
1

Extending Future Naval
Communications with JBoss

Dean Knickerbocker
SFA Inc
dknick@sfa.com
757-962-3960

Brett Carpenter
SFA Inc
bcarpenter@sfa.com
757-962-3945

2

Problem Scope

• Provide next generation network
management solution for Navy
platforms

• Provide a framework and
environment where multiple vendors
can deploy network management
capabilities

3

Problem Statement

• Multiple Equipment Types (e.g.,
Routers, Radios) requires an
integrated network management
solution

• Insertion of future technologies
requires rapid update of network
management capabilities

• Reduction of manning requires easy-
to-use solution

• Future integration with Enterprise
management across Navy/DoD WAN

4

Problem Solution

• eXtensible Communications Automation
Framework and Environment (XCAFE):
JBoss-based solution extended for network
management

• Development Framework and Runtime
Environment

• Developed plug-ins provide management:
Device Management
Customizable Network Visualization
IP Data Flow, QoS Policy, and Bandwidth
Management
Dynamic Reconfiguration

5

Sample Environment

Packet Marking
Flow Monitoring

Device

Secret Router JTRSADNS
Router

HAIPE

ADNS
Element
Manager

JTRS
Element
Manager

Enclave
Network
Manager

JBoss based Network Management Environment

SATCOM Terminal

SATCOM
Element
Manager

IP MODEM

Secret SwitchApplication

6

Overview

• Rapid client/server development
framework

• Hide the J2EE complexities already
mitigated in the JBoss

• Plug-in style components that are
JBoss deployable out of the box

• SNMP / Telnet Libraries provide base
capabilities needed for management
modules

2

7

Development Environment:
Plug-In Compiler

• Goal: Auto-generate requisite code base to
allow developers to focus on business logic

• Plug-In Compiler generates base interface,
client, server, and messaging stubs plus
requisite EAR and JAR components

Base plug-in classes are designed for simplicity
and extensibility

• Result: Generated client and server
components of a full-featured J2EE
application without worrying about
integration or deployment details

8

Development Environment:
Plug-In Compiler Architecture

Plug-In Generator
Plug-In Compiler

Business
Logic

Deployment
Descriptor

Server
Package

Messaging
Infrastructure

includes JMS
topics, RMI/EJB

J2EE
Infrastructure

includes EJB,
MBean

Client
Package

9

Development Environment:
Deployment Descriptor

• Goal: Allow plug-in developers to specify
plug-in metadata upon which the Plug-In
Compiler can act.

• Plug-In Compiler operates on simple XML
deployment descriptor:

Options are limited to only relevant data
Provides a way for a developer to define plug-in
requirements, manage inter-plug-in
dependencies, and create JMS topics and queues

• Result: Developer specification of plug-in
attributes without requisite knowledge of
JBoss, JMS, or J2EE

10

Development Environment:
Server Components

• Goal: Provide a well-defined place for plug-in developers
to create their business logic and define what
functionality should be made available to clients

• Server components:
Simple interface defines plug-in methods that should be
made available to local and remote plug-in clients
Main plug-in server component is developed as a
Plain Old Java Object (POJO). Developers focus
efforts here.
An MBean is generated and placed in the JNDI
registry for each server component to provide access
to the plug-in functionality within the JBoss VM.
An EJB is created for each server component to
provide access to the plug-in functionality from
outside the JBoss VM.

• Result: Plug-in developers concentrate on their own
functionality without the need to address framework or
deployment issues.

11

Development Environment:
Server Architecture

UI

JBOSS

EJB

MBean

POJO

Common
Services

JBoss
RMI

12

Development Environment:
Client Components

• Goal: Provide a well-defined place for plug-
in developers to create plug-in UIs

• Client Components:
Common management interface
UI Framework and reusable UI components
Messaging infrastructure

• Result: Plug-in developers can create UIs
geared towards their own plug-in without
needing to address when, where, or how
the UIs are created and displayed.

3

13

Runtime Environment:
Common Services

• Goal: Provide common support for services
like SNMP, Telnet, and SOAP.

• Standard services made available for all
plug-ins:

Common services easily accessible
Access to these services is exported similar to
other plug-ins
Provides mechanism for coordinating access to
system resources across disparate plug-ins

• Result: Simplified and coordinated use of
basic services needed for network
management application

14

Runtime Environment:
UI Management

• Goal: Provide a client architecture that automates
tasks such as server communication and JMS
connections as well as provides UI integration
across multiple plug-ins and gives the end user
flexibility in viewing and interacting with different
XCAFE plug-ins.

• Developed UI management tool:
Handles details of plug-in deployment and
overall presentation by interacting with plug-
ins via the common management interface.
Interacts with plug-ins through generic
interfaces, so the tool can be updated,
extended, or replaced to add additional
functionality such as layout management.

• Result: An XCAFE client framework deployable
locally or remotely as a Java application or applet
that requires only a single, simple implementation
at the plug-in level.

15

Runtime Environment:
UI Management

In this layout, clients
are represented as
internal panes. All of
the code necessary to
show a desktop view, a
tile view, or a tabbed
view is maintained at
the framework level, so
plug-in developers can
focus on their own
code without worrying
about where or how
the clients are shown.

16

Runtime Environment:
Other Features

• Access Control capability to provide single
login mechanism and manage access to
plug-ins and features

Single Sign On across HTML Portal pages and
Java applets

• Portal to navigate across all plug-ins from
single location

• Aggregates parameters, performance, and
trends from multiple devices/managers into
a common data repository

• Custom data logging and report generation

17

Results: Customizable Network
Visualization

18

Results: Customizable Network
Visualization (Geospatial Display)

4

19

Results:
Drag and Drop IP Management

20

Summary

• Navy’s next generation network
management solution is being built on top
of JBoss

• Multiple developers across multiple
companies are developing components
without having to understand intricacies of
J2EE:

Reduced development time
Robust and reliable deployment

• Focus is on management requirements not
software infrastructure

