What’s new Iin Hibernate

an opinionated cherry pick

Emmanuel Bernard
JBoss by Red Hat

JBoss

SUMMIT worw

PRESENTED BY RED HAT W

mardi 8 juin 2010

Get an overview of

what’'s new in Core
explore satellite projects
Make you discover new features

SUMMIT ~Worwo

PRESENTED BY RED HAT

mardi 8 juin 2010

Emmanuel Bernard

Hibernate Search in Action
=] blog.emmanuelbernard.com
% twitter.com/emmanuelbernard
4! lescastcodeurs.com

Les CasiCodeurs

"En Francals dans Ie Code"
http://le stcode .com

SUMMIT “worwo

PRESENTED BY RED HAT

mardi 8 juin 2010

Mapping

All of JPA 2 mapping

standardization of specific annotations
Some interesting features

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Generator - @Mapslid

@Entity
class Customer {

@Id UserId userld; @Entity

class User {
@EmbeddedId UserId id;

@MapsId("userId”) Integer age;

@JoinColumns ({

@JoinColumn(name="userfirstname”, }
. referencedgolumnName: firstName), eEmbeddable
@JoinColumn(name="userlastname”, : D4
. . class UserId implements Serializable
referencedColumnName="1astName") (
» N .
@neToOne User user; String firstName;

String lastName;

}

SUMMIT worw

PRESENTED BY RED HAT

mardi 8 juin 2010

Generator - Partial generator

@Entity

public class CustomerInventory implements Serializable {
@Id
@.h.a.GenericGenerator(name = "inventory”, strategy = "uuid”)
@GeneratedValue(generator = "inventory")

Integer uuid;
@Id String location;

@Id @ManyToOne(cascade = CascadeType.MERGE)
Customer customer;

3

@Entity

public class Customer implements Serializable {
@Id
private int id;

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Generator - @Mapsid: a complex case

@Entity

class Customer {
@EmbeddedId CustomerId id;
boolean preferredCustomer;

@Entity
@MapsId("userId”) class User {
@JoinColumns ({ @EmbeddedId UserId id;
@JoinColumn(name="userfirstname”, Integer age;

referencedColumnName="firstName"), }
@JoinColumn(name="userlastname”,

referencedColumnName="1astName") @Embeddable
1)) class UserId implements Serializable
@OneToOne User user; {
} String firstName;
String lastName;
@Embeddable 3

class CustomerId implements Serializable {
UserId userlId;
String customerNumber;

3

SUMMIT worw

PRESENTED BY RED HAT

mardi 8 juin 2010

Column Read/Write

<property name="creditcard”>
<column name="credit_card_num”
read="decrypt(credit_card_num)”
write="encrypt(?)"/>
</property>

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Runtime - fetch profile

Define more than one fetching profile

classic one @OneToMany (fetch=EAGER)
Some other with specific names
Definition centralized

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

@Entity
@FetchProfile(name = "all”,
fetchOverrides = {
@FetchProfile.FetchOverride(
entity = Customer.class,
association = "orders”,
mode = FetchMode.JOIN)
@FetchProfile.FetchOverride(
entity = Order.class,
association = "country”,
mode = FetchMode.JOIN)
1))
public class Customer {
@Id @GeneratedValue private long id;
private String name;
private long customerNumber;
@neToMany private Set<Order> orders;

// standard getter/setter
3

Session session = ...;

session.enableFetchProfile("all”); // name matches @FetchProfile name
Customer customer = (Customer) session.get(Customer.class, customerld);
session.disableFetchProfile("all”); // or just close the session

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Criteria API

Object Oriented query building API
Type-safe

Strongly typed

Type-safe

Strongly typed

optionally use a static metamodel

annotation processor

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Static metamodel

QEntity
public class Item {
@Id @GeneratedValue public Long getId() {}
public Boolean isShipped() {}
public String getName() {}
public BigDecimal getPrice() {}
@neToMany public Map<String, Photo> getPhotos() {}
public Order getOrder() {}
public Product getProduct() {}

3

@StaticMetamodel (Item.class)

public class Item_ {
public static SingularAttribute<Item, Long> id;
public static SingularAttribute<Item, Boolean> shipped;
public static SingularAttribute<Item, String> name;
public static SingularAttribute<Item, BigDecimal> price;
public static MapAttribute<Item, String, Photo> photos;
public static SingularAttribute<Item, Order> order;
public static SingularAttribute<Item, Product> product;

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

How to build a query

From EntityManager

CriteriaBuilder is a helper class
CriteriaQuery represents your query
Type safe

EntityManager em;
CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Order> critQ = gb.createQuery(Order.class);

[...]

TypedQuery<Order> q = em.createQuery(critQ);
List<Order> orders = g.getResultList();

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Fetching

//select ¢ from Customer c
Root<Customer> customer = cq.from(Customer.class);

//select ¢ from Customer ¢ join fetch c.orders
cq.from(Customer.class)
.fetch(Customer_.orders, INNER);

SUMMIT worw

PRESENTED BY RED HAT

mardi 8 juin 2010

Joins and Where

CriteriaBuilder is a function placeholder

SELECT c.name
FROM Customer c¢ JOIN c.orders o JOIN o.items 1
WHERE 1i.product.price > 200

Root<Customer> c¢ = cq.from(Customer.class);
Path<Order, Item> 1 = c.join(Customer_.orders).join(Order_.1items);

cq.select(c.get(Customer_.name))
.where(
cb.greaterThan(
i.get(Item_.product).get(Product_.price)),
200)

)

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Having and count

SELECT c.status, AVG(c.filledOrderCount), COUNT(c)
FROM Customer c

GROUP BY c.status

HAVING c.status IN (1, 2)

Root<Customer> cust = cq.from(Customer.class);

g.select(cust.get(Customer_.status),
cb.avg(cust.get(Customer_.filledOrderCount),
cb.count(cust))
.group(cust.get(Customer_.status))
.having(cb.in(cust.get(Customer_.status))
.value(1)
.value(2));

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Subquery

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouse = emp.spouse)

Root<Employee> emp = cq.from(Employee.class);
Subquery<Employee> subQuery = cq.subquery(Employee.class);

Root<Employee> spouse = subQuery.from(Employee.class);
subQuery.where(cb.equal (spouse,emp.get(Employee_. spouse));

cq.distinct(true).where(cb.exists(subQuery));

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Support all of JP-QL

Collections and maps
Aggregation, order by, group by
Having, count

Subselect

SUMMIT ~Worwo

PRESENTED BY RED HAT

mardi 8 juin 2010

Lock Mode

Prevents

dirty reads

non-repeatable reads
Types

Optimistic

Pessimistic Read / Write
Force increment

Make use of Database locks in a standard way

SUMMIT womo

PRESENTED BY RED HAT

mardi 8 juin 2010

Packaging

Core is made of several modules including

annotations
entitymanager
envers
... core)
Easier for your to chose what you want

doc on the way

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Other projects

SUMMIT Woro

PRESENTED BY RED HAT

mardi 8 juin 2010

Hibernate Search

Full-text search for Hibernate application

Solve mismatches

Transparent index synchronization
Object model conversion

Unified programmatic model
Criteria, HQL, SQL, full-text
Clustering

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Massive indexing

fullTextSession.createIndexer().startAndWait();

fullTextSession
.createlndexer(User.class)
.batchSizeTolLoadObjects(25)
.cacheMode (CacheMode.NORMAL)
.threadsTolLoadObjects(5)
.threadsForSubsequentFetching(20)
.startAndWait();

SUMMIT Woro

PRESENTED BY RED HAT

mardi 8 juin 2010

identifier-loader
thread pool

~

Thread1
Load ids of
Products

Customers

SUMIT

PRESENTED BY RED HAT

mardi 8 juin 2010

id queue

entity-loader
thread pool

S |

T s bl

T A}

e an b

Thread1
Take 10 ids and
load the entities

JBoss
WORLD

entity queue

document-creator
thread pool

Tia A0

Thread1
Take an entity
(optionally load

associations)
and build the
Document

4,

Lucene indexes

Document queue (document-indexer
thread pool
— b
— B
— 0
™~ ———)
Thread1
8 E] 5 Analyze a Document
- - [and index it
] i
10
I
e
{=—
;0

Programmatic API

SearchMapping mapping = new SearchMapping();
mapping.analyzerDef("stem”, StandardTokenizerFactory.class)
.tokenizerParam("name”, "value”)
.tokenizerParam("name2", "value2”)
.filter(LowerCaseFilterFactory.class)
.filter(SnowballPorterFilterFactory.class)
.param(”"language”, "English")
.entity(Address.class).indexed().indexName("Address_Index")
.property("street1”, ElementType.FIELD)
.field()
.field()
.name("streetl1_1iso")
.store(Store.YES)
.i1ndex(Index.TOKENIZED)
.analyzer(ISOLatinlAnalyzer.class)
.field()
.name("streetl_ngram")
.analyzer("ngram”)
.entity(User.class).indexed()
.property(”"name”, ElementType.METHOD)
.field();

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

More

Error handling

report to queue or log

JGroups clustering

Infinispan-backed Lucene Directory

SUMMIT ~Worwo

PRESENTED BY RED HAT

mardi 8 juin 2010

Hibernate Envers

Store audit information transparently
Historical data

Revision is global like SVN
The existing table schema is unchanged

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

Person: Id | Name Surname

123 | John Smith
857 | Brad Pitt
698 | Mary Doe
Person_AUD:
Rev number | Id | Name Surname Rev type
64 123 | James Smith ADD
64 857 | Brad Pitt ADD
85 123 | Peter Smith MOD
90 501 | Arnold Schwarzenegger | DEL
90 123 ' John Smith MOD

@Audited
Lookup by revision

including navigation

SUMMIT womo

PRESENTED BY RED HAT

mardi 8 juin 2010

Query per revision

Entities

Rev 2

id =1 id=2 id=3 id =4
data = "x" data = "a" data ="u" data = "p"

id=2
data = "b"
T

Revisions

id=2
data ="c"
\ 4

SUMMIT ‘woro

PRESENTED BY RED HAT

mardi 8 juin 2010

Query by entity history

Entities

>
id =1 id = 4
data = "x" | data = npu

|d = 2 Id = 3
data ="a" I data ="u"

id=1 id=2
data ="y" data = "b"
|d - 2 |d = 4
data ="c¢" data ="r"
\ 4

Revisions

SUMAIT Worw

PRESENTED BY RED HAT

mardi 8 juin 2010

Hibernate Validator

Bean Validation RI
Describe constraint on domain model

@Entity
public class Customer {
@CustomerNumber @NotNull
public long getCustomerNumber() { return customerNumber };

3
Automatically validated

on presentation layer (JSF 2, Wicket and more)
on JPA entity persist, update, remove
table schema reflecting constraints

Manually via API

SUMMIT omo

PRESENTED BY RED HAT

mardi 8 juin 2010

To sum up

Core new features

JPA 2
fetch profiles
partial generators

Hibernate Search: full-text search your entities
Envers: auditing your entities
Hibernate Validator: declarative constraint and validation

SUMMIT ~Worwo

PRESENTED BY RED HAT

mardi 8 juin 2010

Questions?

http://hibernate.org

http://in.relation.to

JBoss

SUMMIT womo

PRESENTED BY RED HAT W

mardi 8 juin 2010

http://hibernate.org
http://hibernate.org
http://in.relation.to
http://in.relation.to

SUMIT

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

Hsummitjbw

READ THE BLOG

http://summitblog.redhat.com/

JBoss
WORLD

PRESENTED BY RED HAT

mardi 8 juin 2010

