
1

© JBoss Inc. 2006

A Formal Performance
Tuning Methodology:
Wait-Based Tuning

Steven Haines
Quest Software

2

Agenda

• State of the Market
• Performance Testing Process
• Performance Tuning Process
• Load Testing Methodology
• Wait-Based Tuning

Identifying Wait-Points
Tune Backwards

3

State of the Market

• Forrester reported that among companies
with revenue of more than $1 billion, nearly
85% reported experiencing incidents of
significant application performance
degradation. Respondents identified the
application architecture and deployment as
being of primary importance to the root
cause of application performance problems.

4

The Cost of Failure

• Business to Consumer

Site abandonment = lost revenue

• Business to Business

Damaged business relationships = lost
opportunity

• Internal

Loss of organizational efficiency

Slower time-to-market

Loss of competitive edge

5

Java EE Layered Execution Model

6

Distributed Java EE Layered Execution Model

2

7

Complexity is on the rise

Mini-Apps

Clients

Browser

App
Client

Mobile

Process Data

Database

Identity /
Policy

Mainframes

Legacy

WSRPWSRPPortlets

Presentation

Portal

Web App

WSRPWSRPPortlets

External

Workflow
/ Bus

Workflow
/ Bus

Logic

WSRPWSRPServices

Logic

WSRPWSRPServices

WSRPWSRPServices

Internal

This IT Objective… Has This Impact…
- Build a real-time, adaptive

infrastructure
- Application environments are

moving along an architectural
continuum:
Client-Server 3-Tier SOA

Creating These IT Challenges
- Integrating existing apps

- Changes in existing apps

- Performance issues

- Application consolidation

- New application deployment

8

Performance Testing Process

• The most effective way to ensure the
performance of your application is to
adopt a Performance Testing
Methodology that spans the entire
development lifecycle

9

Performance Tuning Process

• Load test
• Tune container
• Identify application bottlenecks
• Iterate

10

Load Testing Methodology

• Your preproduction tuning efforts are
only valuable if the load represents
real end-user behavior

Referred to as balanced and
representative service requests

• Different process for new and existing
applications

11

Load Testing an Existing Application

• Learn what your users are doing
Access Logs
End User Experience Monitor

• Construct load tests to reproduce the
top 80% of user actions

12

Load Testing a New Application

• Estimate
Well-defined use cases are essential
Establish balance between application
technical and business owners

• Validate
Validate usage patterns against
expectations

• Reflect
Post-mortem analysis of estimations
Learn more about your users

3

13

Load Testing Process

• Ideally mirror production
Problem = $$

• Scale down strategies
Scale down number of machines, but
same class
Scale down the class of machines
Scale down both the number and class of
machines

14

Wait-Based Tuning

• Tuning against performance ratios
and percentages can be a laborious
and unfruitful task

Difficult to assign priority to tuning
parameters
Are you really helping your users?

• Instead ask, where are my requests
waiting?

15

Wait-Based Tuning Evolution

• Oracle 9 database tuning theory
Where are queries waiting?

• IBM WebSphere tuning theory
Four areas
• Web Server
• Web Container
• EJB Container
• Database connection pools

16

Wait-Points

• A wait-point represents any place in
your application that a request can
wait

17

Wait-Point Architectural Analysis

• Wait-points need to be identified in
the context of your application
architecture

18

Tier Wait-Points

4

19

Technology Wait-Points

20

Common Wait-Points

• Web server thread pools
• Application server or tier thread pools
• Stateless Session Bean and

component pools
• Caching infrastructure
• Persistent storage or external

dependency pools
• Messaging infrastructure
• Garbage collection

21

Tune Backwards

• It is better to queue requests in a
business logic-lite tier to minimize the
impact on the business tier

If a request has a Web server thread and
it is not ready for processing, why obtain
an application server thread and
database connection?
Instead, the request should wait at the
Web server

22

Process

• Open all wait-points and load test
until a wait-point resource saturates

• Scale down the limiting wait-point
until it no longer saturates

This identifies the capacity of the wait-
point’s resource

• Tune other wait-points to only feed
enough load to the limiting wait-
points

23

For Example

• If an application server instance can
only service 50 simultaneous
database requests, then you want to
send through only enough requests to
generate at most 50 database
requests

• Any additional requests will simply
queue up at the database

24

Bringing It All Together

• Analyze architecture and identify wait-points
• Open all wait-points
• Generate balanced and representative load
• Identify limiting wait-point’s saturation point
• Tighten wait-points to facilitate only the

maximum load of the limiting wait-point
• Force pending requests to the Web server
• If load is too high, setup cutoff point and

redirect to a “Try again later” page

5

25

Summary

• Applications are not meeting their
performance criteria in production

• The solution is to
Implement performance testing across
the development lifecycle
Tune your container according to the
Wait-Based Tuning Methodology

• Wait-Based Tuning
Design proper load tests
Identify wait-points
Tune backwards

