JBoss | World

2006
AS VEG
LASI=SAS

PojoCache: Cluster Your POJOs With
Annotations

Ben Wang, Ph. D., Lead PojoCache

&
Brian Stansberry, Lead AS Clustering
JBoss, Inc.

What is JBoss Cache?

= A replicated, transactional, and fine-grained
cache system
= Two modules
v TreeCache — plain cache
v PojoCache — POJO (plain old Java object) cache
= TreeCache

v Stores and replicates values from a tree
structure (hence the name)

v Each value is associated with a path and key
= PojoCache (formerly known as

TreeCacheAop)

v Object-oriented fine-grained cache

3

Topic

< What is JBoss Cache?

* Problems solved by PojoCache
* PojoCache annotations

e Usage in JEE

e Performance numbers

e Conclusion

Problems Solved by PojoCache

Problems Solved by PojoCache

= Replication and persistence don’t
preserve object relationships
v Object sharing (or multiple references)

- Husband (joe) and wife (mary) share the
same address

v Circular reference
- Father and son relationship
v Multiple keys
- Item belongs to multiple category keys

e Automatic fine-grained replication by
operating on POJO directly
v' Transparency
v Performance

Person joe = (Person) cache.getObject(fqn, key);
joe.setAge(51); // Will trigger replication automatically
II'No need to do another put(fqn, key, joe) to trigger replication!!

Mary Mary

Object Splitting During Replication

Joe
Ry v v

e

Use of Annotation by JBoss Aop
package org.jboss.cache.aop.annotation;
Il Annotation marker interface @org.jboss.cache.aop. PojoC
public @interface PojoCacheable {} public class Person {
String name;
int age;
Address addr;
int visit;
<aop>
<prepare expr="field(*
i org.jboss.cache.aop ion.PojoC: >4 >
<laop>
JBoss) Workd

Instrumenting Classes

e PojoCache utilizes JBoss AOP’s
Dynamic AOP feature

= Classes that will be fine grain
replicated must be instrumented
(bytecode enhancement)
= Enhancement can be done at
v Compile time
- Use JBoss AOP’s aopc Ant task
v Load time
- Need special bootstrap classloader
- See Chapter 10 of JBoss AOP Ref Guide

PojoCache Annotation

= Class level
v @PojoCacheable

- Declare that this POJO will be instrumented by
the underlying JBoss Aop framework

v @InstanceOfPojoCacheable
- Same as above except all sub-classes will be
“instrumented” as well.
= Field level
v @Serializable
- Will treat this field as Serializable even it is
PojoCacheable.
v @Transient
- Will treat field like modifier “transient”. No field
replication takes place.

B x _:Il‘.»\-]
JEE Uses of PojoCache
= HttpSession replication
= EJB3 Stateful Session Beans

JBos ..\:j‘“,\. dd

Standalone PojoCache Code Snippet

1l Configuring the cache via xml

PojoCache cache = new PojoCache();

PropertyConfigurator configurator = new PropertyConfigurator();
i or.confi “META-INF/replS ivee.xml”);

cache.start();

/I Putting an object under cache management
Person joe = new Person(“Joe Black”, 51);
cache.putObject(“/person/joe”, joe);

Il Fine grained replication here. Only the age field is replicated!
joe.setAge(61);

/I Remove the object from cache management
cache.removeObject(“/person/joe”);

cache.stop();

A\

10 La3 EG 2

HttpSession Replication

* Replication Granularity
v How muchf)gets replicated when session

is changed-

- SESSION - entire session object
ATTRIBUTE - only the changed attributes
FIELD - individual fields within changed
attributes
v' Uses PojoCache under the covers
v" New in JBoss AS 4.0.4

Configuration

= Replication granularity is configured
per webapp in the jboss-web.xml
deployment descriptor

<|boss -web>
<rspl|canon config>

FIELD</replication-granularity>
<Ireplication-config>
</jboss-web>

Annotation of Classes

@org.jboss.cache.aop.annotation.InstanceOfPojoCacheable
public class Person {

String name;

int age;

@org.jboss.cache.aop.annotation.PojoCacheable
public class Address {

String street, city, state;

int zip;

Configuration

= The cache used for session replication
is configured in the tc5-cluster.sar/META-
INF/jboss-service.xml file

v' Make sure “UseMarshalling” and
“InactiveOnStartup” are “true”

<mbean code="org.jboss.cache.aop.TreeCacheAop”
name="“jboss.cache:service=TomcatClusteringCache™>

<attribute name="UseMarshalling”>true</attribute>
<attribute name="InactiveOnStartup”>true</attribute>

</mbean>

EJB3 Annotations

= Basic EJB3 SFSB Annotations
v @Remote
v @Stateful
v @Remove
v Lifecycle callbacks

e Clustering Annotations

Servlet Use Example

Object sharing

=

Person user = (Person) session.getAttribute(“user”);
user.setName(“joe”); // Only this field gets replicated.

Person spouse = (Person) session.getAttribute(“spouse”);
spouse.setAge(41); // Only this field gets replicated.

Address addr = new Address(“San Jose”, 95123);
user.setAddress(addr);

user.setAddress(addr); // addr only gets replicated once; shared reference is maintained

Il By default, all field changes are replicated in a batch at the end of the request

16 La3 EG 2

Clustering Annotations

@Clustered

v Specifies you want load balancing and
failover for your SFSB

v Used whether or not you want fine-
grained replication

v Optional attributes
- “partition” — identity of the cluster
- “loadBalancePolicy”
e Fine-grained replication
v @PojoCacheable
v @Transient
v @Serializable

Clustering Annotations

import org.jboss.annotation.ejb.Clustered;
import org.jboss.cache.aop.annotation.PojoCacheable;
import org.jboss.ha.framework.interfaces.*;

@Stateful
@Clustered(partition="ShoppingPartition”
loadBalancePolicy=FirstAvailableldenticalAllProxies.class)
@PojoCacheable
public class ShoppingCartBean implements ShoppingCart {
Map items;
II'No replication of processor field
@Transient CreditCardProcessor processor;

}
N

JBos: :In»\. &l

PojoCache performance characteristics

= putObject to attach the POJO to cache is
expensive because of initial field mapping

= Subsequent field update/replication is very
efficient, since it usually involves only
replicating a primitive type
v Successive field updates can also be batched as

well

= Performance characteristics of PojoCache
therefore depend on the POJO lifetime, i.e.
how often a new POJO is attached to the
cache system

Performance Numbers

= PojoCache
v PojoCache characteristics
v' Comparison to TreeCache
e Http session replication

v Effect of different replication
granularities

JBos: :In»\. &l

PojoCache vs. TreeCache

JBos: :In»\. &l

PojoCache Performance

Test setup

* Hardware

v’ 4 node cluster

v Intel® Pentium® 4 3.0GHz CPU x 2
v 4GB memory

v 1Gbps Network

e Software
v JBoss Cache 1.4.0.Beta, JGroups 2.2.9.1
v JDK1.5.0_05, heap size is 512MB
v 800 clients total, no sleep between requests

e TreeCache operation has a constant
cost, i.e. each put(fgn, key, pojo)
performs the same if pojo size is
equal.

* PojoCache performance depends on
the POJO lifetime, i.e. how often is
putObject called to attach a new
POJO

v Note that putObject with the same POJO
is almost a no-op

JBoss :Iv.»\- L]
22 \an yigAE

Test Load Patterns

e Stores a Student POJO with Address
and list of Courses

@PojoCacheable
public class Student {
String name;

int age;
Address addr;
List courses; /

}

=\

e change the list size to study repl message size

@PojoCacheable

public class Course {
String name;
String instructor;

Ui

Test Load Patterns

= TreeCache load pattern
v cache.put(fgn, key, pojo)
- Constant cost each time
= PojoCache load pattern
v Mix of:
- cache.putObject(fgn, pojo)
v' More expensive POJO attachment

- pojo.getCourses().get(0).setinstructor(“Be
n Wang”)
v Efficient fine-grained replication

Test Load Patterns

.5,::1 Work

* PojoCache load pattern

v Has 3 different mixes: 100-0, 10-90, 5-
95
- To study effects of performance wrt pojo
lifetime
- E.g., 10-90 means 10% putObject and 90%
field update, etc.

JBoss) Workd

Message size vs. Course list

v Uses 3 different course list sizes

PojoCache Throughput

Course list size Replication size
(bytes)

10 1.2K

100 8.4K

200 16.3K

10000
9000
8000

Iy
& 7000
g 6000 * ~#-TreeCache
3 5000 PojoCache 100-0
£ —4- PojoCache 10-90|
g 4000 PojoCache 5-95
;:'- 3000

2000 .

1000 —

0 T
10 100 200

Course list size

28

CPU Utilization

80
70
60 -
< 50 = —#-TreeCache
< PojoCache 100-Q
D 40 y
6 ~4- PojoCache 10-9Q
30 PojoCache 5-95
20
10
0 T
10 100 200

Course list size

HttpSession Replication

* How much %ets replicated when
session Is change ?
v SESSION - entire session object
v ATTRIBUTE - only the changed attributes
v FIELD - individual fields within changed
attributes
Uses PojoCache under the covers

* Tradeoff
v Size of payload vs. # of change
instructions
v A change instruction has overhead
Changes are batched; 1 replication
message per request
a.,_.\:]‘“,_;‘._.

30

Effect of Replication Granularity

Test setup

e Hardware
v Intel® Pentium® 4 3.0GHz CPU x 2
v 4GB memory
v 1Gbps Network

e Software
v JBoss AS 4.0.4.GA, JBoss Cache 1.4.0.Beta,
JGroups 2.2.9.1
v JDK1.5.0_05, heap size is 756MB
v 4 servers in the cluster
v 200 clients, no sleep between requests
v Sticky sessions

Effect of Replication Granularity

Message size

Granularity Replication size

SESSION ~ 16Kb

ATTRIBUTE ~ 1.6Kb * number of
attributes changed

FIELD ~ 100 bytes * number of
attributes changed

.
.Bv'r--sJJ Workd
33 La3 viGag

Test design

« Change a varying number of attributes per request,
see how different replication granularities perform

« Session
v Session has 10 attributes
v Each attribute is a List of 16 elements
v List element is a simple JavaBean with a 100 byte
“name” (String) and an “age” (int)
v Attribute change == change the name of 1 bean in
the list

32

Effect of Replication Granularity

Conclusion

= PojoCache
v Has instantaneous clustering/persistence
for POJOs
v Fine-grained operation
- Also can be batched
v Works with object graph even when
distributed
= Performance

v Fine-grained replication can increase
your performance throughput when your
object size is significant

JBoss) Workd

35 w2 yiGAy

1 2 3 4 5 6 7 8 9 10
Attribute changes per request

.
.Bv'r--sJJ Workd
34 La3 viGag

Additional info

= Main Wiki Page:
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCache

= JBoss Cache Home Page:
http://labs.jboss.com/portal/index.html?ctrl:id=page.def
ault.info&project=jbosscache (JBoss.org landing page)

= OnJava article:
http://www.onjava.com/pub/a/onjava/2005/11/09/jboss
-pojo-cache.html

= A recent Wiki:
http://wiki.jboss.org/wiki/Wiki.jsp?page=WhatShouldWe
ExpectOfThePojoCachePerformance

.
.Bv'r--sJJ Workd
36 \an yigAg

