
1

© JBoss Inc. 2006

JBossCache and JBoss Clustering
technologies: Providing the High
Availability solution in the Microsoft

Cluster Environment

Kurt Chou
Northrop Grumman
Army SEC (Software Engineer Center)

2

Overview Agenda

• DDS (Data Dissemination Services)
Why DDS needs High Availability feature

• Clustering Technologies overview
What is HA (High Availability), Load-balancing, Fail-
over, and Fault tolerance.

• DDS HA Design
Requirement
The different between J2EE Clustering and MS cluster

• DDS HA Implementation
How to use the JBossCache and JGroups to
implement DDS HA feature

• Demo
HA Simulation
JBossCache CacheLoader

• Q&A

3

DDS Overview

• SOAP Messaging Application
Advertise
Subscribe
Publish

• DDS nodes inter-communicate SOAP messages among DDS nodes
• Application

Hosted on JBOSS
Developed in Java
Open standards. SOAP, WS-Security etc.
Uses MS windows services or open source
• MS UDDI or JUDDI
• MS AD or OpenLDAP
• SQL Server 2005, Oracle 10g or eXist
Web Based management console
High Availability thru JBOSS clustering
Source provided for COI (Communities Of Interest) upon request

• Client
Built on OSGI (Open Services Gateway initiative) framework
Plugin architecture. Similar to Eclipse.

• Client Libraries
C# and Java libraries available

4

DDS Objective

• Ensuring data is visible, available, and usable when
and where it is needed to accelerate decision-making

• Tagging all data with metadata to enable users to
discover the data

• Posting all data to shared spaces, providing access to
all users except when limited by security or policy
regulations

• Advancing the DoD from defining interoperability
through point-to-point interfaces to enabling the
“many-to-many” exchanges typical of a net-centric
data environment

• Provide an information sharing mechanism that would
be useful for any COI (Communities Of Interest)

5

DDS Components - 1

• DDS Node. DDS nodes can be distributed throughout the Global
Information Grid (GIG). DDS nodes inter-communicate SOAP
messages among DDS nodes to support the services described
below:

Advertisement Propagation – Advertisements are propagated throughout the
DDS.
Subscription Propagation – DDS supports federated subscriptions by
propagating the subscription request to the “appropriate” DDS nodes.
Query Propagation – DDS supports federated queries by propagating the query
request to the “appropriate” DDS node.

• Publisher Node. Producers are publisher nodes in DDS. Publisher
nodes perform the following:

Advertise – A producer can make an information resource visible to the
enterprise by advertising it using a DoD Discovery Metadata Standard (DDMS)
description of the information resource.
Unadvertise – A producer can retract an advertisement, making the information
resource invisible to the enterprise.
Publish – A producer can post their information to a virtual shared space.
Retract an Item – A producer can retract an item that was previously published.
Request Status – A producer can request the state/status of a DDS node.
DDS will store data for archival purposes. This feature is not currently
implemented.

6

DDS Components - 2
• Subscriber Node. Consumers are subscriber nodes in DDS. Subscriber

nodes perform the following:
Subscribe – A consumer can submit an information subscription. Filter criteria
(e.g., geographic region, content filter, or DDMS qualifiers) can be associated with
an information request to filter or refine the information request. DDS will
asynchronously deliver information that meets the subscription request to the
consumer.
Unsubscribe – A consumer can retract an information subscription. This
removes the information subscription from DDS and stops delivery of this
information to the consumer.
Query – A consumer can submit an information query. Filter criteria (e.g.,
geographic region, content filter, or DDMS qualifiers) can be associated with an
information request to filter or refine the information request. DDS will
synchronously deliver information that meets the subscription request to the
consumer.
Request Status – A Subscriber can request the state/status of a DDS node.

• Other services/capabilities:
Subscription Consolidation – DDS optimizes information delivery by
consolidating “similar” subscription requests.
XML Data Agnostic – The DDS architecture is not tied to any particular COI data
model and can distribute information based on any COI’s data model.
DoD Discovery Metadata Specification (DDMS) – DDS uses the DDMS to
describe the meta-data (e.g., organization information, geographic coverage)
about an information source.
NCES (Net-Centric Enterprise Services) CES (Core Enterprise Services)
Integration – DDS nodes and clients utilize NCES services whenever possible

2

7

Technologies Overview -1

• Clustering Terminology
High availability (HA)
• Services are continuously operational for a desirably

long length of time. Availability can be measured
relative to "100% operational.” For Examples,
(99.999 %) is High-Availability, (99.9999 %) is
Very-High-Availability, and (99.99999 %) is Ultra-
Availability.

Load Balancing
• A way to distribute the amount of work between two

or more computers so that more work gets done in
the same amount of time.

Failover
• Process can continue when it is re-directed to a

“backup” node because the original one fails
Fault tolerance
• A service that guarantees strictly correct behavior

despite system (hardware/software) failure.

8

• High Availability vs. Fault Tolerance
HA can be Fault Tolerance, if reliability
rate is 100% guaranteed.

• Load Balancing != Fault Tolerance or
HA

Load balancing is used for scalability, not
for fault tolerance
Failover and state replication are used
for fault tolerance

Technologies Overview -2

9

DDS High Availability -1

•

Tomcat
Part of
JBOSS

Web App
used to

run servlets

Axis framework
Deployed as

a WAR file

DDS
Parse XML
document
using JAXB

Parse based on
DDS.XSD

Serializable objects

XML doc
XML doc

Java
objects

Nces_Security,
Security handler
uses JAAS and
JBOSS security

Extensions2

2 Tailored dependent on app server. Denotes which WAR modules require security

Session manager 1

1 Establishes a validated session

Dispatcher
Calls appropriate
java classes

Instrumentation 3

3 Expandable to provide instrumentation tools for validating schemas

• DDS Application Flow

10

DDS High Availability -2

• Requirements
Open Source, Open Standard
Run Web Application Server with J2EE
Compliance
Maintain Existing Software Architecture
Performance impact
Default Development Environment –
Microsoft Cluster
Transparent to Users

11

DDS High Availability -3

• Design Consideration
HA-JNDI vs. JBossCache
AOP (Aspect-Oriented Programming) vs. POJO
(Plain Old Java Object)
Core vs. Layer
MS Cluster HA vs. J2EE Clustering (Load
Balancing)
JBoss Sync vs. Async Replication

• Selection
JBossCache, POJO, Layer
JBoss Async Replication
MS Cluster HA
J2EE Clustering is Optional

12

DDS High Availability -4

• What is JBossCache?
An in-memory replicated transactional,
persistent, and fine-grained cache library
Ideal for state replication
• Transactional
• Persistent (passivation)
• Object-based fine-grained (field level)

replication (PojoCache)
Can be used directly by applications, not
just by high-level JBoss services
Uses JGroups as the messaging and
group membership management layer

3

13

DDS High Availability -5

• What is JGroups?
A reliable group messaging library
TCP or Reliable multicasting for intra-group
communications
• TCP is reliable, but needs a lot of bandwidth
• Reliable Multicasting – Class D, NACK (Negative

Acknowledge)

Reliable messaging
• Message sequence ordering
• Flow Control
• Negative Acknowledgement
• Fragmentation
Manage group membership
• Join
• Leave
• Shun
Highly configurable protocol stacks (e.g., UDP/TCP,
GMS, FC, FD, MERGE, etc)

14

DDS High Availability -6

• Sync vs. Async Replication
Synchronous replication
• Uses the same thread as the user’s request thread
• Response not completed until *all* servers

acknowledge session is replicated
• If user fails over, the replicated session data will be

there
• Significantly increases response times
• In most cases not really necessary
Asynchronous replication
• Replication occurs in a separate thread *but* the

message is still guaranteed to be delivered
• Faster application response times
• If user fails over within millisecond, replicated session

may be there yet
• Failover is not a likely event; is risk acceptable?

15

DDS High Availability -7

• J2EE Clustering Architecture

16

DDS High Availability -8

• Microsoft Cluster
A group of independent servers working
collectively via Microsoft Cluster Service (MSCS)
software, such as MS exchange and MS SQL
High availability, failover, scalability, and
manageability for resources and applications
Uninterrupted client access to applications and
server resources in the event of failures and
planned outages
Hardware configuration
• A sharing storage device (SAN or SCSI)
• At least two network cards

Internal private IP address
Virtual IP address for public

17

DDS HA Implementation -1

• MS Cluster – Development Environment

JBoss1
(ARMY-4)

JBoss2
(ARMY-1)

DDSCluster

192.168.100.41 192.168.100.42

Private Network

Virtual IP Address

148.34.157.50

Public Network
148.34.157.41

Public Network
148.34.157.42

Client1 Client2

Shared Storage FAS270

18

DDS HA Implementation -2

• Install JBoss AS 4.0.2 and Install
DDS.war under server/default folder.

Not under server/all folder, the JBoss
Clustering server

• Run on MS Cluster Environment
No MS Cluster Awareness API
Active/Standby

• TreeCacheListener – extended
AbstractTreeCacheListener

4

19

DDS HA Implementation -3

• Async Replication
Significantly faster vs. Sync replication

• CacheLoader
File Cache Loader
• Can be shared, no performance reduction
JDBC Cache Loader (SQL 2005)
• Can be shared, no performance reduction

• Encryption
sym_algorithm=“Blowfish”
Uses JBossCache-1.2.4 jgroups.jar and jboss-
cache.jar, avoid 100% CPU Usage.

• Runs on JBoss & JOnAS
May need to modify some *.xml files

20

DDS HA Implementation -4

public void nodeModify(Fqn fqn, boolean pre,
boolean isLocal)
• Add a new adv, subs, pubs jaxb objects

public static class Listener extends AbstractTreeCacheListener {
:
public void nodeModify(Fqn fqn, boolean pre, boolean isLocal)

if (isLocal == false && pre == false){ //not local and after
String fqstr = fqn.toString().trim();
if (fqstr.contains("Active") || fqstr.contains("Standbys")) {
JBCverifyState();
} else if (fqstr.contains("/DDS/Advertise")) {

int pos = fqstr.lastIndexOf("/");
String guidstr = fqstr.substring(pos+1);
if (guidstr != null) {

Fqn f= Fqn.fromString(CLUSTERING_Advertise +"/" + guidstr.trim());
Advertise adv = (Advertise) cache.get(f,"Adv");
if (adv != null) {

Response resp = (Response) cache.get(f,"Resp");
dds.CLadvertise(GUID.create(guidstr),adv,resp,0);

}
} else if (fqstr.contains("/SSDDS/Advertise")) {

:
}

21

DDS HA Implementation -5

public void nodeRemove(Fqn fqn, boolean
pre, boolean isLocal)
• Delete a jaxb object

public void nodeRemove(Fqn fqn, boolean pre, boolean isLocal) {
if (isLocal==false && pre==false){ //not local and after

String fqstr = fqn.toString().trim();
if (fqstr.contains("/DDS/Advertise")) { // remove

Advertise
int pos = fqstr.lastIndexOf("/");
String guidstr = fqstr.substring(pos+1);
if (guidstr != null) removeAdvertisement(guidstr);

} else if (fqstr.contains("/DDS/Subscribes")) {
int pos = fqstr.lastIndexOf("/");

:
:

}

22

DDS HA Implementation -6

public void viewChange(View view)
• Active/Standby

public void viewChange(View view) {
int size = 0;
Vector v =view.getMembers();
if (CacheType.equalsIgnoreCase("JBossCache"))

size = (v.size() + 1) / 2;
else

size = v.size();
if(State) { //Active

if (Standbys == 0) Standbys = size -1; // discount Active
else JBCverifyState();

} else { // swith to active
if (size <= 1) cache.remove(MSActiveFqn,"localHostname");
JBCverifyState();

}
}

23

Preliminary Performance

• Average creation time
Advertisement
• 100 MB (Local domain) – 155 Millisecond per

transaction
• 1 GB (Labs) – 16 Millisecond per transaction
Subscription
• 100 MB – 920 Millisecond per transaction
• 1 GB – 90 Millisecond per transaction
Published items
• 100 MB – 12 Millisecond per transaction
• 1 GB – 1 Millisecond per transaction

• No impact with CacheLoader features with file
persistence or Sql 2005 persistence, because the
JBoss uses the different thread

• Some impact with JGroups encryption

24

DDS Demo Environment

• Not using Microsoft Cluster Environment
• Uses Load-Balancing to manually simulate High

Availability case
• Two JBoss Instances: NodeA (Local Port 8080) and

NodeB (port 18080)

NodeA
Port 8080

NodeB
Port 18080

Client1 Client2

5

25

DDS Demo case 1

• HA Simulation
Client2 Creates Advertisement, Subscription, and
Publish on NodeB
Client1 Create a second Subscription on NodeA with
the same Adv as Client2 created
Both clients receive the published items
Shut down NodeB – no published items receiving by
both clients
• In the real MS Cluster, both clients continue receiving

published items, because they connect with the same
virtual IP address

Client1 publishes on NodeA with different type
published items, both clients receive published items
Start NodeB again
Both clients publish and receive with two different
type publish items
Others – Unadvertise, Unsubscribe, Retract published
item.

26

DDS Demo case 2

• CacheLoader
Shut down NodeA and NodeB
Clean up subscribe display area
Show the storage data on sharedcache
folder
Start NodeA and NodeB
Both clients receive data

27

Node A Node B

Client2

Client1

DDS

DDS

JBossCacheJBossCache

Send AddAdvertisement
SOAP Message Create a new Advertisement in

memory and create a
JBossCache node object.

Async replication
multicasts to the
group member

nodeModify() create a the
same Advertisement at Node
A DDS Instance

Get Advertisements

Advertisement Creation Flow

28

What, Where, When?

• For more information:
DDS POCs : Joao Brandao
(joao.brandao@us.army.mil) or Tiffany Reid
(tiffany.reid@us.army.mil)
http://www.jboss.com/products/jbossas
http://wiki.jobss.org/wiki/wiki.jsp?page=JBo
ssHA
http://www.jboss.com/products/jbosscahce
http://tomcat.apache.org

29

Q & A

• Kurt.chou@us.army.mil

