.6 and 4.0.x

Additional granularity of FIELD (use of
Aop)
• > 4.0.2 and head (5.0)

