
1

© JBoss Inc. 2005

JBossWS

J2EE-5.0 compatible Web Services

Presented by
Thomas Diesler

March 8, 2005

2

Agenda

• Goals
• What’s new in WSDL-2.0
• What’s new in SOAP-1.2
• What’s new in JAXRPC-2.0
• Current Status
• JBossWS Architecture

3

Goals

• JAXB based marshalling layer
• Support SOAP-1.2, WSDL-2.0, Basic

Profile 1.1
• Ease of deployment using Java

Annotations (JSR175)
• Transport layer based on Remoting
• Session Management
• Simplified Handlers

4

What’s new in WSDL-2.0

• Port renamed to Endpoint
• PortType renamed to Interface
• Interface inheritance
• No more operation overloading

5

WSDL-2.0 Internals

Definition acts as (XML) container

Interface describes WS conceptually

Binding declares transport protocol and
message formats

Service associates Interfaces with
Endpoints i.e. Bindings

Type declares the data types used in
the WS

6

WSDL-2.0 Interface Operations

MEPs

• In-Only
• Robust In-Only
• In-Out
• In-Multi-Out
• Out-Only
• Robust Out-Only
• Out-In
• Asynchronous Out-In
• Out-Multi-In

2

7

What’s new in SOAP-1.2

• Specification comes in three parts

Part 0 non-normative introduction

Part 1 describes the structure of SOAP
messages, the SOAP processing model and a
framework for binding SOAP to underlying
protocols.

Part 2 describes optional add-ins to the core of
SOAP including a data model and encoding, an
RPC convention and a binding to HTTP.

8

SOAP-1.2 changes

• Infoset
In SOAP 1.2 it is left to the specification of a binding
to an underlying protocol to specify the XML
serialization used in underlying protocol data units.

• Trailers
SOAP 1.1 allows additional elements to follow the
SOAP Body element, SOAP 1.2 disallows these

• Actors and Roles
SOAP 1.1 has the actor attribute. In SOAP 1.2 this
attribute is renamed to role. The semantics of the
attribute are unchanged.

9

SOAP-1.2 changes

• New Fault Codes
DTDNotSupported - generated when a received
message contains a document type declaration
DataEncodingUnknown - generated when a
received message uses an unrecognised value of
the encoding-Style attribute
The SOAP 1.1 Client fault code is renamed
Sender in SOAP 1.2
The SOAP 1.1 Server fault code is renamed
Receiver in SOAP 1.2

• Hierarchical Fault Codes
SOAP 1.1 allows extension of fault codes using a
dot notation, SOAP 1.2 disallows this and
provides a more XML-like representation instead

10

SOAP-1.2 changes

• Misunderstood Header
SOAP 1.2 adds a new standard header for reporting
additional information in MustUnderstand faults.

• Versioning Mechanism
A SOAP 1.2 node that receives a SOAP 1.1 message
will respond with a SOAP 1.1 envelope containing a
SOAP 1.1 VersionMismatch fault.

A SOAP 1.2 node that receives a message from any
other version of SOAP (including future versions) will
respond with a SOAP 1.2 envelope containing a SOAP
1.2 VersionMismatch fault and an Upgrade header
with a list of the supported envelope versions.

11

SOAP-1.2 Processing Model

• SOAP 1.2 clarifies the processing model of SOAP 1.1

1. Determine the roles the node is to play. I.e. the values of the
role attribute for which it will assume processing liability.

2. Identify mandatory headers targeted to the node. I.e. header
marked with a mustUnderstand=true attribute and a role
attribute with a value matching one of the roles determined in
step 1.

3. Generate a MustUnderstand fault if one or more of the headers
identified in step is not understood. I.e. the node does not
contain software for processing the header.

4. Process headers and, if the node is the ultimate recipient, the
body of the message.

5. If the node is acting as an intermediary remove headers
targeted at the node and forward the message.

12

What’s new in JAXRPC-2.0

• XML binding is delegated to JAXB-2.0
• Added support for WS-I BasicProfile 1.1
• Use of Java annotations (JSR 175, JSR 181)
• Improve support for document centric usage
• Simplify Handlers and allow handler/handler and

handler/service endpoint collaboration
• Versioning and Evolution of Web Services
• SOAP encoding has been deprecated
• No support for Java prior to J2SE-1.5

3

13

JAXRPC-2.0 changes

• Client Dispatch interface provides support to work at
the XML representation level

Synchronous request response (invoke methods)
The method blocks until the remote operation
completes and the results are returned.

Asynchronous request response (invokeAsync
methods) The method returns immediately, any
results are provided either through a callback or via a
polling object.

One-way (invokeOneWay methods) The method is
logically non-blocking, subject to the capabilities of
the underlying protocol, no results are returned.

14

JAXRPC-2.0 changes

• Service Provider interface provides support to work at
the XML representation level

Invoke is called with a logical request message,
logical response message and an invocation context

• Handler Framework
The handler chain for a binding is constructed by
merging the applicable per-service, per-port or
per-protocol binding chains configured for the
service instance.

15

JBossWS Client

16

JBossWS Service

17

Binding Provider

• The central piece of SOAP message
binding is the BindingProvider

/** An implementation of this interface transforms the Java call parameters to a SOAPMessage and vice versa.
*
* @author Thomas.Diesler@jboss.org
* @since 16-Oct-2004
*/

public interface BindingProvider
{

/** On the client side, generate the SOAPMessage from IN parameters. */
SOAPMessage bindRequestMessage(OperationDesc opDesc, Object[] inParams, Map unboundHeaders)

/** On the server side, extract the IN parameters from the SOAPMessage and populate an Invocation object */
EndpointInvocation unbindRequestMessage(OperationDesc opDesc, SOAPMessage reqMessage)

/** On the server side, generate the SOAPMessage from OUT parameters in the Invocation object. */
SOAPMessage bindResponseMessage(OperationDesc opDesc, EndpointInvocation epInv)

/** On the client side, extract the OUT parameters from the SOAPMessage and return them to the client. */
void unbindResponseMessage(OperationDesc opDesc, SOAPMessage resMessage, Map outParams, Map unboundHeaders)}

18

RPC vs. Document style

• RPC style services
is easy to dispatch because of the RPC element that
names the endpoint operation
cannot be validated because there is no complex
schema type that completely defines the payload
there is a disconnect in service description between
the WSDL and type defining schema

<soap:Envelope>
<soap:Header> +

<header-element> *
</soap:Header>
<soap:Body>

<rpc-wrapper-element>
<rpc-parameter> *

</rpc-wrapper-element>
</soap:Body>

</soap:Envelope>

4

19

RPC vs. Document style

• Document style services
Can be validated because the payload must be
defined by a single complex type in XML schema
Marshalling layer can utilize the schema definition
Business parties agree on exchanging complex
documents, no need to know RPC details
Framework may unwrap the payload

<soap:Envelope>
<soap:Header> +

<header-element> *
</soap:Header>
<soap:Body>

<single-document-element>
</soap:Body>

</soap:Envelope>

20

SAAJ view

• The SAAJ API offers a DOM based object view
of the SOAP envelope

• SOAPHeaderElement, SOAPBodyElement
extend SOAPElement, which implements
org.w3c.dom.Element

• JBossWS chops the message into fragments

<soap:Envelope>
<soap:Header>
<tns:SimpleHeader>123456</tns:SimpleHeader>
<tns:ComplexHeader>
<name>Tom</name>
<age>3</age>

</tns:ComplexHeader>
</soap:Header>
<soap:Body>
<tns:PurchaseOrder>
<item>Ferrari</item>
<address>

<street>Wall Street 102</street>
<city>New York</city>

</address>
</tns:PurchaseOrder>

</soap:Body>
</soap:Envelope>

<tns:SimpleHeader>123456</tns:SimpleHeader>

<tns:ComplexHeader>
<name>Tom</name>
<age>3</age>

</tns:ComplexHeader>

<tns:PurchaseOrder>
<item>Ferrari</item>
<address>
<street>Wall Street 102</street>
<city>New York</city>

</address>
</tns:PurchaseOrder>

21

XML Infoset vs. Java Objects

• The SOAPContentElement
marshals/unmarshals the XML fragments on
demand

/**
* A SOAPElement that gives access to its content as XML fragment or Java object.
*
* The SOAPContentElement has three content representations, which may exist in parallel.
* The getter and setter of the content properties perform the conversions.
* It is the responsibility of this objects to keep the representations in sync.
*
* +---------+ +-------------+ +-------------+
* | Object | <-----> | XMLFragment | <-----> | DOMTree |
* +---------+ +-------------+ +-------------+
*
* The idea is, that jaxrpc handlers can work with both the object and the DOM view of this SOAPElement.
* Note, that state transitions may be expensive.
*
* @author Thomas.Diesler@jboss.org
* @since 13-Dec-2004
*/

public class SOAPContentElement extends SOAPElementImpl

22

JBossWS status

JAXRPC Client using DII
JAXRPC Client configured from WSDL
WS4EE Client deployment
WS4EE service deployment JSE
WS4EE service deployment EJB
Client/Server side handler chains
Attachment support
INOUT parameters
Bound and unbound headers
Support for all JAXRPC primitive types
RPC style web services
Document style web services
JAXB support for complex types
Pass JBoss WS4EE test suite (> 200 tests)
Pass Sun compatibility test suite (>2200 tests)

23

Beyond WS4EE

• WS-Security describes enhancements to SOAP
messaging to provide quality of protection
through message integrity, message
confidentiality, and single message
authentication.

• WS-Addressing provides transport-neutral
mechanisms to address Web services and
messages. Specifically, this specification defines
XML elements to identify Web service endpoints
and to secure end-to-end endpoint identification
in messages.

• WS-Transaction defines mechanisms for
transactional interoperability between Web
services domains and provide a means to
compose transactional qualities of service into
Web services applications.

24

JBossWS links

• TODO, issue tracking, road map
http://jira.jboss.com/jira/browse/JBWS

• Docs, Tutorials & Specs
http://www.jboss.org/wiki/Wiki.jsp?page=JBossWS

• Design Discussions
http://www.jboss.org/index.html?module=bb&op=viewforum&f=174

• User Questions
http://www.jboss.org/index.html?module=bb&op=viewforum&f=200

5

25

The team

• Project Lead
thomas.diesler@jboss.com

• JBossWS Tools
anil.saldhana@jboss.com

• JAXB marshalling layer
alexey.loubyansky@jboss.com

• Core Service & Security
jason.greene@jboss.com

