
1

© JBoss Inc. 2006

Messages in a Bottle(neck):
AutoTrader.com’s Image Processing System

Chris Kulinski

chris.kulinski@autotrader.com

2

What’s In This Presentation Bottle?

• High-Level Business Case
• Old vs. New System
• 4 Best Practices for High-Volume Apps
• 6 Specific Implementation Tips
• Future Plans
• Summary

3

What is Image Processing?

• Retrieves, Scales and Formats Incoming
Images

• 3.2 Million Auto Listings in Inventory
• 8.7 Million Auto Images
• It’s a Batch-Processing, Easily

Distributable Problem. It’s Analogous to
Many Other Business Applications in Your
Organizations.

4

Business Case – Why Rebuild From Scratch?

• High-Quality Images are Critical to the Value
Proposition

• In 2006, Our Product Plan Allows for 3x
Growth in Images per Dealership

• Current System Maxed Out at 600,000 Images
per Day. New System Designed for 1 Million
Images/Day Target

• Must Haves:
– Visibility
– Scalability
– Stability
– Reliability

5

Old System

• Stand-Alone Java Application
• 13,800 Lines of Java Code
• 6 Production Servers – 12 Total Instances
• Crontabs Ran 27 Additional Perl and Shell

Scripts! – 2,400 Extra LOC
– Every 5 minutes we’d run

checkForCoreFileAndRestart.sh
– Every 1 hour we’d run restartAllServers.sh

Just a castaway, an island lost at sea, oh
Another lonely day, with no one here but me, oh
More loneliness than any man could bear
Rescue me before I fall into despair, oh
- Sting “Message In A Bottle” Reggatta de Blanc

6

Old System Diagram

• Decentralized – Each Instance Completely Autonomous

2

7

New System

• 6,300 Lines of Java/JSP/HTML Code
– Half the Size of the Old System

• 0 Perl/Shell Management Scripts
– Stable and Reliable
– Uptime Reported in Months – Not Hours

• 5 Production Servers
– Less Hardware to Manage

• Handles 9+ Million Messages/Day – 9x the Target!
• JBoss AS 4.0.2 at the Core

– JMS (JBoss MQ)
– JMX
– J2EE SSBs & Timer Service

8

New System Diagram

• Centralized (but Distributed) Design

9

Old vs. New – Key Improvements

• JMS/MDB Threading Model Much More Stable
Than Custom Thread Code

• Database now a “Mitigated” Bottleneck
– We Can Scale JMS Workers at Will
– Still a Bottleneck When Persisting Messages, but

Much Less Significant

• Monitoring and Management are “Front &
Center” Requirements (Visibility)
– Leveraging Existing JMX, JMS M&M Components in

JBoss
– Using Web Container for Easy M&M Interface

10

BP #1: Leverage AppServer’s Core Strengths

• Be Critical of System Code in a Business
Application
– Leave Systems Code to the Application

Server

• Watch Out For “Over Zealous”
Identifiers
– new Thread();
– System.runFinalization();
– System.gc();

• There Are Better Alternatives Than
Custom Code for Batch Processing
– Use JMS/MDBs for Threading
– Use Timer Service for Scheduling

11

BP #2: Database’s Strength - Persistence

• Don’t Rely on Database Tables For
Message Passing in a Transactional
System
– Ties System Scalability to Database Scalability

• Multithreaded Reads and Writes on Single
Tables Creates Hot Spots of I/O
– Consider Hash Partitions

• Critically Evaluate Every DB
Call That’s Not Focused on
Persistence

12

Tip #1: Consider Custom Persistence

• Standard JMS Container Persistence
Isn’t Always The Best Fit
– Serialized Objects are Stored in BLOBs
– With 9+ Million Messages a Day, We

Average 300,000 Failures on the Queue
– Need Visibility on the Failures? – Write

Custom Persistence
– Use Simple SQL Queries for Reporting

and Analysis of Message Failures

3

13

BP #3: Multi-Layer Monitoring

• The Most Common Monitoring?
– Logfile Inspection

• Out-Of-Box JMX Tools Don’t Always
Meet the Requirements

• Leverage the Web Container for
Custom Monitoring

• Provide Layers for Specific Roles
– Overview - Operations
– Detailed – Application Support
– Performance - Developer

14

Overview Monitoring

• Simple, High-Level
Monitoring

• Shows the Overall
Health of the System

• Fosters “Peace-of-
Mind” for Operations

• Use Scripting Tools:
– Perl
– Curl
– SSH/PS
– SQL+

15

Tip #2: View Messages in the Queue

• Standard JMX Queue Viewer is Poor
• Using JMS Queue Browser is Slow!
• Use JMX to Retrieve the Queue Contents

– org.jboss.mq.server.jmx.Queue.listMessages()

– Then Display In a Usable Interface

16

Tip #3: MBean Message Counter

• Example of a Useful “Out-Of-Box” MBean
Operation

• Useful for Graphing General Traffic Curves

17

Performance Monitoring

• Send RMI “HeartBeat” from Worker to Mothership
– Timer Service Sends the Performance Stats
– Currently Custom Framework
– Critical to Continually Support High-Volumes of

Messages

18

BP #4: “Restructure” Management

• J2EE Specs Leave Management Up To
Vendors
– Timer Service Monitoring & Management

Needs Improvement
– JMS Monitoring Tools Are Lacking

• Best Opportunity of Value-Add for
Vendors – JBoss ON?

• Until Then, Leverage JMX for Custom
Runtime Configuration and
Management

4

19

Detailed Status and Management

• Designed for
Application Support

• Shows Specific
Health of Individual
Components

• Custom Interface
for Timer Service
and JMS
Management
Capabilities

20

Tip #4: Timer Service Improvements

• Use Utility Interface for Easy Monitoring
and Management of the Timer Service

• Many Variations Seen In J2EE “Tips”
Articles
– Why Couldn’t the Spec or Implementation Just

Be Easy To Use?

• Could Use JMX Timer – But It’s Not Well
Integrated w/ EJBs

• Methods:
– TimedBeanInfo getInfo();
– ejbTimeout();
– scheduleNextInterval();
– start();
– stop();

21

Tip #5: JMX Configs

• Use JMX for
Runtime
Configuration and
Management

• Properties Files
Seed Initial Values

• It’s Saved Us a Few
Times Already!

• Systems
Developers Have
Caught On – But
Not Widely Used in
Business Apps

22

Tip #6: Automate the Configuration

• JMS Setup Is Complicated
– 8 Different XML Files for JBoss MQ and

also JBoss Messaging

• There’s Probably >1 App Using JMS
In Your Organization

• Automate the JMS Configuration
– Use Patch – You’ll See Your Changes
– Almost Every *service.xml File Changes

With Every JBoss Release

23

JBoss Messaging 1.0 First Impressions

• Improved Performance
– JBoss MQ is Meeting Our Current Needs
– Pushes 9+ Million Messages per Day

• Clustering/HA Scheduled in 1.2
– We’ll Need For Scaling Beyond One “Mothership”

• Configuration is Still Complex
– Non-Trivial Effort To Apply Our Existing Custom

JBoss MQ Config Changes

• Will Need to Rewrite our JBoss MQ Custom
Monitoring & Management Code
– Implementations Only Match at JMS Spec Level
– Needed to Reference JBoss MQ Specific Classes to

Achieve Our Visibility Requirements

24

Best Practices - Summary

1. Leverage Your Application Server’s
Strengths
– It’s System Code Done Right

2. Design to a Database’s Strength
– Persistence!

3. Provide Multi-Layer Monitoring
– Overview
– Detailed
– Performance

4. Usable Management Functions

5

25

Implementation Tips - Summary

1. Consider JMS Custom Persistence
– More Visibility Than Standard Version

2. Provide Better View of the JMS Queue
– More Usable Than the Default

3. JMS Message Counter MBean
– Useful JMS/JMX Default Operation

4. Improve on Timer Service
– Otherwise, It’s Painful to Use

5. Use JMX for Config/Management
– Allows Flexibility at Runtime

6. Automate Your Configurations
– Makes JMS Config a Little Less Complicated

26

The Big Finish

• Follow Best Practices to Efficiently
Process High-Volumes of Messages

• Specific Implementation Tips Will Help
Guide You to Success

• Make Management and Monitoring a
“First Order” Requirement
– But Be Prepared to Roll Your Own

• Tips or Best Practices From the
Audience's Experience?

