. Red Hat

JBoss Microcontainer meets OSGi

Scott Stark & Ales Justin
Red Hat inc.

Agenda I.

* Microcontainer project introduction

- JMX vs. MC

- State machine and 10C
- Legacy MBeans

- AOP integration

- Deployers

- Classloader

- Other extensions

JB

ORLANDO 2008

Agenda ll.
* What is OSGi

- What problems does it solve
- How does it work
* Microcontainer and OSGi
- What are we going to support
JBoss5 and OSGi
- ProfileService and OBR
Why not use existing OSGI impls

New OSGi personality in MC
- Transparent changes in the MC codebase JB

Simple demo

ORLANDO 2008

JMX vs MC
* JMX Supports

- Management interface
- Invocation bus for attribute accessors, operations
- Basic ClassLoader model

* Does not support

- Deployment model
- Dependenies/loC
- Extensible component model
- AOP
* JMX Was Not Designed as a MicroContainer JB

- JBoss simply leveraged JMX for that purpose

ORLANDO 2008

State Machine

* Atits core, the MC Is a state machine

* Dependency module

- Controller

* Dependency State Machine

* ControllerStates — define your own states
- ControllerContext

* Represents a component
* Has dependencies

* Receives callbacks when dependencies are satisfied for a state
transition

* ControllerMode — automatic, manual, on demand
- Dependencylnfo and Dependencyltem
* Define your own dependencies

* Write your own dependency item \B
- Standard implementations available ORLANDO 2008

Dependency Injection/IOC

Depenendcy on other components

Can be expressed via dependency on a named component

Can be expressed via injection of:
- component
- component property

Extensible dependency mechanism

- The Dependencyltem that performs the resolution logic is

an extensible aspect of the dependency metadata

JB

ORLANDO 2008

Legacy MBean Support

* The MC can be extended to support any component model

* The legacy mbean services used by earlier jboss releases
are supported via custom deployers.

* SARDeployer — processes the *-service.xml into
ServiceDeployment/ServiceMetaData

* ServiceDeploymentDeployer — creates component
deployments from the ServiceMetaData

* ServiceDeployer — creates the mbean component from the
serviceMetaData

- registers the mbean with the jmx kernel
- handles dependencies on MBean & MC componenl*B

ORLANDO 2008

AQOP integration

* MC has first class support for AOP via its metadata
* annotation - represents a JavaS annotation on the particular
join point
- deployment, bean, constructor, lifecycle callback, install
callback, value types

* Can mix aop.xml element using xmins="urn:jboss:aop-
beans:1.0"

JB

ORLANDO 2008

AOP Example

<deployment xmlns="urn:jboss:bean-deployer:2.0">
<bean name="AspectManager" class="org.jboss.aop.AspectManager'">
<constructor
factoryClass="org.jboss.aop.AspectManager"
factoryMethod="instance"/>
</bean>

<aop:lifecycle-configure xmlns:aop="urn:jboss:aop-beans:1.0"
name="JMXAdvice"
class="org.jboss.aop.microcontainer.aspects.jmx.JMXLifecycleCallback"
classes="@org.jboss.aop.microcontainer.aspects.jmx.JMX">
<property name="mbeanServer'"><inject bean="MBeanServer"/></property>
</aop:lifecycle-configure>

<aop:aspect xmlns:aop="urn:jboss:aop-beans:1.0"
name="TxAdvice"
class="org.acme.aspects.TxAspect"
pointcut="execution(* *->@org.acme.Tx(..))">
<property name="txManager'><inject bean="TxManager'"/></property>
</aop:aspect>

<bean name="BeanWithAspects"
class="org.jboss.test.microcontainer.support.SimpleBeanImpl">
<annotation>@org. jboss.aop.microcontainer.aspects. jmx.JMX</annotation>

<annotation>@org.acme.Tx</annotation>
</bean>

®

<bean name="PlainBean" £oss

class="org.jboss.test.microcontainer.support.SimpleBeanImpl"> wo R L D

</bean> ORLANDO 2008

PRESENTED BY RED HAT

</deployment>

Deployers
* Structural Deployers
- Specification defined — jar, war, ear
- Overridable via jboss-structure.xml
* Aspectized Deployers

* Runin phases: NOT_INSTALLED, PARSE, DESCRIBE, CLASSLOADER,
POST_CLASSLOADER, REAL, INSTALLED

- Non linear — JCA - ServiceMetaData - ServiceDeployer
* Attachments

- Metadata for deployment
- Can define Input/Output order for deployers
* VDF

- JBoss VFS usage
* ManagedDeployment/ManagedComponent support

- Management interface for a deployment ‘B
* MainDeployer

- Deployment process, completion check ORLANDO 2008

Classloader

* Update of the ULR peer class loading model to support OSGi bundle/Java
modules

* Simplification / restriction

- Limit error prone implementations
- SPI - Base architecture
* Protected / Package modifiers
* ClassLoaderPolicy
* ClassLoaderDomain

- Hierarchy
- Default CLDomain
* ClassLoaderSystem

- Domain factory
* Loader

- DelegateLoader

* FilteredDelegateLoader ‘B

* ParentPolicy
ORLANDO 2008

- ClassFilter

Other extensions

* Managed and Metatype

- Open MBean style types used by ManagedDeployments
* Spring

- Schema support

- Lifecycle, dependency by MC
* Guice

- Beans ‘exchange’

* Reliance

- Drools integration
- |BPM integration ‘B

ORLANDO 2008

Microcontainer overview

Container Dependency

Kernel Guice

v -~
ACP-MC-int Spring-int MBeans

OSGi-int | —%| Deployers - VFS
Managed Classloader \ Reliance
Metatype

JB

ORLANDO 2008

What is OSGi

* 0OSGi... ?
- Open Service Gateway Initiative

- Embedded world
- OSGi alliance and new EEG

* ‘The Dynamic Module System for Java’

- JSR 291

JB

ORLANDO 2008

Service Oriented Dynamic Module System

* Modules aka Bundles
 Strict visibility rules
* Dependency resolution process

* Versioning

* Runtime Module Install / Start / Stop / Uninstall

* Service Registry

JB

ORLANDO 2008

* Runtime Changes Notifications

What does it solve

* Visibility
- Blackbox approach
- Explicit export

* Versioning

i

JBOSS
WORLD

ORLANDO 2008

EEEEEEEEEEEEEEEEE

* Module lifecycle control

What does it solve

* Visibility
- Blackbox approach
- Explicit export

* Versioning

e e

JBOSS
WORLD

ORLANDO 2008

EEEEEEEEEEEEEEEEE

* Module lifecycle control

What does it solve

* Visibility
- Blackbox approach
- Explicit export

* Versioning

e

JBOSS
WORLD

ORLANDO 2008

EEEEEEEEEEEEEEEEE

* Module lifecycle control

What does it solve

* Visibility
- Blackbox approach
- Explicit export

* Versioning

e e

JBOSS
WORLD

ORLANDO 2008

EEEEEEEEEEEEEEEEE

* Module lifecycle control

How does it work
* Plain jar file
- MANIFEST.MF & BundleSymbolicName header

* Export package directive & version

- Export package: org.jboss.vfs;version=2.0.0.GA
* Import package & version range
- Import package: org.jboss.kernel;version="[2.0,3.0)"
- Optional
- Dynamic

* Other constraints

JB

ORLANDO 2008

- e.g. specific bundle dependency

Service oriented

* Service Registry

- Exporting service to registry
* Interface name
* Optional properties

- Services lookup

* Interface name
* LDAP filter
- Declarative Services Support

- Service Tracker

* Only see compatible services

JB

ORLANDO 2008

Microcontainer and OSGi

* Classloading

- New Classloader module
* Core OSGI Framework API

- Facade on top of existing MC API

* BundleContext
* ServiceRegistry
* Notifications
* Declarative Services Support

- New EEG Component model
* Dynamicity JB

ORLANDO 2008

JBoss5 and OSGi
* ProfileService

- Defines the bootstrap, deployers, and application
contained in a named profile

- Explicit service for the legacy implicit server/<name>
contents

* OSGI Bundle Repository (OBR)
- A Bundle Repository access api
* Resolution based on capabilities, requirements
* Integration part
- Profile service defines an OBR compatible reposito‘ﬁpi
- OBR implementation can be plugged Iin

ORLANDO 2008

Why not use existing OSGI impl

* Features we need

- Fine grained dependency

- AOP support

- Legacy JMX

- Structure and real deployers
- Scoped metadata

- Open mbeans

- VFS

* Delegate Classloading

- Based on VFS

JB

ORLANDO 2008

New OSGi personality

* New, new, new ... ©

- ClassLoader module

* OSGI aware policy
- ControllerContexts / ‘personalities’

* Introduction of Dependency to Deployers
- See next slide

* OSGi Services Support
- Deployers
* OSGIi Manifest.MF Parser
* DeploymentResolution ‘B
* OSGi Classloader

ORLANDO 2008

Deployers and dependencies

Parsing ClassLoader Real

Parsing M Describe ™M ClasslLoader

JBOSS
WORLD

ORLANDO 2008

PRESENTED BY RED HAT

Demo

* Deployers

- PackageVersionParser

- PVResolutionDeployer

- '‘OSGI’ ClassLoaderDeployer
‘OSGI‘ ClassLoaderPolicy

- From PVMetaData

* FooService 2> Acmel

* BarService 2 Acme2

JB

ORLANDO 2008

Wrap up

* Home:

- Labs page:

Design

- Available on the wiki:

Development:

- Roadmap on JIRA — JBMICROCONT
- Discussions in the forums

Questions? \B

ORLANDO 2008

http://labs.jboss.com/portal/jbossmc
http://www.jboss.org/wiki/Wiki.jsp?page=JBossMicrocontainer

