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Who's the big guy?

● Jay Balunas
● RichFaces Project Lead
● JBoss Core Developer
● http://in.relation.to/Bloggers/Jay
● http://twitter.com/tech4j
● jbalunas@jboss.org

Co-author of 
RichFaces
Dzone 
RefCard

http://in.relation.to/Bloggers/Jay
http://twitter.com/tech4j


Who's the tall guy?

Lincoln Baxter, III (@lincolnthree, blog)

● Seam Faces Lead
● Senior Software Engineer, JBoss
● JavaServer Faces EG Member
● Creator of PrettyFaces URL-rewriting

extension for JSF & Java EE
● Co-founder of OcpSoft

● http://ocpsoft.com/

http://twitter.com/lincolnthree
http://ocpsoft.com/
http://seamframework.org/Seam3/FacesModule
http://ocpsoft.com/prettyfaces/
http://ocpsoft.com/


Questions...

Questions are welcome at anytime!*

* As long as:
    “I’m not sure, but can find out”
    “Lets discuss after the talk”
    “I can point you in the right direction, but....”
  are acceptable answers.



The Plan For Today
● Quick review of JavaServer Faces

● Review several features in more detail
● For each feature

● Where JSF 2.0 improved on JSF 1.X
● Where the new feature may fall short
● Show how RichFaces & Seam improve it

● Wrap up, and questions...



Why?



What is JavaServer Faces (JSF)
● Component based UI framework

● Well defined request lifecycle

● Standards based ( JCP )

● Many extension points
● Component libraries
● Phase listeners
● View handlers
● Renderers



What's so great about JSF 2.0

● Annotations instead of 
XML

● Facelets integration
● Composite components  

& templates
● JSP deprecated

● View parameters

● Built in resource handling

● Project stages

Integrated AJAX support

New event systems

Bean validation

Exception handling

Navigation updates

Behaviors framework

EL access to component 
values



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



RichFaces Lighting Review
● Ajax enabled JSF component library

● 100+ components...
● Two tag libraries

● a4j : Framework level ajax support
● rich : Component level ajax support

● Skinning & Themes

● Component Development Kit (CDK)

● Dynamic Resource Framework



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 Built in Ajax via Tags

Key words
@all
@none 
@this
@form

<h:inputText id="score_input" value="#{gameBean.score}" />
    <f:ajax event="keyup" execute=”@this” render="@form" />
</h:inputText>

<h:outputText id="score_output" value="#{gameBean.score}" />

Execute [@this]
  id's to process on server 

Render [@none]
  id's to re-render to client 



RichFaces makes it better with..

● a4j:region
● a4j:queue
● Partial updates for complex 
components



RichFaces Ajax Region
<!-- Verify Address as part of a large form -->
<a4j:region>
   <h:inputText id="addr_01" ... />
   <h:inputText id="addr_02" ... />
   <h:inputText id="city" ... />
   <h:inputText id="state" ... />
   <h:inputText id="zip" ... />
   ...
   <h:commandLink action="#{registerBean.verifyAddress}" >
       <a4j:ajax/>
       <!-- 
       <f:ajax execute="@this addr_01 addr_02 city state 
zip"/> 
       -->
   </h:commandLink>
</a4j:region>



JSF 2.0 Request Queue

● Specification added Ajax requests
● Requests need to be queued to preserve state
● Good, but limited

● Very few options
● No client side api

● Can lead to traffic jams...



RichFaces Request Queues
● Adds a logical queue on top

● Usability & customizations
● Options

● requestDelay & request grouping
● IgnoreDupResponses (in development)

● Client side API
● <queueObj>.getSize()

● <queueObj>.isEmpty()

● <queueObj>.set/getQueueOptions()

● etc...



RichFaces Request Queues

<h:form id="form">
  <!-- Queue applied to whole form -->
  <a4j:queue requestDelay="500"/>

  <h:inputText id="team1" value="#{gameBean.team1}" />
    <a4j:ajax event="keyup" .../>
  </h:inputText>
  <h:inputText id="team2" value="#{gameBean.team2}" />
    <a4j:ajax event="keyup" .../>
  </h:inputText>
  ...
</h:form>



RichFaces Request Queues

<!-- Player lookups are more costly, send less often -->
<a4j:queue name="player_queue" requestDelay="1000"/>
...
<h:inputText id="player" value="#{gameBean.cur_player}" />
   <a4j:ajax event="keyup" ...>
      <!-- Requests from here will use player_queue -->
      <a4j:attachQueue name="player_queue"/>
   </a4j:ajax>
</h:inputText>



Partial Updates for Component Parts

● JSF 2.0 limits updates
● Key words ( @form, @this, etc.. )
● specific component ids

● RichFaces adds updates within complex components
● Table supports: @body, @header, @footer

● @row & @cell still in development

● Support for collection of rows
● Refer to specific rows for render
● In development

● Others, like tabPanel:@header in future



Partial Updates for Iteration Components

 <!-- Will render only the body of the table -->
 <a4j:ajax render="table_id:@body"/>
    
 <!-- Will render only the current row -->
 <rich:column>
 <a4j:commandButton render="@row"/>
 </rich:column>
    
 <!-- Will render the collection of rows/cells -->
 <a4j:commandButton render=
      "#{rich:rowKeys(someCollection, 'tableId')}:cellId"/>



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development
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● Summary & Project Updates



JSF 2.0 Loading Images

<!-- Loads from <web-root>/resources -->
<h:graphicImage name="fenway.jpeg />
        
<!-- Loads from stadiums.jar/META-INF/resources -->
<h:graphicImage name="foxborough.jpeg" library="stadiums"/>

<!-- EL notation -->
<h:graphicImage value="#{resource['stadiums:foxborough.jpeg]}" />



JSF 2.0 Loading JavaScript & CSS

<!-- Loads where you put it -->
<h:outputScript name=”patriots.js”/>

<!-- Loads in the <h:head> -->
<h:outputScript name=”patriots.js” target=”head”/> 

<!-- CSS always loads in <h:head> -->
<h:outputStylesheet name=”celtics.css” library=”garden”/>

● Two new resource components



What if you need to manipulate resources...



Dynamic Resources in RichFaces

● Extends JSF 2.0 resource handler

● Used by RichFaces internally
● Skinning
● CSS with embedded EL
● Java2D

● Make your own!!
● Custom icons with state info
● Dynamic CSS & JS



@DynamicResource
public class BradyResource implements UserResource{
    protected byte[] mossObject;
    protected byte[] welkerObject;
   
    protected boolean longBall;
   
    public InputStream getInputStream() throws IOException 
{
       byte[] data;
       if (longBall) {
           data = mossObject;
       } else{
           data = welkerObject;
       }
       return new ByteArrayInputStream(data);
    }
    ....



Now Go Get It...

<h:outputScript library="patriots" name="BradyResource"/>

● Assuming BradyResource is in
● Base package
● patriots.jar



Sending in the parameters...

    @ResourceParameter
    protected boolean longBall;
    

<h:outputScript value="#{resource['patriots:
                         BradyResource?longBall=true]}"/>



Beyond JSF 2.0 with RichFaces

● An Introduction
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JSF 2.0 Component Development

● New annotations
● @FacesComponent, @FacesRenderer

● Create:
● Tag handlers and tag lib files
● Faces-config.xml file
● Extend UIComponentBase class

● Implement the decode/encode*() methods

● Component functionality classe
● Maintain it all...



JSF 2 Component Development
        ResponseWriter writer = context.getResponseWriter();
        assert(writer != null);
        String formClientId = RenderKitUtils.getFormClientId(command, context);
        if (formClientId == null) {
            return;
        }

        //make link act as if it's a button using javascript        
        writer.startElement("a", command);
        writeIdAttributeIfNecessary(context, writer, command);
        writer.writeAttribute("href", "#", "href");
        RenderKitUtils.renderPassThruAttributes(context,writer,command, ATTRIBUTES,  
                        getNonOnClickBehaviors(command));

        RenderKitUtils.renderXHTMLStyleBooleanAttributes(writer, command);

        String target = (String) command.getAttributes().get("target");
        if (target != null) {
            target = target.trim();
        } else {
            target = "";
        }

        Collection<ClientBehaviorContext.Parameter> params = getBehaviorParameters(command);
        RenderKitUtils.renderOnclick(context, command, params, target, true);

        writeCommonLinkAttributes(writer, command);

        // render the current value as link text.
        writeValue(command, writer);
        writer.flush();

Just part of 
CommandLinkRenderer.java



RichFaces Component Development Kit

● Does much of the leg work for you!

● In many situations you only need:
● Abstract component class
● Renderer template in xml/xhtml 

● Integrates into your build
● Maven-plugin

● IDE support 
● standard xml files & schema



RichFaces Renderer Template
<cc:implementation>
  <c:choose>
    <c:when test="#{not component.attributes['disabled']}">
      <a id="#{clientId}" name="#{clientId}"
           cdk:passThroughWithExclusions="value"
           onclick="#{this.getOnClick(facesContext, component)}"
           href="#">
        #{component.attributes['value']}
        <cdk:call expression="renderChildren(facesContext, component)" />
      </a>
    </c:when>
    <c:otherwise>
      <span id="#{clientId}" cdk:passThroughWithExclusions="value">
        #{component.attributes['value']}
        <cdk:call expression="renderChildren(facesContext, component)" />
      </span>
    </c:otherwise>
  </c:choose>
</cc:implementation>



RichFaces Component Development
● Abstract component class

● Only implement component functionality
● CDK will extend it based on:

● Template
● Config options

● CDK will compile template for renderer
● Including concrete component class

● Getters/setters, etc..

● Tag handlers, tab lib, and faces-config files



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



What is Bean Validation

● Bean Validation JSR-303 
● Part of Java EE6

● Generic, tier independent constraints

● Custom, and composition constraints possible

● Constraint groups, and object graph validation too

● Message localization

● Define constraints once, apply everywhere*



Bean Validation Sample
public class User {
   @NotEmpty @Size(max=100) 
   private String loginname;
    
   @NotEmpty 
   @Pattern(regexp = "[a-zA-Z0-9]+@[a-zA-Z0-9]+\\.[a-zA-Z0-
9]+")
   private String email;
    
   @NotEmpty @ValidTeam
   private String team;
}

Custom constraint



JSF 2.0 Bean Validation Integration

        Login:
        <h:inputText id="login" value="#{user.login}"/>
        <h:message for="login"/>
        <br/>
        Email:
        <h:inputText id="email" value="#{user.email}"/>
        <h:message for="email"/>
        <br/>
        Team:
        <h:inputText id="team" value="#{user.team}">
            <f:validateBean disabled="true"/> 
        </h:inputText>
        <h:message for="team"/>
        <br/>
    



RichFaces Bean Validation
● Takes it to the Client

● Ajax fallback options
● JavaScript:

● Validation, Converters, Messages
● Can be applied to:

● Inputs, Forms, View, or Application wide

● Develop you own validators
● Client/server JS mapping 



RichFaces Client Validation - Inputs

Login:
<h:inputText id="login" value="#{user.login}">
    <rich:clientValidator event="keyup"/>
</h:inputText>
<h:message for="login"/>
<br/>

Email:
<h:inputText id="email" value="#{user.email}">
    <rich:clientValidator event="keyup"/>
</h:inputText>
<h:message for="email"/>
<br/>



RichFaces Client Validation - Forms
<h:form id="register">
   <!-- This will verify when form submitted 
        & default JSF event of form children -->
   <rich:clientValidator/>

   Login:
   <h:inputText id="login" value="#{user.login}"/>
   <h:message for="login"/>
   <br/>

   Email:
   <h:inputText id="email" value="#{user.email}"/>
   <h:message for="email"/>
   <br/>



RichFaces Client Validation

<h:form id="register">
  <rich:clientValidator/>
   
  Login:
  <h:inputText id="login" value="#{user.login}">
     <!-- would trigger validation pre-request on key up-->
     <rich:clientValidator event="keyup"/>
     <f:ajax event="keyup" listener="#{bean.loginTaken}"/>
  </h:inputText>
  <h:message for="login"/>

  ...



RichFaces Client Validation

<h:form id="register">
  <rich:clientValidator/>
  ...
  Name:
  <h:inputText id="name" value="#{user.name}">
     <!-- Disable client validation -->
     <rich:clientValidator disabled="true"/>
  </h:inputText>
  <h:message for="name"/>
  ...



Beyond JSF 2.0 with RichFaces

● An Introduction

● Built in Ajax

● Built in Resource Handling

● Component Development

● Client Side Bean Validation

● Summary & Project Updates



JSF 2.0 + RichFaces == Rich & Easy JSF
● JSF 2.0 added a lot

● Left the door open for inovation!!
● RichFaces is prototyping the future of the spec

● You get to use it first with RichFaces

● Improvements
● Usability, and performance
● Dynamic resources
● Component development
● Client side bean validation
● & more....



Rich Components!



RichFaces Project Updates
● 4.0 Release Plans

● Alpha2 just released

● Milestone releases every month

● Lots of ways to get involved and stay informed

● Twitter ( http://twitter/com/richfaces )

● Forums

● http://community.jboss.org/en/richfaces/dev
● Development projects & tasks

● https://jira.jboss.org/browse/RF
● Team Meetings, and IRC

● #richfaces @ irc.freenode.net

http://twitter/com/richfaces
https://jira.jboss.org/browse/RF


Beyond JSF 2.0 with Seam Faces



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Seam Faces – An Introduction

● Portable extension for JavaServer Faces & CDI

● One of many independent modules in Seam 3

● Plug & Play

● The icing on your cake



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Conversion/Validation in JSF 2.0

@FacesValidator("addressValidator")
public class AddressValidator implements Validator
{
   ...
}

● No more XML

● Automatic conversion
@FacesConverter(forClass = ZipCode.class)
public class ZipCodeConverter implements Converter
{
   ...
}



Cross-field Validation in JSF 2.0

@FacesValidator("badAddressValidator")
public class BadAddressValidator implements Validator
{
   Directory directory 

= new DatabaseAddressDirectory("host", 3036, "schema", "username", "password");

   @Override
   public void validate(FacesContext context, UIComponent c, Object val) throws ValidatorException
   {
      String city = context.getExternalContext().getRequestParameterMap().get("form:table:city");
      String state = context.getExternalContext().getRequestParameterMap().get("form:table:state");
      String zipValue = context.getExternalContext().getRequestParameterMap().get("form:table:zip");

      ZipCode zip = new ZipCode(Integer.valueOf(zipValue));

      if (directory.exists(city, state, zip))
      {
         throw new ValidatorException(new FacesMessage("Invalid address. Please try again."));
      }
   }
}



The Seam Faces Answer

@FacesValidator("addressValidator")
public class AddressValidator implements Validator
{
   @Inject Directory directory;

   @Inject 
   @InputField String city;

   @Inject 
   @InputField String state;

   @Inject 
   @InputField ZipCode zip;

   public void validate(FacesContext context, UIComponent c, Object val) throws ValidatorException
   {
      if (!directory.exists(city, state, zip))
      {
         throw new ValidatorException("Invalid address. Please try again.");
      }
   }
}



The Seam Faces Answer

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:h="http://java.sun.com/jsf/html"
      xmlns:f="http://java.sun.com/jsf/core"
      xmlns:s="http://jboss.org/seam/faces">

<h:form id="form">

City:  <h:inputText id="city" value="#{bean.city}" /> <br/>
State: <h:inputText id="state" value="#{bean.state}" /> <br/>
Zip:   <h:inputText id="zipCode" value="#{bean.zip}" /> <br/>

<h:commandButton id="submit" value="Submit" action="#{bean.submit}" />
        

<s:validateForm validatorId="addressValidator" fields="zip=zipCode" />

</h:form>

</html>



Seam Faces - Converters & Validators

● @Inject and @*Scoped support

● Automatic type-conversion

● Built-in support for i18n and l10n

● Designed for re-use



Beyond JSF 2.0 with Seam Faces
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● Page Actions
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● Empowered Testability

● Summary



Page actions with GET in JSF 2.0

“You can do that?” 

<f:metadata>
<f:viewParam name="id" value="#{blogManager.entryId}" />
<f:event name="preRenderView" listener="#{blogManager.loadEntry}" />

</f:metadata>

@ManagedBean
@RequestScoped
public class BlogManager
{
   public void listener(ComponentSystemEvent event)

throws AbortProcessingException
   {
      // do something here
   }
}



Page actions with GET in JSF 2.0

● But can you navigate?

● Can you execute in a different phase, conditionally?

● Can you enable/disable execution on a POST?



The Seam Faces Answer

<f:metadata>
<f:viewParam name="id" value="#{blogManager.entryId}" />

<s:viewAction action="#{blogManager.loadEntry}" phase="APPLY_REQUEST_VALUES"
if="#{conversation.transient}" onPostback="true" /> 

</f:metadata>

@Named
public class BlogManager
{
   private String entryId;
   private Entry entry;

   public void loadEntry() 
   {
      // attempt to load the entry 
   }
}



The Seam Faces Answer

   <navigation-rule>
      <from-view-id>/entry.xhtml</from-view-id>
      <navigation-case>
         <from-action>#{blogManager.loadEntry}</from-action>
         <if>#{empty blogManager.entry}</if>
         <to-view-id>/home.xhtml</to-view-id>
         <redirect/>
      </navigation-case>
   </navigation-rule>



Seam Faces – Page actions with GET

● Integrated with Faces Navigation

● Invoke at specific phases of JSF lifecycle

● Conditional invocation on GET / POST

● Conditional invocation via EL



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Faces Messages in JSF 2.0

FacesContext.getCurrentInstance().addMessage(null, new FacesMessage(SEVERITY_INFO, "Finally...", null));



Faces Messages after a Redirect



The Seam Faces Answer

@Inject 
Messages messages;

messages.info("What a breath of {0} {1}!", "fresh", "air");



The Seam Faces Answer

● A true @FlashScoped context

● Lives from “now” until Render Response (even through 
HTTP redirects and navigation)

● Messages automatically saved in flash scope

● Fluent, testable API from Seam International Module

● Supports i18n and resource_bundle.properties

http://seamframework.org/Seam3/InternationalModule


Beyond JSF 2.0 with Seam Faces
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● Summary



Testing JSF 2.0

FacesContext.getCurrentInstance();



The Seam Faces Answer

@Inject
FacesContext context;



Testing with Seam Faces

● Loose-coupling through @Inject 

● Providers for:

@Inject FacesContext

@Inject ExternalContext

@Inject NavigationHandler

@Inject @Faces Locale 



Beyond JSF 2.0 with Seam Faces

● An Introduction

● Conversion & Validation

● Page Actions

● Messages

● Empowered Testability

● Summary



Summary of JSF 2.0 with Seam Faces

● Conversion & Validation
● @Inject and @*Scoped support

● Cross-field validation
● Page Actions

● With integrated navigation
● Messages

● Translated, Survive redirects via @FlashScoped
● Empowered Testability

● Avoid statics, use @Inject



Seam Faces Plan

● Release Plans:
● Working on 3.0.0.Alpha4
● Beta by late-July
● Try it now! 

● Get involved in the Project:

http://seamframework.org/Seam3/FacesModule 

● Submit feature requests (and bugs) to Seam Faces:

https://jira.jboss.org/browse/SEAMFACES 

http://docs.jboss.org/seam/3/faces/reference/snapshot/en-US/html_single/#faces.installation
http://seamframework.org/Seam3/FacesModule
https://jira.jboss.org/browse/SEAMFACES


Whats bugging you with JSF 2.0

● What do you wish were added to spec?

● What is still missing?

● We are maintaining a list of updates for the next rev

http://seamframework.org/Documentation/JSF21
● Both Seam, and RichFaces topics

http://seamframework.org/Documentation/JSF21


Wrap up and Q&A
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