
1

© JBoss Inc. 2006

Managing State

Lessons Learned

2

Agenda

• Introduction to the Architecture
• Where it didn’t work and why

Putting State in Http Session
Putting State in Stateful Session Beans
Putting State in Entity Beans

• Putting State in JBoss Cache
What is JBoss Cache
Read-only Data using Hibernate 2nd level cache
How we managed Read/Write Data
Clustering and Failover
Using Thread Local Variables

• Why Seam solves all these problems more 
effectively

© JBoss Inc. 2006

The Architecture

4

The Architecture

• This is a complex system
• A Use Case can interact 

with 14 external 
resources.

• Communication with 
external resources use 
JMS.

• Caching this information 
over multiple user 
interactions are required 
for system to scale and 
perform.

Presentation

Application Coordination

Business

Integration

External Resources

Domain / 
Util Struts

ServletJsp’s

Actions

Forms

Session Façade
<<Stateful Session Bean>> Use Case

Cordinators

Editors

Security Client

Business
Component Session Repository

<<BM Entity Beans>>

initServlet

Data Access Object
MQ Properties

RA Repository

Vehicle Repository Rates

GDD CarRentFOS Credit Auth

Transfer
Objects

Business
Objects

Utilities

Reference 
Data

Repository

• 5+1 layered Architecture
16 applications sharing single 
sign on and common look and 
feel
Foundational architecture and 
reusable components for J2EE 
applications in enterprise

© JBoss Inc. 2006

Where it didn’t work and 
why 

6

HttpSession

• Http Session is 
copied.

Each Copy uses 
System resources.
The size of  Http 
Session effects 
systems scalability

• JBoss TreeCache 
AOP can manage the 
size issue by 
replicating only the 
parts of the tree that 
are modified.



2

7

Stateful Session Beans

• We attempted to use Stateful Session Beans.
Major Bugs
Not Supported or similar problems as HttpSession.
TreeCache AOP can be used to help manage state 
in Stateful Session Beans.

• Use Combination of Entity Beans and 
Stateful Session Beans.

Map stored in Session and passed to 
Components
Map contained handles or primary keys of Entity 
Beans

8

Map and Entity Beans Problems

• Passing Map along with the SessionKey and the 
Security Object reduced method cohesiveness.

• Map had no controls
Anyone could put anything in it, easily overwriting 
data put in by another component.
Could get cluttered and no way to clean it.
No way to track what was still needed and what was 
not.
A potential source of hard to track bugs.

• Couldn’t share information between Session Beans.
• Our first app server didn’t support clustered Stateful 

Session Beans.
• Entity Beans quickly became our number one problem 

with performance and scaling.

© JBoss Inc. 2006

Putting State in JBoss 
Cache

10

Using JBoss Cache

• The plan was to switch over to JBoss 
Cache in 4 Key areas.
1. Replace the mostly read only reference

data first
2. Replace Entity Beans

Use first ones as examples
Have team complete the replacement as 
time allowed  the replacement.

3. Implement security Session caching
4. Implement a combination of Aspects and 

Caching to inject stateful objects 
(eliminate Map)

11

1. RefData: The stack

• Files (for initial load and updates)
• DB2
• Hibernate
• JBossCache
• Spring

RefData filesRefData files DBDB

RefData DAORefData DAO’’ss

HibernateHibernate

JBossCacheJBossCache

SpringSpring
ComponentsComponents

EditorsEditors

12

1. RefData: JVM level JBossCache

File SystemFile System

RefData DBRefData DB
(Tb1, Tb2, Tb3)(Tb1, Tb2, Tb3)

RefData file 2RefData file 2

RefData file 1RefData file 1

RefData file 3RefData file 3

JVM 1JVM 1 JVM 2JVM 2

Application Code

Common Code

DAO 1, DAO 2

Cache (JBoss Cache)

Spring/Hibernate

Rows Used Tb1
A ~~~~~ ~~~~~~~
C ~~~~~ ~~~~~~~

Rows Used Tb3
D ~~~~~ ~~~~~~~

Application Code

Common Code

DAO 1, DAO 2

Cache (JBoss Cache)

Spring/Hibernate

Rows Used Tb2
B ~~~~~ ~~~~~~~



3

13

2. Replace Entity Beans

1. Replace Entity with Spring Hibernate/ store object 
hierarchy as serialized blob in DB

2. Add TreeCache as 2nd level cache to improve 
performance and manage memory usage

3. Convert blob to hierarchy of objects and tables
4. Setup Clustered replication between centers
5. Use TreeCache AOP to improve performance

14

3. Security

• Every User Interaction with the system requires an update to 
the security DAO for timeout purposes.

When we initialized a new security system using the solution 
below, there were only 25 connections in our connection pool.
With an average of 1300 concurrent users, this quickly became a 
bottleneck that brought the system crashing down.
The number of connections were increased and the system now 
performs adequately.

• When the data is mostly read only we see a significant 
improvement in performance and scalability.

• When the data has significant updating, going to the 
database becomes a bottle neck.

DBDB

Security DAOSecurity DAO

HibernateHibernate

JBossCacheJBossCache

SpringSpring
Application CordApplication Cord

15

3. Security

• Increasing the DB 
connection in the 
pool was short 
term.

• The best solution 
was to remove 
database updating 
every update

• Use in-memory 
replication to 
support failover 
and single sign on.

JVM 1JVM 1 JVM 2JVM 2

Application Code

Common Code

DAO 1, DAO 2

Cache (JBoss Cache)

Spring/Hibernate

User A
Sec Cred ~~~~~~~
Last Entry ~~~~~~

Application Code

Common Code

DAO 1, DAO 2

Cache (JBoss Cache)

Spring/Hibernate

User B
Sec Cred ~~~~~~~
Last Entry ~~~~~~

User A
Sec Cred ~~~~~~~
Last Entry ~~~~~~

User B
Sec Cred ~~~~~~~
Last Entry ~~~~~~

In Memory 
Replication

16

4. Injection of Stateful Objects

• Passing Map along with Session Key and Security 
Credentials around.

• Wrap our Application Coordinators (Stateful Session 
Beans) with an Aspect.

• This aspect identifies annotated objects in the Stateful 
Session Bean and inserts them as thread local 
variables before each method.

• These Objects are then injected into objects needing 
these variables where annotated. 

• An aspect is written to look for objects with the 
annotation and wraps the methods to take the 
variables off the thread and put them in the object.

• Once the application Cord method is complete then 
the aspect will make sure the object on the Bean is 
updated with any changes.

© JBoss Inc. 2006

Why Seam is more elegant

18

Seam Intro
@Name( "completedApplications" )
@Stateful
@Scope( ScopeType.CONVERSATION )
@Interceptors( SeamInterceptor.class )
public class ApplicationListBean implements 

ApplicationList
{

@In( create = true )
private ApplicationDao applicationDao;

@In( create = true )
private TagService tagService;

@Out(scope = ScopeType.CONVERSATION, 
required= false, value="application")

@DataModelSelection
private Application application;

@Begin
@Factory("applicationList")
public void initialize()
{

this.applicationList = 
applicationDao.getCompletedApplications();

}

• The @Name annotation 
identifies this object as a seam 
component and gives it the 
name “completedApplications”

• The @Scope annotation puts 
the Seam component in the 
Conversation Context.

• Seam’s Context are:
Stateless context 
Event (or request) context 
Page context 
Conversation context 
Session context 
Business process context 
Application context 



4

19

Seam Intro
@Name( "completedApplications" )
@Stateful
@Scope( ScopeType.CONVERSATION )
@Interceptors( SeamInterceptor.class )
public class ApplicationListBean implements 

ApplicationList
{

@In( create = true )
private ApplicationDao applicationDao;

@In( create = true )
private TagService tagService;

@Out(scope = ScopeType.CONVERSATION, 
required= false, value="application")

@DataModelSelection
private Application application;

@Begin
@Factory("applicationList")
public void initialize()
{

this.applicationList = 
applicationDao.getCompletedApplications();

}

• The @In annotation takes the 
object out of the bucket 
(context) and injects it.

• The @Out annotation puts the 
object into a bucket (context)

• The @Begin annotation begins 
a conversation. @End 
annotation will end a 
conversation.

• The @Factory annotation is the 
method used to initialize the 
object as it goes into the 
bucket (context)

20

Creating a Reservation

• Requirements are 
conversational.

• The Seam Context 
Model encourages 
thinking 
Conversationally.

• To Cache an object  
my developers don’t 
think about

eviction policies 
failover 
how and when to talk 
to the API
Whether it’s stored in 
the database
How updates happen

18. associate Car Class 
with Reservation

17. The user identifies car 
class.

16. The system lists car 
class matching criteria.

15. The user searches for 
car class.

14. The system associates 
the drop off location and 
time with the reservation.

13. The user identifies the 
drop off location and time.

12. The system lists 
locations matching criteria.

11. The user searches for 
drop off location.

10. The system associates 
pickup location and time 
with the reservation.

9. The user identifies 
pickup location and pickup 
time.

8. The system lists 
locations matching criteria

7. The user Searches for 
pickup location.

6. The system associates 
customer information with 
new reservation

5. The user identifies 
Customer.

4. List’s Customer’s 
matching criteria.

3. The user searches for a 
customer.

2.The system responds 
with a reservation Create 
interface.

1. The user indicates the 
creation of a reservation.

SystemActor

Taken from my article on Seam at http://www.devx.com/Java/Article/31327/0/page/1

21

Seam Highlights

• Takes the power of IOC 
and embraces Java EE 5.

• The page flow models 
provide tremendous 
power

• Programming that looks 
and feels like the 
requirements not the 
framework you are 
working in.

• Integrate JSF with EJB 
3.0

• One Kind of "Stuff"
• Declarative State 

Management

• Bijection
• Workspace Management
• Integrate Business Process 

as a First Class Construct
• Annotated POJOs 

Everywhere
• Testability as a Core 

Feature

© JBoss Inc. 2006

Take home Notes

Not Part of Presentation

23

Http Session

• In the first application of the 
architecture we put the state in http 
Session.

• Long term this didn’t work for us, all 
our front ends were not Struts or web 
based.

• As state grew the scalability of the 
solution was limited for clustering 
reasons.

24

Clustering Solutions

• JBoss TreeCache AOP 
can manage the size 
issue by replicating only 
the parts of the tree that 
are modified.

• Tree Cache is in memory 
replication. 

• I don’t have warm 
failover when switching 
between centers. 

• Warm failover between 
centers is a goal but not 
a current requirement. 
We have not solved that 
problem yet.



5

25

Http Session

• Struts Apps do make 
use of Http Session but 
for Front End Caching 
needs exclusively.

• To keep Http Session 
Clean we:

Use a wrapper for Http 
Session called 
SessionManager
Insert objects with an 
event associated.
The event  causes all 
objects scoped at that 
event or below to be 
cleaned from session.

• Keep in mind for Seam 
section

protected XDelegate 
getDelegate(HttpServletRequest request)
{

Object delegate =  
SessionManager.getAttribute(request,     

DELEGATE_KEY);
if ((delegate == null) || (!(delegate 

instanceof XDelegate)))
{

delegate = new XDelegate();
SessionManager.setAttribute(request, 

DELEGATE_KEY, delegate,
EventLevel.Screen);

}
return (XDelegate) delegate;

}

private static final EventLevel[] VALUES = { 
Request, Page, Screen, UseCase, Application, 
MajorFuctionality, SecurityEvent, LogOnOrOff };

26

Stateful Session Beans

• When we realized that Http Session would not work 
with state not related to front end work, we moved it 
to Stateful Session Beans.

• In our initial application server (not JBoss) we put a 
very large object tree in state, the app server would 
seize up with 3 or 4 concurrent users.

• Stateful Session Beans in clustered application servers 
either have the same problem as Http Session or it’s 
simply not supported as clusterable.

• Again JBoss helps solve this problem by providing 
Tree Cache AOP as the back end solution for 
clustering Stateful Session EJB’s which will update 
only the changed objects in a large object graph.

27

Stateful Session and Entity EJBs

• We decided to limit the size of data in 
Stateful Beans.

Created a Map object
Map contained handles or primary keys 
of Entity Beans
Map is passed into key methods behind 
the app cord layer.
The corresponding Components would 
use Map to find the cached data used for 
that Session.

28

Map and Entity Beans Problems

• Passing Map along with the SessionKey and 
the Security Object reduced The 
Cohesiveness of my methods.

• Map had no controls
Anyone could put anything in it, easily 
overwriting data put in by another component.
Could get cluttered and no way to clean it.
No way to track what was still needed and what 
was not.
A potential source of hard to track bugs.

• Couldn’t share information between Session 
Beans.

• Our first app server didn’t support clustered 
Stateful Session Beans.

29

Map and Entity Beans Problems

• Didn’t work for our Ref Data.
Built on singleton pattern 
As the number and size of the ref data grew the 
amount of memory being used grew
It was using valuable memory and often not 
being used or needed.

• Entity Beans quickly became our number 
one problem with performance and scaling.

The Model is poorly thought out. Calling load 
and store all the time caused all sorts of 
problems. 
Several developers coded around it, but for the 
most part, these routines were our biggest 
scalability problem.

30

4: Update loadhistory table

TimerTask & LoadHistory

Keeping the files in sync with the database

RefData filesRefData files

RefData.propertiesRefData.properties

1: Load changed file

3: Save changes to database tables

0: For each 

RefData File

2: Check loadhistory table } DB transaction

Web ContainerWeb Container

InitServletInitServlet

RefDataTimerTaskRefDataTimerTask

DBDB



6

31

Making a DB DAO (Hibernate)

public class LostItemTypeData 
{

private boolean defaultItem;
private String itemType;
private String itemCode;

public LostItemTypeData() {...};
public void setItemCode(String itemCode) { ... }
public void setItemType(String itemType) { ... }
public String getItemType() { ... }
public String getItemCode() { ... }
public boolean isDefaultItem() { ... }
public void setDefaultItem(boolean b) {

... }
}

SMALLIN
T

DEFAULTITE
M

ITEMTYPE

ITEMCODE

Column 
Name

VARCHA
R

NOT 
NULL 

VARCHA
R

PK

Nullabl
e?

Column
Type

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN“ "http://hibernate.sourceforge.net/hibernate-
mapping-3.0.dtd">
<hibernate-mapping >

<class name="com.hertz.common.integration.domain.impl.LostItemTypeData" schema="REFDB" >
<composite-id>

<key-property name="itemCode" />
</composite-id>
<property name="itemType" />
<property name="defaultItem"/>

</class>
</hibernate-mapping>

LostItemTypeData.hbm.xml – (Hibernate Mapping Document)

LOSTITEMTYPEDATA  (DB Table)

LostItemTypeData.java (POJO)

32

1. RefData: JVM level JBossCache

• Tree-like structure of the cache
• Eviction polices can apply to any branch of 

the tree.

InstanceA InstanceBInstanceCInstanceBInstanceA

Hibernate

SecurityrefData

OwningCity
Code

LostItem
Type

LRU Eviction PolicyLRU Eviction Policy
FIFO Eviction PolicyFIFO Eviction Policy


