

Testing JSF Applications
Stan Silvert
JBoss Core Developer

Overall Presentation Goal

Learn about approaches to teting JSF
Applications with emphasis on JBoss JSFUnit

and SeamTest.

Pronouncement

“JBoss JSFUnit is the first open source
community dedicated to JSF testing.”

How can we test JSF?

 Static Analysis
 Performance Testing
 Client-Centric Black Box
 Mock-Centric White Box
 Comprehensive “acrylic” Box

Static Analysis

 Tests performed on an application without
running it

 For JSF, this means testing the composite
configuration

 Find problems early
 For JSF, only available in JSFUnit
 If you do no other testing, at least do this.

It's free.

JSFUnit Static Analysis

 Managed
Beans/EL

 Managed Bean
methods

 Serializable
scopes

 faces-config.xml
typos

 Managed Bean
Class

 Proper Interface
Implementations

 Missing
getters/setters

 Duplicate
Managed Beans

 JSF Tags

Does it implement java.io.Serializable?

 <managed-bean>
 <managed-bean-name>
 shoppingCart
 </managed-bean-name>
 <managed-bean-class>
 com.foo.demo.ShoppingCart
 </managed-bean-class>
 <managed-bean-scope>
 session
 </managed-bean-scope>
 </managed-bean>

junit.framework.AssertionFailedError: Managed
bean 'shoppingCart' is in session scope, so it
needs to implement interface java.io.Serializable

Duplicate Managed Beans
 <managed-bean>
 <managed-bean-

name>shoppingCart</managed-bean-
name>

 <managed-bean-
class>com.foo.ShoppingCart</managed-
bean-class>

 <managed-bean-
scope>application</managed-bean-
scope>

 </managed-bean>

 <managed-bean>
 <managed-bean-

name>shoppingCart</managed-bean-
name>

 <managed-bean-
class>com.foo.dup.ShoppingCart</mana
ged-bean-class>

 <managed-bean-
scope>request</managed-bean-scope>

 </managed-bean>

junit.framework.AssertionFailedError: The managed bean
'shoppingCart' in 'C:/work/src/faces-config.xml' is
duplicated. Look for a managed bean w/ the same name
in 'C:/work/src/faces-config.xml'

How can we test JSF?

 Static Analysis
 Performance Testing
 Client-Centric Black Box
 Mock-Centric White Box
 Comprehensive “acrylic” Box

Performance Analysis

 A measurement of the time it takes to
complete a task or subtask.

 You can do this at many different levels of
abstraction and there are many, many tools
to help.

 JSFUnit offers a simple tool to measure
time spent in the JSF lifecycle.

Performance Analysis with JSFUnit
web.xml:

<context-param>

 <param-name>javax.faces.CONFIG_FILES</param-name>

 <param-value>/WEB-INF/timer-config.xml</param-value>

</context-param>

timer-config.xml:

<faces-config>

 <lifecycle>

 <phase-listener>

org.jboss.jsfunit.framework.JSFTimerPhaseListener

 </phase-listener>

 </lifecycle>

</faces-config>

Performance Analysis with JSFUnit

public void testJSFPerformance() throws SAXException,
IOException {

 JSFClientSession client = new JSFClientSession(“/foo”);

 client.setParameter("inputText", "Hello");

 client.submit("submit_button");

 JSFTimer timer = JSFTimer.getTimer();

 assertTrue(timer.getTotalTime() < 3000);

 PhaseId appPhase = PhaseId.INVOKE_APPLICATION;

 assertTrue(timer.getPhaseTime(appPhase) < 2000);

}

How can we test JSF?

 Static Analysis
 Performance Testing
 Client-Centric Black Box
 Mock-Centric White Box
 Comprehensive “acrylic” Box

Client-Centric Testing: Black Box

For JSF, black box testing means sending
HTTP requests to the server and validating
the HTML that is returned.

Client-Centric Testing: Black Box

 Manual Testing: Open a browser and try it
out. (Sadly, the most common approach)

 Browser keystroke/mousestroke playback:
Selenium Recorder

 Browser emulators: HttpUnit, HTMLUnit,
WebTest, etc.

Problems with Black Box JSF Tests
 It's hard to validate plain HTML
 Automated tests can break because of

cosmetic HTML changes
 Correct output at the client doesn't always

mean correct behavior at the server
 Can be difficult to use in a continuous

integration process
 AJAX support is lacking. You'll have a hard

time testing RichFaces apps this way.

How can we test JSF?

 Static Analysis
 Performance Testing
 Client-Centric Black Box
 Mock-Centric White Box
 Comprehensive “acrylic” Box

Mock-Centric White Box Tests
 Test the server-side classes without

running the whole application
 Create fake domain objects called “mocks”
 Use the mocks to simulate the runtime

environment
 Test your code inside the simulated

environment using JUnit, TestNG, etc.

Mocks for JSF: Seam Test

 Fine-grained testing of Seam components
don't need mocks. Do it the old-fashioned
way.

 Combine Seam Test with JBoss Embedded
container for a mock environment.

 This gives you a mock JSF environment for
testing.

Mocks for JSF: Seam Test
public class RegisterTest extends SeamTest {

@Test

public void testRegister() throws Exception {

 new FacesRequest() {

 @Override

 protected void processValidations()throws Exception{

 validateValue("#{user.username}", "1ovthafew");

 validateValue("#{user.name}", "Gavin King");

 validateValue("#{user.password}", "secret");

 assert !isValidationFailure();

 }

// more ...

Mocks for JSF: Seam Test
@Override

protected void updateModelValues() throws Exception {

 setValue("#{user.username}", "1ovthafew");

 setValue("#{user.name}", "Gavin King");

 setValue("#{user.password}", "secret");

}

@Override

protected void invokeApplication() {

 assert invokeMethod("#{register.register}").equals("success");

}

@Override

protected void renderResponse()

Mocks for JSF: Seam Test
 @Override

 protected void renderResponse() {

 assert getValue("#{user.username}").equals("1ovthafew");

 assert getValue("#{user.name}").equals("Gavin King");

 assert getValue("#{user.password}").equals("secret");

 }

}.run(); // start FacesRequest anonymous class

Problems with Mocks
 A simulated environment always falls short.

Use cases that pass with mocks can fail in
the real container.

 Very fine-grained. Object interactions not
tested well.

 Mock libraries can easily get large and out
of control.

 Often forces application changes to
accommodate mocks. (init's and factories)

How can we test JSF?

 Static Analysis
 Performance Testing
 Client-Centric Black Box
 Mock-Centric White Box
 Comprehensive “acrylic” Box

JSFUnit Acrylic Box Testing

See it all, inside and out.

JSFUnit Comprehensive Testing

 Static Analysis
 JSF Performance Analysis
 Unit and Integration Tests
 Uses ordinary JUnit code
 Runs inside the real container
 Generates real HTTP requests
 No need for mock objects

JSFUnit Comprehensive Testing

 Tests can be as fine or course grained as
you like.

 API is simplified for JSF
 Easily integrates into your build
 Test client side HTML and server side state

all in the same test!

JSF Components: Markup to Browser

JS
F

C
o
m

p
o
n
e
n

t
T
re

e

D
e
v
e
lo

p
m

e
n
t

O
u
tp

u
t HTML Browser

Facelets/JSP
Page

1 2

3

JSFUnit: Testing Hello World

<f:view>

 <h:form id="form1">

 <h:outputText value="Enter your name:" id="prompt"/>

 <h:inputText value="#{name.text}"

 id="input_name_text"/>

 <h:commandButton action="/hello.jsp"

 id="submit_button"/>

 </h:form>

</f:view>

index.jsp:

JSFUnit: Testing Hello World

<f:view>

 <h:outputText value="Hello, #{name.text}"

 id="greeting"/>

</f:view>

hello.jsp:

JSFUnit: Testing Hello World

public void testHelloWorld() {

 JSFClientSession client =

 new JSFClientSession("/index.faces");

 JSFServerSession server = new JSFServerSession(client);

 client.setParameter(“prompt”, “Stan”);

 client.submit(“submit_button”);

 assertEquals("/hello.jsp", server.getCurrentViewID());

 assertTrue(client.getWebResponse()

 .getText()

 .contains(“Hello, Stan”));

 assertEquals("Stan",

 server.getManagedBeanValue("#{name.text}"));

 }

JSFUnit Hello World Demo

How can I test these complex RichFaces components?

Testing RichFaces with JSFUnit

 Plain JSFClientSession won't quite cut
it.

 RichFaces uses javascript to send
customized requests to the server.

 Javascript is also used in a custom
way to handle the response and
update the page.

 JSFUnit provides RichFacesClient to
handle the special processing of
RichFaces components.

Creating a RichFacesClient for JSFUnit

JSFClientSession client = new JSFClientSession(“/index.jsp”);

RichFacesClient richClient = new RichFacesClient(client);

Notable methods in the RichFacesClient

 ajaxSubmit(componentId)
 clickDataTableScroller(compId, value)
 clickTab(tabPanelId, tabComponentId)
 dragAndDrop(dragCompId, dropCompId)
 setCalendarValue(compId, value)
 setDataFilterSlider(compId, value)
 setInputNumberSlider(compId, value)
 setInputNumberSpinner(compId, value)

JSFUnit RichFaces Demo

Summary

 For JSF, black box style testing is
brittle and limited

 White box, mock-style, testing also
has limitations

 JSFUnit allows testing in the real
container with real requests and real
domain objects

 JSFUnit has static & perf analysis
 Testing Ajax components is

challenging, but JSFUnit provides an
API for RichFaces

For more information

 www.jsfunit.org
 jsfunit.blogspot.com
 JSFUnit Forum linked from jsfunit.org
 stan@jboss.com

http://www.jsfunit.org/

Questions?

Headline (Liberation Sans Bold, 28 pt)

 Sub-line (Liberation Sans, 25 pt.)

− Sub-line (Liberation Sans, 25 pt)

