
What’s new in Hibernate
an opinionated cherry pick

Emmanuel Bernard
JBoss by Red Hat

mardi 8 juin 2010

Get an overview of
what’s new in Core
explore satellite projects

Make you discover new features

mardi 8 juin 2010

Emmanuel Bernard

Hibernate Search in Action
blog.emmanuelbernard.com
twitter.com/emmanuelbernard
lescastcodeurs.com

mardi 8 juin 2010

Mapping

All of JPA 2 mapping
standardization of specific annotations

Some interesting features

mardi 8 juin 2010

Generator - @MapsId

@Entity
class Customer {
 @Id UserId userId;

 @MapsId("userId")
 @JoinColumns({
 @JoinColumn(name="userfirstname",
 referencedColumnName="firstName"),
 @JoinColumn(name="userlastname",
 referencedColumnName="lastName")
 })
 @OneToOne User user;
}

@Entity
class User {
 @EmbeddedId UserId id;
 Integer age;
}

@Embeddable
class UserId implements Serializable
{
 String firstName;
 String lastName;
}

mardi 8 juin 2010

Generator - Partial generator

@Entity
public class CustomerInventory implements Serializable {
 @Id
 @o.h.a.GenericGenerator(name = "inventory", strategy = "uuid")
 @GeneratedValue(generator = "inventory")
 Integer uuid;

 @Id String location;

 @Id @ManyToOne(cascade = CascadeType.MERGE)
 Customer customer;
}

@Entity
public class Customer implements Serializable {
 @Id
 private int id;
}

mardi 8 juin 2010

Generator - @MapsId: a complex case
@Entity
class Customer {
 @EmbeddedId CustomerId id;
 boolean preferredCustomer;

 @MapsId("userId")
 @JoinColumns({
 @JoinColumn(name="userfirstname",
 referencedColumnName="firstName"),
 @JoinColumn(name="userlastname",
 referencedColumnName="lastName")
 })
 @OneToOne User user;
}

@Embeddable
class CustomerId implements Serializable {
 UserId userId;
 String customerNumber;
}

@Entity
class User {
 @EmbeddedId UserId id;
 Integer age;
}

@Embeddable
class UserId implements Serializable
{
 String firstName;
 String lastName;
}

mardi 8 juin 2010

Column Read/Write

<property name=”creditcard”>
 <column name=”credit_card_num”
 read="decrypt(credit_card_num)"
 write="encrypt(?)"/>
</property>

mardi 8 juin 2010

Runtime - fetch profile

Define more than one fetching profile
classic one @OneToMany(fetch=EAGER)
Some other with specific names

Definition centralized

mardi 8 juin 2010

@Entity
@FetchProfile(name = "all",
 fetchOverrides = {
 @FetchProfile.FetchOverride(
 entity = Customer.class,
 association = "orders",
 mode = FetchMode.JOIN)
 @FetchProfile.FetchOverride(
 entity = Order.class,
 association = "country",
 mode = FetchMode.JOIN)
})
public class Customer {
 @Id @GeneratedValue private long id;
 private String name;
 private long customerNumber;
 @OneToMany private Set<Order> orders;

 // standard getter/setter
}

Session session = ...;
session.enableFetchProfile("all"); // name matches @FetchProfile name
Customer customer = (Customer) session.get(Customer.class, customerId);
session.disableFetchProfile("all"); // or just close the session

mardi 8 juin 2010

Criteria API

Object Oriented query building API
Type-safe
Strongly typed
Type-safe
Strongly typed

optionally use a static metamodel
annotation processor

mardi 8 juin 2010

Static metamodel
@Entity
public class Item {
 @Id @GeneratedValue public Long getId() {}
 public Boolean isShipped() {}
 public String getName() {}
 public BigDecimal getPrice() {}
 @OneToMany public Map<String, Photo> getPhotos() {}
 public Order getOrder() {}
 public Product getProduct() {}
}

@StaticMetamodel(Item.class)
public class Item_ {
 public static SingularAttribute<Item, Long> id;
 public static SingularAttribute<Item, Boolean> shipped;
 public static SingularAttribute<Item, String> name;
 public static SingularAttribute<Item, BigDecimal> price;
 public static MapAttribute<Item, String, Photo> photos;
 public static SingularAttribute<Item, Order> order;
 public static SingularAttribute<Item, Product> product;
}

mardi 8 juin 2010

How to build a query

From EntityManager
CriteriaBuilder is a helper class
CriteriaQuery represents your query
Type safe

EntityManager em;
CriteriaBuilder cb = em.getCriteriaBuilder();

CriteriaQuery<Order> critQ = qb.createQuery(Order.class);

[...]

TypedQuery<Order> q = em.createQuery(critQ);
List<Order> orders = q.getResultList();

mardi 8 juin 2010

Fetching

//select c from Customer c
Root<Customer> customer = cq.from(Customer.class);

//select c from Customer c join fetch c.orders
cq.from(Customer.class)
 .fetch(Customer_.orders, INNER);

mardi 8 juin 2010

Joins and Where

CriteriaBuilder is a function placeholder

SELECT c.name
FROM Customer c JOIN c.orders o JOIN o.items i
WHERE i.product.price > 200

Root<Customer> c = cq.from(Customer.class);
Path<Order, Item> i = c.join(Customer_.orders).join(Order_.items);

cq.select(c.get(Customer_.name))
 .where(
 cb.greaterThan(
 i.get(Item_.product).get(Product_.price)),
 200)
);

mardi 8 juin 2010

Having and count

SELECT c.status, AVG(c.filledOrderCount), COUNT(c)
FROM Customer c
GROUP BY c.status
HAVING c.status IN (1, 2)

Root<Customer> cust = cq.from(Customer.class);

q.select(cust.get(Customer_.status),
 cb.avg(cust.get(Customer_.filledOrderCount),
 cb.count(cust))
 .group(cust.get(Customer_.status))
 .having(cb.in(cust.get(Customer_.status))
 .value(1)
 .value(2));

mardi 8 juin 2010

Subquery

SELECT DISTINCT emp
 FROM Employee emp
 WHERE EXISTS (
 SELECT spouseEmp
 FROM Employee spouseEmp
 WHERE spouse = emp.spouse)

Root<Employee> emp = cq.from(Employee.class);

Subquery<Employee> subQuery = cq.subquery(Employee.class);

Root<Employee> spouse = subQuery.from(Employee.class);
subQuery.where(cb.equal(spouse,emp.get(Employee_.spouse));

cq.distinct(true).where(cb.exists(subQuery));

mardi 8 juin 2010

Support all of JP-QL

Collections and maps
Aggregation, order by, group by
Having, count
Subselect

mardi 8 juin 2010

Lock Mode

Prevents
dirty reads
non-repeatable reads

Types
Optimistic
Pessimistic Read / Write

Force increment
Make use of Database locks in a standard way

mardi 8 juin 2010

Packaging

Core is made of several modules including
annotations
entitymanager
envers
... core :)

Easier for your to chose what you want
doc on the way

mardi 8 juin 2010

Other projects

mardi 8 juin 2010

Hibernate Search

Full-text search for Hibernate application

Solve mismatches
Transparent index synchronization
Object model conversion
Unified programmatic model

Criteria, HQL, SQL, full-text

Clustering

mardi 8 juin 2010

Massive indexing

fullTextSession.createIndexer().startAndWait();

fullTextSession
 .createIndexer(User.class)
 .batchSizeToLoadObjects(25)
 .cacheMode(CacheMode.NORMAL)
 .threadsToLoadObjects(5)
 .threadsForSubsequentFetching(20)
 .startAndWait();

mardi 8 juin 2010

mardi 8 juin 2010

Programmatic API
SearchMapping mapping = new SearchMapping();
 mapping.analyzerDef("stem", StandardTokenizerFactory.class)
 .tokenizerParam("name", "value")
 .tokenizerParam("name2", "value2")
 .filter(LowerCaseFilterFactory.class)
 .filter(SnowballPorterFilterFactory.class)
 .param("language", "English")
 .entity(Address.class).indexed().indexName("Address_Index")
 .property("street1", ElementType.FIELD)
 .field()
 .field()
 .name("street1_iso")
 .store(Store.YES)
 .index(Index.TOKENIZED)
 .analyzer(ISOLatin1Analyzer.class)
 .field()
 .name("street1_ngram")
 .analyzer("ngram")
 .entity(User.class).indexed()
 .property("name", ElementType.METHOD)
 .field();

mardi 8 juin 2010

More

Error handling
report to queue or log

JGroups clustering

Infinispan-backed Lucene Directory

mardi 8 juin 2010

Hibernate Envers

Store audit information transparently
Historical data

Revision is global like SVN
The existing table schema is unchanged

mardi 8 juin 2010

 @Audited
Lookup by revision

including navigation

mardi 8 juin 2010

Query per revision

mardi 8 juin 2010

Query by entity history

mardi 8 juin 2010

Hibernate Validator

Bean Validation RI
Describe constraint on domain model

Automatically validated
on presentation layer (JSF 2, Wicket and more)
on JPA entity persist, update, remove
table schema reflecting constraints

Manually via API

@Entity
public class Customer {
 @CustomerNumber @NotNull
 public long getCustomerNumber() { return customerNumber };
}

mardi 8 juin 2010

To sum up

Core new features
JPA 2
fetch profiles
partial generators
...

Hibernate Search: full-text search your entities
Envers: auditing your entities
Hibernate Validator: declarative constraint and validation

mardi 8 juin 2010

Questions?

http://hibernate.org

http://in.relation.to

33

mardi 8 juin 2010

http://hibernate.org
http://hibernate.org
http://in.relation.to
http://in.relation.to

mardi 8 juin 2010

