
1

© JBoss Inc. 2006

JBoss Seam Performance and
Scalability on Dell PowerEdge 1855
Blade Servers

Dave Jaffe, PhD, Dell Inc.
Michael Yuan, PhD, JBoss / RedHat

June 14th, 2006

2

About us

• Dave Jaffe
Works for Dell Scalable Enterprise
Technology Center
Author of 30+ articles including 20 Dell
Power Solutions articles
Creator of the DVD Store test application

• Michael Yuan
Works for JBoss
Author of 5 books and 50+ articles

3

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

Testing done in June 2006

4

What is Seam?

• An annotation framework to tie
together EJB3, JSF, jBPM, AJAX etc.

• Advanced state management facilities
Finely grained stateful contexts beyond
HTTP session
Multiple concurrent browser windows /
tabs support
Long running business processes with
multiple users

• POJO-based lightweight framework
Visit the JBoss booth and attend tomorrow’s Seam lab for more!

5

Productivity and Performance

Seam makes it very easy for developers to write
advanced web applications with powerful state
management facilities, business process
integration, AJAX UI …

However, is there a trade-off for the vastly improved
developer productivity? Can Seam applications
handle as high a load as other Java EE
applications?

6

Seam performance implications

• Pros
Extended persistence context could be much
faster than database transactions
Static annotation processing is often faster
than XML parsing
Eliminate HTTP session-based memory leaks

• Cons
Runtime annotation processing
Runtime dependency bi-jection
Multiple interceptors

The cons are mostly for runtime business logic

2

7

We need to answer …

• Does Seam business logic
components perform well enough for
most enterprise applications on state
of art hardware?

• How to tune Seam web applications?
• Do Seam web applications scale in a

cluster environment?

Proven use cases at low load: We run EJB3/Seam applications on
our own production servers, including demo.jboss.com, jboss.org,
and our internal support portal. Those servers handle at least several
thousand unique visitors every day.

8

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

Testing done in June 2006

9

Dell Scalable Enterprise Technology Center Lab

• 10 PowerEdge 1855 Blade Servers
• Gigabit Ethernet
• KVM switch for ease of management

10

Dell PowerEdge 1855 Blade Server

• Dual Xeon EM64T 64 bit
processors

• Each is dual core
• Hyper-threading

available (8 logical CPUs
in one blade)

• 2.8 GHz
• 8GB RAM
• 73 GB mirrored disks
• 10 blades in a 7U rack
• Easy wiring
• Low power consumption

11

Software stack

• SUSE Linux Enterprise Server 9 SP3 for
X86_64

• 64-bit JDK 5.0 from SUN
• Servers

JBoss AS 4.0.4 GA
Seam 1.0.0 RC3
Apache 2.0 with Mod_JK 1.2.15 load balancer

• Clients
Grinder 3.0
Home-brew C# driver for sanity check

12

Grinder 3.0

• Fully featured web stress testing suite
• Completely open source
• Fully programmable testing scripts in Jython
• 30,000 testing threads on a single Dell PE1855 Blade
• Ramp up the load / threads in any way you want
• Rich statistics reporting
• Testing agents on multiple machines
• Visual console for consolidated statistics

3

13

Jython script

• Supports all common HTTP features (proxy,
authentication, cookies etc.)

• Make any request (or group of requests) a test and
gather statistics on it

• Constructs new requests programmatically based on
HTML returned from previous requests

• Can be auto-recorded from a browser session
• Arbitrary or random “think time” between requests
• Detailed logging and statistics reporting

14

An example script recorded by Grinder

15

Customize the script

16

Test application

• Mimics a shopping cart
• Web tier only -- no database
• Simple workflow

Start a shopping cart
Add 10 products one by one into the cart
(about 10KB data by default)
Eliminate the shopping cart content and
start over again

17

The test application in action

1. Start the session. The product “size” is
used to control the size of the stateful cart.

2. Add 10 products to the cart.

3. Clear all contents from the cart and
start again.

18

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

4

19

Control variables and measurements

• Concurrent # of users (threads in the
driver program)

• Average think time
• Web Transactions per second (TPS)
• Response time distribution
• CPU and resource utilization

20

Stress testing curve

Base line

0

50

100

150

200

250

300

350

400

300 400 500 600 700 800 900 1000 1100 1200
Concurrent Users

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
es

po
ns

e
tim

e
>

1
se

c

Transactions / sec Percentage of long responses

21

Stage 1: The server is under-utilized

• Server resources (e.g., CPU, memory, I/O)
are utilized below 85% capability

• Server can throw in more resources to
handle more requests

• The response time is very small (<50ms)
• TPS scales up with the load the users can

generate
TPS ~ (Number of Threads) / (Average think
time)

22

Stage 2: The server is fully loaded

• Server resources usage reaches 85% to
99%

• Sustainable TPS reaches a peak
• This is the place to be for most data center

operators
• After that, the server must increase

response time to slow down the users
TPS ~ (Number of Threads) / (Average think
time + average response time)
The response time must rapidly increase to the
level of think time

23

Stage 3: The server halts

• Server resources are utilized at constant
99%

• The response time become untolerable to
users and the application “freezes”

Need long response time comparable to “think
time” to slow down the users
With occasional GC, some requests could take
more than 10s to respond
As the server becomes congested, it handles
less transactions / sec and hence requires
even longer response time

• Lots of connection timeouts and web
server (500) errors

24

Think time vs. response time is crucial

• Think time >> normal response time is
needed to reach the peak TPS

Otherwise, the response time starts to slow
down the driver long before the peak
Short think time causes built-in relationship
between load, TPS and response time, which
interferes with the relationship we want to study

• Think time gives us more control over how
to ramp up the load

• We choose a random think time between 0s
to 5s

• Think time helps us scale test results to
real world scenarios

5

25

From test to real users

• Real users may require much more think
time than 5s

• In theory, if the real user needs up to 50s
think time, a real world server can handle
10x concurrent users than the test threads

• In reality, the scale from test threads to
real users might not be linear with think
time:

More users require more resources (e.g., HTTP
sessions, sockets, and thread switching)

26

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

27

JVM options

• Allocate a lot of RAM for the JVM
We allocate 6GB on each of our blades (we use
the 64bit JVM here!)
Memory is not a bottleneck in all our tests
Edit the bin/run.conf file and use JVM startup
option: -Xmx 6g -Xms 6g

• Must use the -server option (default)
• Choose the parallel GC strategy to avoid

long pause
-XX:+UseParallelGC -XX:+UserParallelOldGC

28

Problems with large RAM

• The GC takes much longer to clean up a
large heap.

Seam generates a lot of objects for the GC since
it does not cache in HTTP session (and hence
avoid memory leak)

• Solutions
Run multiple JVMs on the same blade
• Bind JBoss instances to specific port ranges
• Bind JBoss instances to different IP
Run multiple virtual machines on the same blade
(each VM has its own IP address)
External load balancer is needed

29

Turn off excessive logging

• Seam logs a lot of debug info by
default

• Extensive disk I/O degrades server
performance at high load

• Increase the logging level for the
org.jboss packages to INFO in
server/default/conf/log4j.xml

30

Client vs Server side state saving

• Client state saving uses more CPU /
network

Serialization of state objects is slow
About 20kB of extra data in each page

• Server state saving uses more RAM
More difficult to cluster
Our servers are not limited by RAM

6

31

Configure state saving method

In web.xml file:

Server side state saving: Client side state saving:

32

Tests Results

Server vs Client side state saving

0

50

100

150

200

250

300

350

400

300 400 500 600 700 800 900 1000 1100 1200
Concurrent Users

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
es

po
ns

e
tim

e
>

1
se

c

Server Client Server Client

33

Call-by-value vs call-by-ref

• Seam makes a lot of calls from the web module
(war) to the business module (ejb3 jar) via
dynamic proxies

• Call-by-value
Important if you have multiple versions of the same
class on the same server
This is the Java EE spec-complaint behavior
Requires CPU intensive serialization

• Call-by-reference
Designed to be faster than call-by-value for each call
Can give you odd problems if you port another Java
EE app to JBoss
Not a problem for most Seam apps

34

Specify call semantics

35

Tests Results

Call by Value vs. Call by Reference

0

50

100

150

200

250

300

350

400

300 400 500 600 700 800 900 1000 1100 1200
Concurrent Users

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
es

po
ns

e
tim

e
>

1s

Call by reference Call by value Call by reference Call by value

36

Tomcat threads

• JBoss AS processes each web request in a separate
Tomcat thread

• Tomcat maintains a pool of threads to avoid thread
creation / destruction overhead

Too few: Cannot utilize the full CPU due to insufficient
parallelization (CPU runs < 30% at peak throughput)
Too many: The thread context switching adds too much
CPU overhead
The more CPU you have, the more threads you need (we
have 8 logical CPUs)

• Configured in deploy/jbossweb-tomcat55.sar/server.xml
file

In the HTTP Connector
maxThreads specifies the size of thread pool
accept specifies how many requests are allowed in queue

7

37

Too few threads

0

50

100

150

200

250

500 1000

Concurrent users

8 Threads 32 Threads 128 Threads 256 Threads

38

Too many threads

0

50

100

150

200

250

300

350

400

300 400 500 600 700 800 900 1000 1100 1200

Concurrent Users

512 Threads 256 Threads

256 threads is the optimal number we choose

39

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

40

No state replication

• Use sticky session in mod_jk
Requests from the same session are always
forwarded to the same server node

• The servers are installed as stand-alone
servers (EJB3 w/o clustering profile)

• No changes to the application
• No fail-over
• Scales linearly with number of nodes until

the network saturates
the load balancer is overloaded

• Great for balancing multiple virtual servers
on a blade

41

mod_jk tips

• The Apache maxThreads must match
the sum of Tomcat maxThreads
(allow 20% error margin)

• Turn off “keep-alive” connection in
Apache during testing

• Use non-prefork Apache MPM if
possible

42

Tests Results

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000 3500 4000

Concurrent Users

Two nodes Four nodes

8

43

Failover support

• State information is replicated to failover
nodes

In Seam, HTTP session is only replicated at
creation and timeout
The stateful session bean is replicated
throughout the conversation

• Replication is slow
Serialization is CPU intensive
Network is slower than RAM
Overhead increases geometrically with
number of failover nodes

SFSB replication support is still under active
development. No test data is officially
published here.

44

Must use sticky session

• Simple load balancing without sticky
session distributes requests randomly
to all nodes in the cluster

Works under low load (browser test)
At 30 TPS, we see around 10% of the
requests generate HTTP 500 errors

• Sticky session
Each node handles its own sessions and
replicates the states over other nodes in
the cluster as failover
Config mod_jk to retry failover nodes

45

The scalability problem

Replicating the state of each node to
all nodes in the cluster is not
scalable: the replication work load
increases geometrically with the
number of nodes in the cluster.

46

Buddy replication

• New in JBoss Cache 1.4
Available in JBoss 5.0 alpha
Will be back ported to JBoss 4.0.5

• Each node only replicates to a buddy
failover node

• mod_jk is clever enough to know which
failover node to retry if a session dies

• Tested on un-optimized alpha code
Two buddy nodes achieve performance of 1
node w/o failover
Expect huge performance improvement over the
next several weeks

47

Further thinking

• Asymmetric failover
One node in the buddy pair acts as the failover
and it does not serve requests unless the other
fails
Better user experience when failover
Redundant hardware needed

• N+1 failover
One node acts as the failover node for N nodes
The failover node is a “buddy” to all other nodes
in the cluster
May need N+2, N+3 ... depending on load
Good user experience when failover occurs

48

Agenda

• The basics
• The test tools and environment
• Interpret performance tests results
• Optimize Seam on a single server
• Load balanced cluster
• In the real world

9

49

Database access is the real bottleneck

• A single Dell PowerEdge 1855 Blade has
enough power to run a Seam application for
a large community

20 million web transactions / day (250 TPS)
> 5,000 concurrent users
A simple cluster can support more than 10,000
concurrent users

• Database access overload if each web tx
requires a database roundtrip

O/R mapping, JDBC connections will be
overwhelmed
Seam extended persistence context makes it
easy to reduce database round trips

50

The bottom line

Seam business logic components run sufficiently
fast on today’s state of the art hardware.

Your application’s overall throughput is more likely
to be limited by the data access layer.

51

Next steps

• Test performance of multiple VMs on
a single blade

• Test buddy replicated clusters
• Add database access layer to the

application
• Test replicated database second level

cache

© JBoss Inc. 2006

Q&A

