
1

© JBoss Inc. 2006 

Evolving Use of JBoss Clustering

Saul A. Kravitz
Director, Software Engineering
J. Craig Venter Institute

2

Hype or Reality?

• Leverage J2EE Wherever You Need it!
• JBoss Great for Scientific Computing!
• JBoss’s Clustered JMS is Powerful!

Reality!

3

Outline

• DNA Sequencer Integration
• Experience with Clustering

DNA Sequence Analysis
Sequence Similarity Search

• Conclusions

4

Who REALLY Did the Work

• Pete Davies
• Indresh Singh
• Scott Collins
• Tom Dolafi
• Chris Lemieux
• Sean Murphy
• Adam Resnick
• Angelo Trivelli
• Bryan Yu

5

J. Craig Venter Institute Joint Technology Center

• Established 6/2003
• One of top 5 DNA 

sequencing centers
• 80M Seq/yr capacity
• 100+ ABI 3730xl 

sequencers
• 24x7 operation

6

Processing Sequencing Traces

Raw Data

Base & Quality Calls

“Clear Ranges”

DNA Structure Trace



2

7

Initial Problem Definition — 2003

• Support 100-400 DNA sequencers
• Each outputs “runs” of 96 traces

Run generated every 30-120 minutes
30MB of data/run (~36Gb daily)

• Traces reduced, analyzed, persisted
Near real time requirement
Analysis based on C/C++ executables
Heterogeneous analysis within a run

8

Key Features/Requirements

• Robustness with Intermittent Connectivity
Servers DBs
Sequencers Servers
Automatically reestablish connections 
Orderly behavior when connections 
reestablished

• Intranet-Based Laboratory Management
Monitoring & administration of 100+ sequencers

• Easy Deployment to 100+ sequencers
• Scalability

Ability to add additional sequencers
Ability to clear backlog after outages

9

Systems Issues

• Sequencers complete run ~30-120 min
Typically started at roughly the same time

• With 100+ sequencers
Bursts of data
“smoothing” of data inflow required
Occasionally, several days data accumulates

• Constraints
I/O bound - Data transport from sequencers
CPU bound - data processing 
I/O bound – data persistence.

10

Solution — JTrace

• Scalable application: 2 JBoss Configs
JTrace Sequencer – on each sequencer
JTrace Server –on cluster in data center

11

JTraceSequencer

• Compact configuration of JBoss
• Integrates with vendor JBoss 2.4 

instance via installed EJBs
• Functionality:

Interact with user for run setup
Detection and transfer of generated data
Web/EJB accessible instrument monitoring 
HTTP access to sequencer files

12

Detection and Transfer of Data

• Polls instrument directory for new runs
• When run is found:

1. Jars the run and digitally signs jar
2. Sends DataAvailable JMS message to Server
3. Moves Jar to “pickup” area
4. Server retrieves data via HTTP GET and deletes 

data with HTTP DELETE after validated transfer

• Sends followup DataAvailable messages
data which has yet to be removed
Provides robustness for network/server outages



3

13

Solution Addresses Requirements

• Robustness with Intermittent Connectivity
Servers/Sequencers tolerate intermittent connections
Orderly behavior when all sequencers reestablish 
connection

JMS / HTTP data transport tolerates outages
JMS connections reconnect after outage
“Pull” data retrieval works at server’s pace

• Intranet-Based Laboratory Management

Provided by HTML/EJBinterface on 
sequencers

• Easy Software Deployment to 100+ sequencers

Hot deploy EAR via shared file system
• Scalability of sequencers and processing capacity

Both sequencers and servers scale trivially

14

• Retrieves and validates run via HTTP Get
• Deletes run from sequencer via HTTP delete• Identify homogeneous computations

• Manage fork/join

JTraceServer

Sequencer
MDB

Processing
MDB

TraceGroup
MDB

TraceGroup
MDB

Loading
MDB

• Controls execution of native tools• N-way Fork
• Exploit multi-core architecture and 

application parallelism

• Join • Persists file and RDB data

15

Fork/Join as JMS Topic vs. Queue

• Fork == JMS Topic?
+ Topic is point to multipoint
– Same subunit sent to >1 subscribers
– or, Use message selectors 

• Fork == JMS Queue?
– Queue is point to point, but
+ Queue can have >1 MDB instances
+ Each instance receives one subunit
+ Load balancing across a cluster

16

Fork/Join using JMS Queue -- Tradeoffs

• Advantages
Retries on failure: 
• Declaratively control JMS based on JMS 

message redelivery semantics
Concurrency Control within a node
• Declaratively control within a JBoss instance 

based on allocation of MDB instances
Scalability: 
• Manage cluster capacity by adding nodes

• Disadvantages
Timing constraints
• Transaction timeout must be managed

17

Fork Pseudo-code

Create msgIDs HashSet;
Create replyQueue;
foreach (message to be sent) {

Create a message;
Populate message, with replyQueue;
Send asynch message;
Add the message ID to msgIDs;

}
Commit asynch messages;

// send all or none

18

Join Pseudo-code

long waitForTime = TRANSACTION_TIMEOUT-10000; 

while (replies outstanding, and waitforTime remains ) {
Wait for replyMessage on replyQueue for waitForTime;
waitforTime = remaining wait time;

if (replyMessage != null) {
correlate with sent messages;
processReply(replyMessage);

}
if (waitForTime < 0) {

//Log timeout error, throw exception
}
if (all replies received, but correlation errors) {

//Log correlation error, throw exception
} 

}



4

19

JMS Subtleties

• Handle DB Corruption Gracefully
It will happen…
Use appropriate RDBs

• Long-Running Transactions
Work around transaction timeouts

• Send small messages
Be careful of “hitchhiking” data
Pass references to shared files

20

JTraceServer 1.0 Limitations

• JBoss 3.2.3 lacked clustering support for JMS
• All MDBs for one run would execute within a node
• Fork/Join takes advantage of dual CPUs
• If a node goes down

messages queued on that node not processed
client side resend capability allowed processing with reasonable delay.

21

JTraceServer 2.0 Enhancements

• JBoss 3.2.6 supports single master node clustering for JMS 
• All MDBs for one run would execute across the cluster
• Fork/Join takes advantage of dual CPUs and multiple nodes
• If a node goes down

messages processed by other nodes in the cluster 

22

Scalability to the Rescue!

• Challenge
Reprocess 25M traces ASAP
Roughly 6 months of usual throughput

• Solution: 
Scale JTraceServer to 8 node cluster (~ 10min) 
Insert runs into ProcessingMDB

• Results
Near linear scaling 
Job completed painlessly in 2 weeks!!

23

Microbial Sequencing Website

• Secure access to microbial data
• Scalable bioinformatics application

http://research.venterinstitute.orgMicrobial Genome

24

Sequence Comparison
Divide and Conquer

• BLAST – Bioinformatics workhorse
• Compare

M subject sequences
N query sequences

• Large searches costly
• Embarrassingly parallel

Divide subject sequences into P parts
Distribute computation
Merge results

• Requirement
Internet accessible blast server
Execute blast jobs asynchronously, quickly



5

25

Scalable BLAST – Initial Solution

• Reuse Fork/Join architecture
fork a BLAST job across clustered nodes
Join the results and present to user

• Architecture used: 
Stripped down JBoss front end hosts JSPs
JMS-mediated fork/join on compute cluster
Front end drives JBoss cluster via JMS messages

• 2 JMS Queues
BlastManager MDBs service initiation of blast jobs (1)
BlastCompute MDBs execute sub jobs (2)

26

Scalable BLAST — Architecture

27

Global Ocean Sampling Expedition

28

• Driven by growth of metagenomics
• Resource for Marine Microbial Ecology

Funded by Gordon & Betty Moore Fdn
Collaboration with Calit2/UCSD

• Huge compute resource
Managed by Sun Grid Engine (SGE)

• Need massively scalable BLAST 
• http://camera.calit2.net

29

Massively Scalable BLAST

• Scientific Grids Managed by Sun Grid Engine
• Problem:

Want to scale application by leveraging grid
• Solution:

Adapt fork/join solution
MDBs manage job submission/monitoring to SGE
Fork/join within SGE

• Benefits:
Architectural reuse
Control concurrency on SGE by MDB configuration

30

Conclusions

• Leverage from using J2EE everywhere
• Clustered* JMS a powerful tool for 

scientific computation
• Fork/Join management with JMS:

Scalability
Robustness

• Massive scaling possible through 
integration of grid resources



6

31

Questions?


