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Problem Scope

• Provide next generation network 
management solution for Navy 
platforms

• Provide a framework and 
environment where multiple vendors 
can deploy network management 
capabilities
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Problem Statement

• Multiple Equipment Types (e.g., 
Routers, Radios) requires an 
integrated network management 
solution

• Insertion of future technologies 
requires rapid update of network 
management capabilities

• Reduction of manning requires easy-
to-use solution

• Future integration with Enterprise 
management across Navy/DoD WAN
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Problem Solution

• eXtensible Communications Automation 
Framework and Environment (XCAFE): 
JBoss-based solution extended for network 
management

• Development Framework and Runtime 
Environment

• Developed plug-ins provide management: 
Device Management
Customizable Network Visualization
IP Data Flow, QoS Policy, and Bandwidth 
Management
Dynamic Reconfiguration

5

Sample Environment
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Overview

• Rapid client/server development 
framework 

• Hide the J2EE complexities already 
mitigated in the JBoss

• Plug-in style components that are 
JBoss deployable out of the box

• SNMP / Telnet Libraries provide base 
capabilities needed for management 
modules
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Development Environment: 
Plug-In Compiler

• Goal: Auto-generate requisite code base to 
allow developers to focus on business logic

• Plug-In Compiler generates base interface, 
client, server, and messaging stubs plus 
requisite EAR and JAR components

Base plug-in classes are designed for simplicity 
and extensibility

• Result: Generated client and server 
components of a full-featured J2EE 
application without worrying about 
integration or deployment details  
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Development Environment: 
Plug-In Compiler Architecture
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Development Environment: 
Deployment Descriptor

• Goal: Allow plug-in developers to specify 
plug-in metadata upon which the Plug-In 
Compiler can act.

• Plug-In Compiler operates on simple XML 
deployment descriptor:

Options are limited to only relevant data
Provides a way for a developer to define plug-in 
requirements, manage inter-plug-in 
dependencies, and create JMS topics and queues

• Result: Developer specification of plug-in 
attributes without requisite knowledge of 
JBoss, JMS, or J2EE
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Development Environment: 
Server Components

• Goal: Provide a well-defined place for plug-in developers 
to create their business logic and define what 
functionality should be made available to clients

• Server components:
Simple interface defines plug-in methods that should be 
made available to local and remote plug-in clients 
Main plug-in server component is developed as a 
Plain Old Java Object (POJO). Developers focus 
efforts here.
An MBean is generated and placed in the JNDI 
registry for each server component to provide access 
to the plug-in functionality within the JBoss VM.
An EJB is created for each server component to 
provide access to the plug-in functionality from 
outside the JBoss VM. 

• Result: Plug-in developers concentrate on their own 
functionality without the need to address framework or 
deployment issues.
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Development Environment: 
Server Architecture
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Development Environment: 
Client Components

• Goal: Provide a well-defined place for plug-
in developers to create plug-in UIs

• Client Components:
Common management interface
UI Framework and reusable UI components
Messaging infrastructure

• Result: Plug-in developers can create UIs 
geared towards their own plug-in without 
needing to address when, where, or how 
the UIs are created and displayed.
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Runtime Environment: 
Common Services

• Goal: Provide common support for services 
like SNMP, Telnet, and SOAP.

• Standard services made available for all 
plug-ins:

Common services easily accessible 
Access to these services is exported similar to 
other plug-ins 
Provides mechanism for coordinating access to 
system resources across disparate plug-ins

• Result: Simplified and coordinated use of 
basic services needed for network 
management application
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Runtime Environment: 
UI Management

• Goal: Provide a client architecture that automates 
tasks such as server communication and JMS 
connections as well as provides UI integration 
across multiple plug-ins and gives the end user 
flexibility in viewing and interacting with different 
XCAFE plug-ins.

• Developed UI management tool:
Handles details of plug-in deployment and 
overall presentation by interacting with plug-
ins via the common management interface.
Interacts with plug-ins through generic 
interfaces, so the tool can be updated, 
extended, or replaced to add additional 
functionality such as layout management.

• Result: An XCAFE client framework deployable 
locally or remotely as a Java application or applet 
that requires only a single, simple implementation 
at the plug-in level.
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Runtime Environment: 
UI Management

In this layout, clients 
are represented as 
internal panes. All of 
the code necessary to 
show a desktop view, a 
tile view, or a tabbed 
view is maintained at 
the framework level, so 
plug-in developers can 
focus on their own 
code without worrying 
about where or how 
the clients are shown.
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Runtime Environment: 
Other Features

• Access Control capability to provide single 
login mechanism and manage access to 
plug-ins and features

Single Sign On across HTML Portal pages and 
Java applets 

• Portal to navigate across all plug-ins from 
single location 

• Aggregates parameters, performance, and 
trends from multiple devices/managers into 
a common data repository

• Custom data logging and report generation

17

Results: Customizable Network 
Visualization
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Results: Customizable Network 
Visualization (Geospatial Display)
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Results: 
Drag and Drop IP Management
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Summary

• Navy’s next generation network 
management solution is being built on top 
of JBoss

• Multiple developers across multiple 
companies are developing components 
without having to understand intricacies of 
J2EE:

Reduced development time
Robust and reliable deployment

• Focus is on management requirements not 
software infrastructure


