
  



  

Going Above and Beyond JSF 

2 with RichFaces & Seam

JBoss, By Red Hat Inc

Lincoln Baxter, III
Senior Software 
Engineer

Jay Balunas 
Principal Software 
Engineer



Who's the big guy?

● Jay Balunas
● RichFaces Project Lead
● JBoss Core Developer
● http://in.relation.to/Bloggers/Jay
● http://twitter.com/tech4j
● jbalunas@jboss.org

Co-author of 
RichFaces
Dzone 
RefCard

http://in.relation.to/Bloggers/Jay
http://twitter.com/tech4j


Who's the tall guy?

Lincoln Baxter, III (@lincolnthree, blog)

● Seam Faces Lead
● Senior Software Engineer, JBoss
● JavaServer Faces EG Member
● Creator of PrettyFaces URL-rewriting

extension for JSF & Java EE
● Co-founder of OcpSoft

● http://ocpsoft.com/

http://twitter.com/lincolnthree
http://ocpsoft.com/
http://seamframework.org/Seam3/FacesModule
http://ocpsoft.com/prettyfaces/
http://ocpsoft.com/


Questions...

Questions are welcome at anytime!*

* As long as:
    “I’m not sure, but can find out”
    “Lets discuss after the talk”
    “I can point you in the right direction, but....”
  are acceptable answers.



The Plan For Today
● Quick review of JavaServer Faces

● Review several features in more detail
● For each feature

● Where JSF 2.0 improved on JSF 1.X
● Where the new feature may fall short
● Show how RichFaces & Seam improve it

● Wrap up, and questions...



Why?



What is JavaServer Faces (JSF)
● Component based UI framework

● Well defined request lifecycle

● Standards based ( JCP )

● Many extension points
● Component libraries
● Phase listeners
● View handlers
● Renderers



What's so great about JSF 2.0

● Annotations instead of 
XML

● Facelets integration
● Composite components  

& templates
● JSP deprecated

● View parameters

● Built in resource handling

● Project stages

Integrated AJAX support

New event systems

Bean validation

Exception handling

Navigation updates

Behaviors framework

EL access to component 
values



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



RichFaces Lighting Review
● Ajax enabled JSF component library

● 100+ components...
● Two tag libraries

● a4j : Framework level ajax support
● rich : Component level ajax support

● Skinning & Themes

● Component Development Kit (CDK)

● Dynamic Resource Framework



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 Built in Ajax via Tags

Key words
@all
@none 
@this
@form

<h:inputText id="score_input" value="#{gameBean.score}" />
    <f:ajax event="keyup" execute=”@this” render="@form" />
</h:inputText>

<h:outputText id="score_output" value="#{gameBean.score}" />

Execute [@this]
  id's to process on server 

Render [@none]
  id's to re-render to client 



RichFaces makes it better with..

● a4j:region
● a4j:queue
● Partial updates for complex 
components



RichFaces Ajax Region
<!-- Verify Address as part of a large form -->
<a4j:region>
   <h:inputText id="addr_01" ... />
   <h:inputText id="addr_02" ... />
   <h:inputText id="city" ... />
   <h:inputText id="state" ... />
   <h:inputText id="zip" ... />
   ...
   <h:commandLink action="#{registerBean.verifyAddress}" >
       <a4j:ajax/>
       <!-- 
       <f:ajax execute="@this addr_01 addr_02 city state 
zip"/> 
       -->
   </h:commandLink>
</a4j:region>



JSF 2.0 Request Queue

● Specification added Ajax requests
● Requests need to be queued to preserve state
● Good, but limited

● Very few options
● No client side api

● Can lead to traffic jams...



RichFaces Request Queues
● Adds a logical queue on top

● Usability & customizations
● Options

● requestDelay & request grouping
● IgnoreDupResponses (in development)

● Client side API
● <queueObj>.getSize()

● <queueObj>.isEmpty()

● <queueObj>.set/getQueueOptions()

● etc...



RichFaces Request Queues

<h:form id="form">
  <!-- Queue applied to whole form -->
  <a4j:queue requestDelay="500"/>

  <h:inputText id="team1" value="#{gameBean.team1}" />
    <a4j:ajax event="keyup" .../>
  </h:inputText>
  <h:inputText id="team2" value="#{gameBean.team2}" />
    <a4j:ajax event="keyup" .../>
  </h:inputText>
  ...
</h:form>



RichFaces Request Queues

<!-- Player lookups are more costly, send less often -->
<a4j:queue name="player_queue" requestDelay="1000"/>
...
<h:inputText id="player" value="#{gameBean.cur_player}" />
   <a4j:ajax event="keyup" ...>
      <!-- Requests from here will use player_queue -->
      <a4j:attachQueue name="player_queue"/>
   </a4j:ajax>
</h:inputText>



Partial Updates for Component Parts

● JSF 2.0 limits updates
● Key words ( @form, @this, etc.. )
● specific component ids

● RichFaces adds updates within complex components
● Table supports: @body, @header, @footer

● @row & @cell still in development

● Support for collection of rows
● Refer to specific rows for render
● In development

● Others, like tabPanel:@header in future



Partial Updates for Iteration Components

 <!-- Will render only the body of the table -->
 <a4j:ajax render="table_id:@body"/>
    
 <!-- Will render only the current row -->
 <rich:column>
 <a4j:commandButton render="@row"/>
 </rich:column>
    
 <!-- Will render the collection of rows/cells -->
 <a4j:commandButton render=
      "#{rich:rowKeys(someCollection, 'tableId')}:cellId"/>



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 Loading Images

<!-- Loads from <web-root>/resources -->
<h:graphicImage name="fenway.jpeg />
        
<!-- Loads from stadiums.jar/META-INF/resources -->
<h:graphicImage name="foxborough.jpeg" library="stadiums"/>

<!-- EL notation -->
<h:graphicImage value="#{resource['stadiums:foxborough.jpeg]}" />



JSF 2.0 Loading JavaScript & CSS

<!-- Loads where you put it -->
<h:outputScript name=”patriots.js”/>

<!-- Loads in the <h:head> -->
<h:outputScript name=”patriots.js” target=”head”/> 

<!-- CSS always loads in <h:head> -->
<h:outputStylesheet name=”celtics.css” library=”garden”/>

● Two new resource components



What if you need to manipulate resources...



Dynamic Resources in RichFaces

● Extends JSF 2.0 resource handler

● Used by RichFaces internally
● Skinning
● CSS with embedded EL
● Java2D

● Make your own!!
● Custom icons with state info
● Dynamic CSS & JS



@DynamicResource
public class BradyResource implements UserResource{
    protected byte[] mossObject;
    protected byte[] welkerObject;
   
    protected boolean longBall;
   
    public InputStream getInputStream() throws IOException 
{
       byte[] data;
       if (longBall) {
           data = mossObject;
       } else{
           data = welkerObject;
       }
       return new ByteArrayInputStream(data);
    }
    ....



Now Go Get It...

<h:outputScript library="patriots" name="BradyResource"/>

● Assuming BradyResource is in
● Base package
● patriots.jar



Sending in the parameters...

    @ResourceParameter
    protected boolean longBall;
    

<h:outputScript value="#{resource['patriots:
                         BradyResource?longBall=true]}"/>



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 Component Development

● New annotations
● @FacesComponent, @FacesRenderer

● Create:
● Tag handlers and tag lib files
● Faces-config.xml file
● Extend UIComponentBase class

● Implement the decode/encode*() methods

● Component functionality classe
● Maintain it all...



JSF 2 Component Development
        ResponseWriter writer = context.getResponseWriter();
        assert(writer != null);
        String formClientId = RenderKitUtils.getFormClientId(command, context);
        if (formClientId == null) {
            return;
        }

        //make link act as if it's a button using javascript        
        writer.startElement("a", command);
        writeIdAttributeIfNecessary(context, writer, command);
        writer.writeAttribute("href", "#", "href");
        RenderKitUtils.renderPassThruAttributes(context,writer,command, ATTRIBUTES,  
                        getNonOnClickBehaviors(command));

        RenderKitUtils.renderXHTMLStyleBooleanAttributes(writer, command);

        String target = (String) command.getAttributes().get("target");
        if (target != null) {
            target = target.trim();
        } else {
            target = "";
        }

        Collection<ClientBehaviorContext.Parameter> params = getBehaviorParameters(command);
        RenderKitUtils.renderOnclick(context, command, params, target, true);

        writeCommonLinkAttributes(writer, command);

        // render the current value as link text.
        writeValue(command, writer);
        writer.flush();

Just part of 
CommandLinkRenderer.java



RichFaces Component Development Kit

● Does much of the leg work for you!

● In many situations you only need:
● Abstract component class
● Renderer template in xml/xhtml 

● Integrates into your build
● Maven-plugin

● IDE support 
● standard xml files & schema



RichFaces Renderer Template
<cc:implementation>
  <c:choose>
    <c:when test="#{not component.attributes['disabled']}">
      <a id="#{clientId}" name="#{clientId}"
           cdk:passThroughWithExclusions="value"
           onclick="#{this.getOnClick(facesContext, component)}"
           href="#">
        #{component.attributes['value']}
        <cdk:call expression="renderChildren(facesContext, component)" />
      </a>
    </c:when>
    <c:otherwise>
      <span id="#{clientId}" cdk:passThroughWithExclusions="value">
        #{component.attributes['value']}
        <cdk:call expression="renderChildren(facesContext, component)" />
      </span>
    </c:otherwise>
  </c:choose>
</cc:implementation>



RichFaces Component Development
● Abstract component class

● Only implement component functionality
● CDK will extend it based on:

● Template
● Config options

● CDK will compile template for renderer
● Including concrete component class

● Getters/setters, etc..

● Tag handlers, tab lib, and faces-config files



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



What is Bean Validation

● Bean Validation JSR-303 
● Part of Java EE6

● Generic, tier independent constraints

● Custom, and composition constraints possible

● Constraint groups, and object graph validation too

● Message localization

● Define constraints once, apply everywhere*



Bean Validation Sample
public class User {
   @NotEmpty @Size(max=100) 
   private String loginname;
    
   @NotEmpty 
   @Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-
9]+")
   private String email;
    
   @NotEmpty @ValidTeam
   private String team;
}

Custom constraint



JSF 2.0 Bean Validation Integration

        Login:
        <h:inputText id="login" value="#{user.login}"/>
        <h:message for="login"/>
        <br/>
        Email:
        <h:inputText id="email" value="#{user.email}"/>
        <h:message for="email"/>
        <br/>
        Team:
        <h:inputText id="team" value="#{user.team}">
            <f:validateBean disabled="true"/> 
        </h:inputText>
        <h:message for="team"/>
        <br/>
    



RichFaces Bean Validation
● Takes it to the Client

● Ajax fallback options
● JavaScript:

● Validation, Converters, Messages
● Can be applied to:

● Inputs, Forms, View, or Application wide

● Develop you own validators
● Client/server JS mapping 



RichFaces Client Validation - Inputs

Login:
<h:inputText id="login" value="#{user.login}">
    <rich:clientValidator event="keyup"/>
</h:inputText>
<h:message for="login"/>
<br/>

Email:
<h:inputText id="email" value="#{user.email}">
    <rich:clientValidator event="keyup"/>
</h:inputText>
<h:message for="email"/>
<br/>



RichFaces Client Validation - Forms
<h:form id="register">
   <!-- This will verify when form submitted 
        & default JSF event of form children -->
   <rich:clientValidator/>

   Login:
   <h:inputText id="login" value="#{user.login}"/>
   <h:message for="login"/>
   <br/>

   Email:
   <h:inputText id="email" value="#{user.email}"/>
   <h:message for="email"/>
   <br/>



RichFaces Client Validation

<h:form id="register">
  <rich:clientValidator/>
   
  Login:
  <h:inputText id="login" value="#{user.login}">
     <!-- would trigger validation pre-request on key up-->
     <rich:clientValidator event="keyup"/>
     <f:ajax event="keyup" listener="#{bean.loginTaken}"/>
  </h:inputText>
  <h:message for="login"/>

  ...



RichFaces Client Validation

<h:form id="register">
  <rich:clientValidator/>
  ...
  Name:
  <h:inputText id="name" value="#{user.name}">
     <!-- Disable client validation -->
     <rich:clientValidator disabled="true"/>
  </h:inputText>
  <h:message for="name"/>
  ...



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 + RichFaces == Rich & Easy JSF
● JSF 2.0 added a lot

● Left the door open for inovation!!
● RichFaces is prototyping the future of the spec

● You get to use it first with RichFaces

● Improvements
● Usability, and performance
● Dynamic resources
● Component development
● Client side bean validation
● & more....



Rich Components!



RichFaces Project Updates
● 4.0 Release Plans

● Alpha2 just released

● Milestone releases every month

● Lots of ways to get involved and stay informed

● Twitter ( http://twitter/com/richfaces )

● Forums

● http://community.jboss.org/en/richfaces/dev
● Development projects & tasks

● https://jira.jboss.org/browse/RF
● Team Meetings, and IRC

● #richfaces @ irc.freenode.net

http://twitter/com/richfaces
https://jira.jboss.org/browse/RF


Beyond JSF 2.0 with Seam Faces



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Seam Faces – An Introduction

● Portable extension for JavaServer Faces & CDI

● One of many independent modules in Seam 3

● Plug & Play

● The icing on your cake



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Conversion/Validation in JSF 2.0

@FacesValidator("addressValidator")
public class AddressValidator implements Validator
{
   ...
}

● No more XML

● Automatic conversion
@FacesConverter(forClass = ZipCode.class)
public class ZipCodeConverter implements Converter
{
   ...
}



Cross-field Validation in JSF 2.0

@FacesValidator("badAddressValidator")
public class BadAddressValidator implements Validator
{
   Directory directory 

= new DatabaseAddressDirectory("host", 3036, "schema", "username", "password");

   @Override
   public void validate(FacesContext context, UIComponent c, Object val) throws ValidatorException
   {
      String city = context.getExternalContext().getRequestParameterMap().get("form:table:city");
      String state = context.getExternalContext().getRequestParameterMap().get("form:table:state");
      String zipValue = context.getExternalContext().getRequestParameterMap().get("form:table:zip");

      ZipCode zip = new ZipCode(Integer.valueOf(zipValue));

      if (directory.exists(city, state, zip))
      {
         throw new ValidatorException(new FacesMessage("Invalid address. Please try again."));
      }
   }
}



The Seam Faces Answer

@FacesValidator("addressValidator")
public class AddressValidator implements Validator
{
   @Inject Directory directory;

   @Inject 
   @InputField String city;

   @Inject 
   @InputField String state;

   @Inject 
   @InputField ZipCode zip;

   public void validate(FacesContext context, UIComponent c, Object val) throws ValidatorException
   {
      if (!directory.exists(city, state, zip))
      {
         throw new ValidatorException("Invalid address. Please try again.");
      }
   }
}



The Seam Faces Answer

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:h="http://java.sun.com/jsf/html"
      xmlns:f="http://java.sun.com/jsf/core"
      xmlns:s="http://jboss.org/seam/faces">

<h:form id="form">

City:  <h:inputText id="city" value="#{bean.city}" /> <br/>
State: <h:inputText id="state" value="#{bean.state}" /> <br/>
Zip:   <h:inputText id="zipCode" value="#{bean.zip}" /> <br/>

<h:commandButton id="submit" value="Submit" action="#{bean.submit}" />
        

<s:validateForm validatorId="addressValidator" fields="zip=zipCode" />

</h:form>

</html>



Seam Faces - Converters & Validators

● @Inject and @*Scoped support

● Automatic type-conversion

● Built-in support for i18n and l10n

● Designed for re-use



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Page actions with GET in JSF 2.0

“You can do that?” 

<f:metadata>
<f:viewParam name="id" value="#{blogManager.entryId}" />
<f:event name="preRenderView" listener="#{blogManager.loadEntry}" />

</f:metadata>

@ManagedBean
@RequestScoped
public class BlogManager
{
   public void listener(ComponentSystemEvent event)

throws AbortProcessingException
   {
      // do something here
   }
}



Page actions with GET in JSF 2.0

● But can you navigate?

● Can you execute in a different phase, conditionally?

● Can you enable/disable execution on a POST?



The Seam Faces Answer

<f:metadata>
<f:viewParam name="id" value="#{blogManager.entryId}" />

<s:viewAction action="#{blogManager.loadEntry}" phase="APPLY_REQUEST_VALUES"
if="#{conversation.transient}" onPostback="true" /> 

</f:metadata>

@Named
public class BlogManager
{
   private String entryId;
   private Entry entry;

   public void loadEntry() 
   {
      // attempt to load the entry 
   }
}



The Seam Faces Answer

   <navigation-rule>
      <from-view-id>/entry.xhtml</from-view-id>
      <navigation-case>
         <from-action>#{blogManager.loadEntry}</from-action>
         <if>#{empty blogManager.entry}</if>
         <to-view-id>/home.xhtml</to-view-id>
         <redirect/>
      </navigation-case>
   </navigation-rule>



Seam Faces – Page actions with GET

● Integrated with Faces Navigation

● Invoke at specific phases of JSF lifecycle

● Conditional invocation on GET / POST

● Conditional invocation via EL



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Faces Messages in JSF 2.0

FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(SEVERITY_INFO, "Finally...", null));



Faces Messages after a Redirect



The Seam Faces Answer

@Inject 
Messages messages;

messages.info("What a breath of {0} {1}!", "fresh", "air");



The Seam Faces Answer

● A true @FlashScoped context

● Lives from “now” until Render Response (even through 
HTTP redirects and navigation)

● Messages automatically saved in flash scope

● Fluent, testable API from Seam International Module

● Supports i18n and resource_bundle.properties

http://seamframework.org/Seam3/InternationalModule


Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Testing JSF 2.0

FacesContext.getCurrentInstance();



The Seam Faces Answer

@Inject
FacesContext context;



Testing with Seam Faces

● Loose-coupling through @Inject 

● Providers for:

@Inject FacesContext

@Inject ExternalContext

@Inject NavigationHandler

@Inject @Faces Locale 



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Summary of JSF 2.0 with Seam Faces

● Conversion & Validation
● @Inject and @*Scoped support

● Cross-field validation
● Page Actions

● With integrated navigation
● Messages

● Translated, Survive redirects via @FlashScoped
● Empowered Testability

● Avoid statics, use @Inject



Seam Faces Plan

● Release Plans:
● Working on 3.0.0.Alpha4
● Beta by late-July
● Try it now! 

● Get involved in the Project:

http://seamframework.org/Seam3/FacesModule 

● Submit feature requests (and bugs) to Seam Faces:

https://jira.jboss.org/browse/SEAMFACES 

http://docs.jboss.org/seam/3/faces/reference/snapshot/en-US/html_single/#faces.installation
http://seamframework.org/Seam3/FacesModule
https://jira.jboss.org/browse/SEAMFACES


Whats bugging you with JSF 2.0

● What do you wish were added to spec?

● What is still missing?

● We are maintaining a list of updates for the next rev

http://seamframework.org/Documentation/JSF21
● Both Seam, and RichFaces topics

http://seamframework.org/Documentation/JSF21


Wrap up and Q&A



  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

