
JBoss Microcontainer meets OSGi

Scott Stark & Ales Justin
Red Hat inc.

Agenda I.

 Microcontainer project introduction

− JMX vs. MC

− State machine and IoC

− Legacy MBeans

− AOP integration

− Deployers

− Classloader

− Other extensions

Agenda II.

 What is OSGi

− What problems does it solve

− How does it work
 Microcontainer and OSGi

− What are we going to support
 JBoss5 and OSGi

− ProfileService and OBR
 Why not use existing OSGi impls

 New OSGi personality in MC

− Transparent changes in the MC codebase
 Simple demo

JMX vs MC
 JMX Supports

− Management interface

− Invocation bus for attribute accessors, operations

− Basic ClassLoader model

 Does not support

− Deployment model

− Dependenies/IoC

− Extensible component model

− AOP

 JMX Was Not Designed as a MicroContainer

− JBoss simply leveraged JMX for that purpose

State Machine
 At its core, the MC is a state machine

 Dependency module

− Controller
 Dependency State Machine
 ControllerStates – define your own states

− ControllerContext
 Represents a component
 Has dependencies
 Receives callbacks when dependencies are satisfied for a state

transition
 ControllerMode – automatic, manual, on demand

− DependencyInfo and DependencyItem
 Define your own dependencies
 Write your own dependency item

− Standard implementations available

Dependency Injection/IOC

 Depenendcy on other components

 Can be expressed via dependency on a named component

 Can be expressed via injection of:

− component

− component property

 Extensible dependency mechanism

− The DependencyItem that performs the resolution logic is
an extensible aspect of the dependency metadata

Legacy MBean Support

 The MC can be extended to support any component model

 The legacy mbean services used by earlier jboss releases
are supported via custom deployers.

 SARDeployer – processes the *-service.xml into
ServiceDeployment/ServiceMetaData

 ServiceDeploymentDeployer – creates component
deployments from the ServiceMetaData

 ServiceDeployer – creates the mbean component from the
serviceMetaData

− registers the mbean with the jmx kernel

− handles dependencies on MBean & MC components

AOP integration

 MC has first class support for AOP via its metadata
 annotation - represents a Java5 annotation on the particular

join point

− deployment, bean, constructor, lifecycle callback, install
callback, value types

 Can mix aop.xml element using xmlns="urn:jboss:aop-
beans:1.0"

AOP Example
<deployment xmlns="urn:jboss:bean-deployer:2.0">
 <bean name="AspectManager" class="org.jboss.aop.AspectManager">
 <constructor
 factoryClass="org.jboss.aop.AspectManager"
 factoryMethod="instance"/>
 </bean>

 <aop:lifecycle-configure xmlns:aop="urn:jboss:aop-beans:1.0"
 name="JMXAdvice"
 class="org.jboss.aop.microcontainer.aspects.jmx.JMXLifecycleCallback"
 classes="@org.jboss.aop.microcontainer.aspects.jmx.JMX">
 <property name="mbeanServer"><inject bean="MBeanServer"/></property>
 </aop:lifecycle-configure>

 <aop:aspect xmlns:aop="urn:jboss:aop-beans:1.0"
 name="TxAdvice"
 class="org.acme.aspects.TxAspect"
 pointcut="execution(* *->@org.acme.Tx(..))">
 <property name="txManager"><inject bean="TxManager"/></property>
 </aop:aspect>

 <bean name="BeanWithAspects"
 class="org.jboss.test.microcontainer.support.SimpleBeanImpl">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX</annotation>
 <annotation>@org.acme.Tx</annotation>
 </bean>

 <bean name="PlainBean"
 class="org.jboss.test.microcontainer.support.SimpleBeanImpl">
 </bean>

</deployment>

Deployers
 Structural Deployers

− Specification defined – jar, war, ear

− Overridable via jboss-structure.xml
 Aspectized Deployers

 Run in phases: NOT_INSTALLED, PARSE, DESCRIBE, CLASSLOADER,
POST_CLASSLOADER, REAL, INSTALLED

− Non linear – JCA  ServiceMetaData  ServiceDeployer
 Attachments

− Metadata for deployment

− Can define Input/Output order for deployers
 VDF

− JBoss VFS usage

 ManagedDeployment/ManagedComponent support

− Management interface for a deployment
 MainDeployer

− Deployment process, completion check

Classloader
 Update of the ULR peer class loading model to support OSGi bundle/Java

modules
 Simplification / restriction

− Limit error prone implementations

− SPI  Base architecture
 Protected / Package modifiers

 ClassLoaderPolicy
 ClassLoaderDomain

− Hierarchy

− Default CLDomain
 ClassLoaderSystem

− Domain factory
 Loader

− DelegateLoader
 FilteredDelegateLoader

 ParentPolicy

− ClassFilter

Other extensions

 Managed and Metatype

− Open MBean style types used by ManagedDeployments

 Spring

− Schema support

− Lifecycle, dependency by MC

 Guice

− Beans ‘exchange’

 Reliance

− Drools integration

− jBPM integration

Microcontainer overview

Reliance

Guice

What is OSGi

 OSGi… ?

− Open Service Gateway Initiative

− Embedded world

− OSGi alliance and new EEG

 ‘The Dynamic Module System for Java’

− JSR 291

Service Oriented Dynamic Module System

 Modules aka Bundles

 Strict visibility rules

 Dependency resolution process

 Versioning

 Runtime Module Install / Start / Stop / Uninstall

 Service Registry

 Runtime Changes Notifications

What does it solve

 Visibility

− Blackbox approach

− Explicit export

 Versioning

 Module lifecycle control

Acme1

Foo1

Bar1

What does it solve

 Visibility

− Blackbox approach

− Explicit export

 Versioning

 Module lifecycle control

A1

Foo1

Bar1

A2

What does it solve

 Visibility

− Blackbox approach

− Explicit export

 Versioning

 Module lifecycle control

A1

Bar1

A2

F1F2

What does it solve

 Visibility

− Blackbox approach

− Explicit export

 Versioning

 Module lifecycle control

A1

Foo2

Bar2

A2

How does it work

 Plain jar file

− MANIFEST.MF & BundleSymbolicName header

 Export package directive & version

− Export package: org.jboss.vfs;version=2.0.0.GA

 Import package & version range

− Import package: org.jboss.kernel;version=“[2.0,3.0)”

− Optional

− Dynamic

 Other constraints

− e.g. specific bundle dependency

Service oriented

 Service Registry

− Exporting service to registry
 Interface name
 Optional properties

− Services lookup
 Interface name
 LDAP filter

− Declarative Services Support

− Service Tracker

 Only see compatible services

Microcontainer and OSGi

 Classloading

− New Classloader module

 Core OSGi Framework API

− Façade on top of existing MC API

 BundleContext
 ServiceRegistry
 Notifications

 Declarative Services Support

− New EEG Component model

 Dynamicity

JBoss5 and OSGi
 ProfileService

− Defines the bootstrap, deployers, and application
contained in a named profile

− Explicit service for the legacy implicit server/<name>
contents

 OSGi Bundle Repository (OBR)

− A Bundle Repository access api
 Resolution based on capabilities, requirements

 Integration part

− Profile service defines an OBR compatible repository api

− OBR implementation can be plugged in

Why not use existing OSGi impl

 Features we need

− Fine grained dependency

− AOP support

− Legacy JMX

− Structure and real deployers

− Scoped metadata

− Open mbeans

− VFS

 Delegate Classloading

− Based on VFS

New OSGi personality

 New, new, new … 

− ClassLoader module

 OSGi aware policy

− ControllerContexts / ‘personalities’

 Introduction of Dependency to Deployers
− See next slide

 OSGi Services Support

− Deployers

 OSGi Manifest.MF Parser
 DeploymentResolution
 OSGi Classloader

Deployers and dependencies

Parsing ClassLoader Real

Not Installed
PreInstall

Describe
Instantiated

Configured
Create

Start
Installed

Installed

Parsing Describe RealClassLoader

MC

Demo

 Deployers

− PackageVersionParser

− PVResolutionDeployer

− ‘OSGi’ ClassLoaderDeployer

 ‘OSGi‘ ClassLoaderPolicy

− From PVMetaData

 FooService  Acme1

 BarService  Acme2

Wrap up

 Home:

− Labs page:
 http://labs.jboss.com/portal/jbossmc

 Design

− Available on the wiki:
 http://www.jboss.org/wiki/Wiki.jsp?page=JBossMicrocontainer

 Development:

− Roadmap on JIRA – JBMICROCONT

− Discussions in the forums

 Questions?

http://labs.jboss.com/portal/jbossmc
http://www.jboss.org/wiki/Wiki.jsp?page=JBossMicrocontainer

