
1

Using JBoss Messaging in the Enterprise v2

Denis Lussier

2 © 2006 EnterpriseDB Corporation

What is JBoss Messaging?

Messaging is used to loosely couple applications.
JBoss Messaging is a powerful industry-standard
implementation of Java Messaging Service. (JMS)
JBoss AS 4.x contains a default JMS provider called
JBossMQ.
JBoss Messaging 1.0.x replaces JBossMQ and will be
standard is JBoss AS 5.0
JBossMessaging is used by applications to send
asynchronous business-quality messages to other
applications.

3 © 2006 EnterpriseDB Corporation

The Value of JBoss Messaging

Messaging is the core of a Service Orientated
Architecture (SOA)
Loosely couples Enterprise Applications

Publisher does not rely on the Subscriber
Subscriber does not rely on the Publisher

Use PubSub rather than PTP
for increased flexibility in the
future.

JBoss Messaging is the Message Oriented Middleware
(MOM) acting as a broker necessary to implement an
Enterprise Service Bus (ESB)

4 © 2006 EnterpriseDB Corporation

JMS API Architecture

A JMS provider is a messaging system that
implements the JMS interfaces and provides
administrative and control features.

JMS clients are the components that publish and
subscribe to messages.

Messages are the objects that communicate
information between JMS clients.

5 © 2006 EnterpriseDB Corporation

Messaging Types - Point-to-Point

A point-to-point (PTP) application is built using
message queues, senders, and receivers.
Each message has only one receiver.
A sender and a receiver of a message have no timing
dependencies.

The receiver can fetch the message whether or not it was
running when the client sent the message.

The receiver acknowledges the successful processing of a
message.

6 © 2006 EnterpriseDB Corporation

Messaging Types - Publisher/Subscriber

In a publish/subscribe (pub/sub) application, clients address messages to a topic.

Publishers and subscribers can dynamically publish or subscribe to the content.

The system distributes the messages arriving from a topic's multiple publishers to
its multiple subscribers.

Topics retain messages only as long as it takes to distribute them to subscribers.

Each message can have multiple consumers.

Publishers and subscribers have a timing dependency.
A client that subscribes to a topic can consume only messages published after
the client has created a subscription, and the subscriber must continue to be
active in order for it to consume messages.

2

7 © 2006 EnterpriseDB Corporation

Messaging Types – Pub-Sub with Durable Topic

Cross between P2P and Pub-Sub

Receive Client registers topic with an ID & password

Send Client does not change for durable topic

Durable Topic Receive Client receives messages even when it was not actively
listening at time of message publication

8 © 2006 EnterpriseDB Corporation

Enterprise Class Messaging Features

Scalability
New High Performance Messaging Core
Built for Enterprise grade message traffic
New “Pageable Channels” efficiently support large queues
that may overflow memory
Designed for Clustering from the ground up
Production Quality Clustering later this year
Support for EJB 2.1 & EJB 3.0

Guaranteed Delivery
Message Autonomy
Message Persistence
Message Acknowledgement

9 © 2006 EnterpriseDB Corporation

Scalability

Message Driven Beans
An enterprise bean that handles messages asynchronously
Behaves like a JMS listener
Can consume and process messages concurrently

Can receive hundreds of messages from various applications and
process them all at the same time

10 © 2006 EnterpriseDB Corporation

Guaranteed Delivery

Message Autonomy
Messages are independent units of work that can be resent
multiple times

Message Persistence
Messages are stored to disk in an enterprise class RDMS
such as EnterpriseDB

Message Acknowledgement
The JMS Provider manages the message as the receiver
consumes the message

11 © 2006 EnterpriseDB Corporation

JBoss JMS implementation

Invocation Layer
Security Manager

Destination Manager
Message Cache

State Manager

Persistence Manager

12 © 2006 EnterpriseDB Corporation

Invocation Layer

Handles the communication protocol with clients to
send and receive messages

Unified Invocation Layer version 2 (UIL2 IL)
A multiplexing layer that creates 2 virtual sockets over a single
physical to provide bidirectional communication

Java Virtual Machine (JVM IL)
Eliminates the TCP/IP overhead when the client resides in the
same JVM as the server

HTTP (HTTP IL)
Access over HTTP and HTTPS protocols for use through a
firewall

3

13 © 2006 EnterpriseDB Corporation

Security Manager

Applies a role based Access Control List (ACL) to a
destination

Permissions
Read

A client can receive messages from the destination

Write
A client can send or publish messages to the destination

Create
A client can create durable subscriptions from a destination

14 © 2006 EnterpriseDB Corporation

Destination Manager

The main service for JBossMQ

Manages all of the destinations created on the server

Handles configuration of other key services
Message Cache
State Manager
Persistence Manager

15 © 2006 EnterpriseDB Corporation

Message Cache

Handles the pushing of messages to disk when
memory resources become scarce

Works in conjunction with the Persistence Manager

Determines the least recently used messages when
choosing the messages to push to disk

16 © 2006 EnterpriseDB Corporation

State Manager

Configures Users

Configures Roles

Configures Durable Topic Subscriptions

17 © 2006 EnterpriseDB Corporation

Persistence Manager

Stores messages when marked as persistent
Utilizes a JDBC data source
Has a low memory overhead
Highly integrated with the Message Cache

18 © 2006 EnterpriseDB Corporation

Enterprise JBoss Messaging

The EnterpriseDB Management Server ships
preconfigured with JBoss as a enterprise class JMS
provider

EnterpriseDB as the default data source of the Persistence
Manager

Simplifies the creation of destinations through the use
of an easy to use user interface

4

19 © 2006 EnterpriseDB Corporation

Why Isn’t JBoss Messaging enterprise-class

The short (and only) answer is HSQLDB

HSQLDB is a great and compact little database that
actually inspired the EnterpriseDB compatibility idea.

Its got some pretty decent ANSI & Defacto
compatability.

It falls down under heavy load and/or with more than
1 GB of data.

20 © 2006 EnterpriseDB Corporation

Creating Queues and Topics

