

David A. Webster
Chief Architect
dawebster@up.com

Enterprise Java Hosting in a Cloud Environment

Sweta Vajjhala
Associate Project Engineer
svajjhal@up.com

Web Infrastructure
Union Pacific Railroad
24 June 2010

Agenda

History of WebLogic and J2EE at Union Pacific (UP)

Web Architecture Review

Support Systems

Move to Spring Framework

UP’s Hosting Environment Overview

Current

Future

History of Java at Union Pacific

1997
Adoption of J2EE

1995
Java introduced at Union
Pacific as a supplement to
mainframe systems

Groundwork for later
distributed system

2000
Introduction of WebLogic
5.1 at UP

Java otherwise known as
“distributed systems” 2014

Retire Mainframe
Systems

2002
UP moves to
WebLogic 6.1

All Java processing
done inside WebLogic
based on full J2EE
(EJB) spec

2005
UP moves to
WebLogic 8.1

2008
UP moves to
WebLogic 10.3

2010
UP moves to
WebLogic 10.3 and
JBoss

2003
Separate JMS &
Tuxedo (Jolt)
introduced

Web Server Architecture

Web Request Trace - SiteMinder

Supporting Systems

Source Code
Control

Home-grown
solution

Change Control

• Based on check-out from Subversion
• Build/deploy to test
• Certify in test and deploy to production

Security (SiteMinder
& LDAP)

• Each application
has its own login ID

JMS

ESB

Monitoring
Feeds

From Development to Production

Install Desktop
Environment

Build initially to
desktop

Deploy to DEV
using desktop tools

Pass user interface
inspection

Deploy to TEST
using change control

Certify TEST build

PROD deploy from TEST
(no builds)

WebLogic and the move to 10.3 (Spring)

Fall 2007
New applications adopt
Spring framework

Many apps move to
Stand-Alone JVMs

Fall 2008
New Java Policy introduced

Deprecated J2EE: No EJBs
No WebLogic-specific dependencies
Move to Java 6
Maintain Legacy-EJB domain but at reduced SLA

Summer 2009
New Java Hosting
initiative launched

December 31, 2010
WebLogic 8.1 retires

Current Environment
Overview/Containers

Current Environment
Advantages & Disadvantages

Advantages Disadvantages

Multiple deployment options Not isolated at hardware or application

levels

Proven platform Inefficient resource utilization

Familiar environment No standard console management tool

across development & infrastructure teams

Costs of licensing & administration

Java Hosting Environment (JHE)
Overview

Stand-Alone

JDK 1.6

Java Hosting Environment Strategic Goals

Flexibility

Choices for container options and hardware resources

Standardization

Provide standardized containers, libraries, management and
operational consoles, DR strategy, monitoring, logging, etc.

Availability

Provide better application isolation, both at container and
hardware level

Cost Avoidance

Provide environment that better utilizes resources, provides
more efficient supportability, and flatten growth in most
expensive containers

Java Hosting Environment
Technology Stack

Java Hosting Environment
Private Cloud

Infrastructure as a Service

RedHat Clustering & Virtualization

Platform as a Service

Java Containers

JBoss Operation Network

Java Hosting Environment
RedHat Clustering & Virtualization

Benefits

Increased flexibility for:

Administration

Capacity

Increased availability via:

Isolation

Clustering

Java Hosting Environment
Technology Stack

Java Hosting Environment
Container Choices

The Linux Side

Standard filesystem

One ID owns binaries and scripts, second ID owns
instances and logs

RHQ Agent under software and instance ID

In DEV developers use instance ID via “PMRUN”

RPM and the Satellite system

RedHat binaries

The “Split Brain”

EWS

$CATALINA_HOME and $CATALINA_BASE both have
standard Tomcat directory structure

/lib in $CATALINA_HOME forms system classpath

/conf and /webapps in $CATALINA_BASE for each instance

EWP

run –c <full path to instance>

Single set of binaries, multiple instances

ews_start.sh JAS-A1

ewp_start.sh WTG-A1 WTG-A 1

Desktop Development

ITL images

Custom app servers that are pushed by request

“Clone” EWS/EWP and packages of Linux
configurations

Eclipse Galileo with WTP

Use same $CATALINA_HOME/$CATALINA_BASE for EWS

Same –c runtime for EWP

Dynamic Web projects with Maven facets

Allows for step debugging of web apps, including JSP

Spring Framework support

Class Loadtime weaving (needed for AOP and JPA)

EWS – context.xml and Spring ApplicationContext.xml

Setenv.sh

Context.xml

ApplicationContext.xml

EWP – Spring ApplicationContext.xml and web.xml

ApplicationContext.xml

Web.xml

“Single pane of glass” for all Java processes

Web-based GUI for all JHE operations (start/stop/re-
deploy)

Supplemental monitoring capability

JBOSS Operations Network
Overview

Winning the political battle

Lay the groundwork

Establish container-agnostic development standards

“Upgrade” the existing container

Allow only apps meeting modern standards in new version

Shut down old container

Keep familiarity

Same processes

Same domain/cluster hosting model

Same development tools

Stand-Alone versus container execution of Spring services

