
1

© JBoss Inc. 2006

JBoss Cache In-depth
Past, Present, and Future

Manik Surtani
Lead, JBoss Cache

JBoss Inc.

2

Agenda

• History

• Current architecture and API

• Aspects
Local vs. replicated cache, buddy replication

Locking - Optimistic vs. Pessimistic

Transactional support

Eviction and cache loading

• Pojo Cache

• The future
Grids

API-less model

3

Humble beginnings

• Started as a demonstration of replicating a
HashMap using JGroups.

• Added aspects including
• transaction support
• persistence and passivation
• concurrency with both optimistic and pessimistic

locking
• partial replication
• the list goes on

• Used in a number of open source and
commercial products as a mechanism for
replicating state as well as a local data cache.

4

What is JBoss Cache ?

• Two implementations
TreeCache
• Stores and replicates values in a tree structure
• Each value is associated with a path and key

PojoCache (fka TreeCacheAop)
• Manages caching, replication and persistence of Plain

Old Java Objects (Pojos)
• Object Oriented cache

• Standalone or embeddable (MBean)
PojoCache requires JBossAOP libraries
Used in many different containers including
• JBoss AS, Tomcat
• BEA WebLogic, IBM WebSphere
• and others

Used in many standalone environments to cluster
custom components

5

Organising your data

a

b dc

e gf

h

/a/d/g

6

API

• put(Fqn path, Object key, Object value)
Adds a key and value to a given node
If the node doesn't exist, it will be created

• put(Fqn path, Map data)
Adds a new node to the tree and sets its data. If
the node already has data, then the new data will
overwrite existing data

• Object get(Fqn path, Object key)
Finds a node given its name and returns the
value associated with a given key in its data map

2

7

API

• remove(Fqn path)
Removes a node and its children from the
tree

• remove(Fqn path, Object key)
Removes key from the node's data map

8

Sample code

try
{

tx = (UserTransaction) new
InitialContext().lookup("UserTransaction");

TreeCache c = new TreeCache("test", null, 10000);
c.setMode(TreeCache.REPL_ASYNC);
c.startService();
tx.begin();
c.put("/a/b/c", "age", new Integer(29));
c.put("/a/b/c", "age", new Integer(30));
tx.commit();
assertEquals(new Integer(30), c.get("/a/b/c", "age"));

}
catch(Throwable t)
{

if(tx != null) tx.rollback();
}

9

Architecture
a

b dc

e gf

h

Call

Based on interceptors
Locking
Replication
Cache loading/cache
storing

• Interceptor chain built at
startup

Based on config of cache

• Add your own interceptors
Metrics, hit/miss ratio
Auditing

10

Aspects of JBoss Cache

• Local or replicated

• Locking

• Eviction

• Cache loading

• Transactions

• Monitoring

11

Local versus replicated

• LOCAL
Modifications are not replicated

• REPL_ASYNC
Asynchronous replication, on a separate thread

• REPL_SYNC
Synchronous replication, caller blocks until modifications
have been applied at every cache in the cluster

• INVALIDATE_ASYNC
Invalidation message sent to remote caches, so remote
caches evict the node invalidated. Asynchronous.

• INVALIDATE_SYNC
As above, except the messages are synchronous.

12

Replication with transactions

• If transaction is present, replication occurs at
transaction commit time

Multiple changes can be made to the cache within a
TX
Single replication message is sent as part of the
commit handling
If there is a rollback, we have zero replication cost

• Changes without a transaction are replicated
immediately

If there are 1000 changes, there will be 1000
replication messages
Compare to 1000 changes in a TX, 1 replication
message

3

13

Replication vs.Invalidation

• Replication may incur a heavy network
overhead penalty since all the data in a node is
replicated

• Invalidation incurs a very small network
penalty since no data is transmitted with the
invalidation message

Only makes sense if the cache does not store the
only copy of the data in the system
E.g., if the data is backed up via a shared cache
loader
Or the cache is used as a forward-cache, with data
originating from another system such as a database

14

Buddy Replication

• Instead of replicating everything to
everyone, we replicate only to N backups

• Example
10 caches, every cache has, on average, 100MB
data
• Default replication: every cache has 1GB of data
• BR (where N=1): every cache has 200MB of data

• BR allows us to scale, with memory
requirements and network traffic no longer a
function of cluster size

• Enabled via simple configuration setting
• New in JBoss Cache 1.4.0

15

Locking

• Concurrent access is guarded

• Optimistic locking
Workspaces and data versioning, commit fails if
data modified by other TX

• Pessimistic locking
Locks at node level

Isolation levels define locking policy

• NONE

• READ_UNCOMMITTED

• READ_COMMITTED

• REPEATABLE_READ

• SERIALIZABLE
16

Eviction

• Elements are evicted from cache
Keeps cache size bounded

• Time- or size-based
• Eviction policy pluggable

Implement your own
• Eviction policies apply to a cache

region
/myshop: evict after 10 minutes inactivity
/myshop/products/pricelist: no eviction
/myshop/shoppingCarts: evict after 30
mins inactivity

17

Cache loaders

• Opposite of eviction
• Also pluggable
• Loads elements from store into cache
• Stores elements from cache into store

On put(), or on eviction (passivation/activation)

• Implementations
FileCacheLoader: serializes data to file system
JDBCCacheLoader: DB (Oracle, MySql, MS-SQL
server, PostgreSQL tested)
BdbjeCacheLoader: Berkeley DB

18

Cache loaders

• Hierarchical CacheLoader
Uses TCP/JGroups/RMI to access remote
cache

• ClusteredCacheLoader
Uses lookup across cluster to find
elements of data

• ChainingCacheLoader
Allows for CacheLoader chaining
ClusteredCacheLoader, followed by
RemoteCacheLoader, followed by
JDBCCacheLoader

4

19

Example of hierarchical setup

JDBCCacheLoader

DB

Cluster-CL Remote-CL Cluster-CL Remote-CL Cluster-CL Remote-CL

20

Transactions

• Transaction support pluggable
Just let JBoss Cache know how to find your
TransactionManager
JTA interfaces

• If not defined, JBoss Cache runs without TXs
• Implementations

JBossTransactionManagerLookup
GenericTransactionManagerLookup (Sun, BEA,
IBM, etc.)
Standalone (DummyTransactionManagerLookup)

Custom implementations

21

Configuration

• Via XML file
• Same syntax as for JBoss MBeans

But also works standalone, or in other
application servers and containers.

• Programmatic access
Setters

22

What is PojoCache ?
• Extends TreeCache. Formerly known as

TreeCacheAop
• Manages Pojos rather than key/value pairs
• Pojos are inserted to the cache, cache

keeps track of modifications to Pojos
replicates modifications across cluster (possibly
atomically with TXs)
persists modifications to DB (via CacheLoader, if
configured), possibly also at TX commit

• We use JBossAOP to instrument Pojos and
keep track of state changes

23

API
• putObject(Fqn path, Object pojo)

Adds a Pojo, manages it from now on

All modifications are replicated/persisted, with
ACIDity if TXs are used

• Object getObject(Fqn path)

• void removeObject(Fqn path)

Removes an object, PojoCache doesn‘t manage it
anymore

All modifications are written directly into the Pojo, no
replication/persistence

• After adding Pojos to cache, Pojos are accessed
directly

24

putObject() Mapping

Person p
(key=/husband)

name: „Joe“

addr

hobbies

city: „ San Jose“

zip: 95123

/

husband

addr

city

zip 95123

San Jose
hobbies

1 20

wife

Person p
(key=/wife)

name: „Mary“

addr

hobbies

name Joe name Mary

5

25

How are changes to Pojos detected?

• Tag Pojos with a marker annotation
• Byte code for tagged Pojos are instrumented,

either:
At compile-time: aopc
At runtime: loader / java.lang.instrument

• Instrumentation adds an interceptor stack
PojoCache adds a CacheInterceptor
All access to Pojo is through the CacheInterceptor
CacheInterceptor redirects reads/writes to Pojos to
PojoCache
Modifications are written back to Pojo at TX commit

26

Instrumentation of Pojos

• Needed to detect state changes
Online (runtime) or offline (compile-time using aopc)
putObject() adds interceptor to your Pojo‘s stack
removeObject() removes it again

• JDK 5: use of Java annotations
• JDK 1.4: use of javadoc and annotation compiler

@AopMarker // JDK5.0 annotation

public class Person

{

}

27

Sample code
PojoCache cache = new PojoCache();

PropertyConfigurator config = new PropertyConfigurator();

config.configure(cache, “META-INF/replySync-service.xml”);

cache.startService(); // kick start TreeCacheAop

Person joe = new Person(“Joe Black”, 30); // Just a Pojo

cache.putObject(“/person/joe”, joe); // ask cache to manage joe

joe.setAge(40); // set to cache (will replicate as well)

Person p = cache.getObject(“/person/joe”); // An alias for joe

p.getAge(); // Should be 40

cache.removeObject(“/person/joe”); // detach from cache

joe.setAge(50); // not replicated, not persisted (not managed)

28

The future

• Grid computing
Partnering with research projects on large data
grids
Making use of buddy replication
POCs of distributed data stores
Feeds back into highly scalable and performant
clustering capabilities of JBoss Cache
Will enable JBoss Cache to efficiently scale to
clusters of over a hundred nodes

29

The future

• API-less programming model
Make better use of AOP and Java annotations
to provide transparent caching
• With replication, persistence, concurrency,

transactions
Based on PojoCache
Completely transparent
• Absolutely no compile-time dependencies in user

code, except on a pojocache-annotations library.
• No explicit construction of a PojoCache and explicit

attachment of Pojos
• Use of annotations to mark Pojos as cached,

replicated, etc.
• No complex XML configuration or mappings

30

Links

• http://labs.jboss.org/jbosscache

• http://www.jboss.com/products/jboss
cache

6

31

Questions

