JBoss

SUMMIT worwo

PRESENTED BY RED HAT

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

JBoss Maven Repository

Paul Gier and John Casey
Red Hat
June 25, 2010

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Good News/Bad News

Good — The JBoss.org Maven Repo Refactoring Is
Complete

Bad — No Maven Repository for JBoss Products
Good — We're working on it!

JBoss

SUMMIT “womo

PRESENTED BY RED HAT

Presentation Goals

Learn more about Maven

repositories
dependency management

Learn about the JBoss.org Maven repository
Understand the process used to create JBoss products

Learn about the upcoming JBoss product Maven
repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Overview

Maven Repositories and Settings

The JBoss.org Maven Repository

Managing Project Dependencies

Plans for the JBoss Product Maven Repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

What is a Maven repository?

File server

_ocal file system
nttpd
Follows standard layout conventions

Directory paths match groupld, artifactld, version
Release vs. Snapshot repository

Releases are never deleted
Snapshots are periodically cleaned up

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Why Use a Repository?

Provides a central location for build artifacts

Find and re-use artifacts
Manage storage from a single place

Manage dependencies across multiple projects
Make component integration easier

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

How is the repository used?

maven

A

Gradle

a better way to build

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Configuring Maven Repositories

The Super POM

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

The Super POM - Central Maven Repository

<repositories>
<repository>
<id>central</id>
<name>Maven Repository Switchboard</name>
<layout>default</layout>
<url>http://repol.maven.org/maven2</url>
<shapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>

<pluginRepositories>
<pluginRepository>
<id>central</id>
<npame>Maven Plugin Repository</name>
<url>http://repol.maven.org/maven2</url>
<layout>default</layout>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<updatePolicy>never</updatePolicy>
</releases>
</pluginRepository>
</pluginRepositories>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Repositories in Project POMs

Add the JBoss.org repository to the build

<repositories>
<repository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Maven Repository Group</name>
<url>http://repository.jboss.org/nexus/content/groups/public/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Maven Settings

Global Settings (M2_HOME/conf/settings.xml)
User Settings (~/.m2/settings.xml)
Repositories can be added in profiles

<profile>
<id>jboss-public-repository-group</id>
<repositories>
<repository>
<id>jboss-public-repository-group</id>
<name>JBoss Public Repository Group</name>
<url>http://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
</repositories>
</profile>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Pop Quiz

You have a project with one repository (Jboss.org)
configured in your project POM.

Using a default Maven install, how many total
repositories will Maven download from?

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Answer

?

Maven will first add the configured repository and
central

Maven will automatically use repositories found in
dependencies POMs

Good — These repositories don't require configuration
Bad — Could cause unpredictable build results

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Four ways a repository can get into the build

The super POM
The project POM(s)
Dependency POMs

Maven Settings (settings.xml)

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Maven Mirror Settings

Located in settings.xml
More control over repositories
Example mirror configuration:

<mirror>
<id>superfast</id>
<mirrorOf>cetral</mirrorof>
<name>Fast mirror of central</name>
<url>http://superfast.org/maven2</url>
</mirror>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Maven Mirror Settings cont.

Controlling multiple repositories

<mirror>
<id>jboss-public-repository-group</id>
<mirrorOf>*</mirroro0f>
<name>JBoss.org Public Repository Group</name>
<url>http://repository.jboss.org/nexus/content/groups/public/</url>
</mirror>

<mirror>
<id>jboss-public-repository-group</id>
<mirrorOf>*, ! jboss-deprecated</mirror0f>
<name>JBoss.org Public Repository Group</name>
<url>http://repository.jboss.org/nexus/content/groups/public/</url>
</mirror>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Overview

Maven Repositories and Settings

The JBoss.org Maven Repository

Managing Project Dependencies

Plans for the JBoss Product Maven Repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Rebuilding the JBoss.org Repository

Old Repository

Releases (repository.jboss.org/maven2)
Snapshots (snapshots.jboss.org/maven?2)

Problems

Deployment over SVN

Manually Uploading Thirdparty Jars
Manual Search Indexing

Bad Artifacts

No Staging

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Goals for the New JBoss.org Repository

Sort out the good from the bad
Split the repository into several parts

JBoss.org projects
Copied artifacts
Bad artifacts

Improved Deployment/Releases
Automated Validation/Cleanup
Use a repository manager

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Maven repository managers

Features of a Maven repository manager
Staging
Proxy repositories
Repository groups
POM validation
Common repository managers
Archiva
Artifactory
Nexus

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Rebuilding the Jboss.org repository

Sort artifacts into one of several types

JBoss Releases

JBoss Snapshots

JBoss Thirdparty Releases

Thirdparty Artifacts copied from another repository
Broken artifacts

Artifacts that were copied but renamed
Artifacts that were changed but not renamed

Proxy Repositories (central, java.net, etc.)

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Simplify Configuration Using Groups

Repository Groups provides a unified view of several
repositories

JBoss Releases

|Boss Thirdparty

Releases
—» Public Group —»
JBoss Snapshots

- Maven Guy
w Central Proxy

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Speed Bumps

Complex use of settings.xml

Performance issues

Legacy authentication system
https

All hope is not lost!
The new system allows flexibility

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Improving the Repository

Use public group for all development
Use mixed http/https
Use repositories in POMs during development

Stricter settings.xml during QA and release
Don't require authentication for downloads

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Improved Release Process

Deploy to staging URL ﬁ(
Automatic temporary Wamgen Guy
staging repository Deplnyl

Drop or promote Nexus Staging URL

Clusel

Staging Repository

Pro mﬂtel

Releases Repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Lessons Learned

Repositories in POMSs vs. Settings
Convenience vs. Reliablility
Repository Managers

Provide more power and flexibility
Add complexity

Keep development simple and releases reliable

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Overview

Maven Repositories and Settings

The JBoss.org Maven Repository

Managing Project Dependencies

Plans for the JBoss Product Maven Repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Maven Dependencies

Fairly simple...

Groupld, artifactld, version and forget it...right?
So, why worry?

Incorrect dependencies == painful to use!

One of the few materials exported by your project
What do | need to know?

Dependency Scoping

Inheritance and Reuse

Conflicts and Exclusions

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

What are You Producing? Classifiers

1:1 POM:artifact is the rule for most cases

Classifiers used for artifacts derived from main output
“attached” to main POM / artifact pair for install / deploy
Uses <classifier/> element when used as dependency
Transitive dependencies may not work correctly
Examples: javadocs, source jars, distro archives

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

What are You Producing? Types

Roughly equivalent to file extensions

Loosely related to POM <packaging/> element
Multiple <packaging/> types may produce “jar” artifacts
Determines dependency-handling rules
Example: transitive deps not resolved for “war” type
Custom type definitions injected via build extensions

Uses <type/> element when used as dependency

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

How are You Using It? Dependency Scoping

Many dependencies required for compiling, running
<scope>compile</scope> (default, can be left off)

Some dependencies are for testing
<scope>test</scope>

Others required only to run the application
<scope>runtime</scope>

Some are assumed to be provided by the platform
<scope>provided</scope>

Example: javamail API

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Dependency Scoping (cont'd.)

Scopes make dependencies available to certain parts
of the build process

Example: “test” scope available for unit testing
Scopes can imply other scopes

Runtime scope used to resolve transitive deps

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Dependency Scoping: Example

<dependencles:s
<dependency:
sqroupll=ong. example-igrouplds
=artifactid=lang-=,artifactld=

<yarsion:1.foiversions
cidependency=
sdependency=

cgroupld=ong. example-igrouplds

amiactid=ic-<rartitactids

aversions1.faiversion: BN . .

| org.example:lang:1.0
cidependancys e T g P g
<dependency> "~ org.example:io:1.0:compile

sgroupld=ong.example-sgroupld=
<artifactid=bus-apl="artifactid=

o e o » org.example:bus-api:1.0:provided
<fOepanoency=» .)
<dependency> » org.example:bus-impl:1.0:runtime

eroupll=ong. example-/grouplds

=arlilactid=test-harness<ranitactid=

evershon:1.0<iversion:

CeeOpe=iRgla/SoopRs
sidepandency=

coependency:s
eroupll=ong. example-/grouplds
<arifactid=bus-implfartitaciid=

<version:1.0</version:
<S0OpE=runt me-</scopes
<idependency=
</dependencies>

| » Org.example:test-harness:1.0:test

\

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Dependency Scoping: Compile

» Default is “compile”

» Platform APIs required to
compile code

- Dynamically loaded
classes NOT required

» Test code Is separate, SO
test dependencies not
required

JBoss

SUMMIT “woro

org.example:lang:1.0
org.example:io:1.0:compile
org.example:bus-api:1.0:provided
org.example:bus-impl:1.0:runtime

org.example:test-harness:1.0:test

PRESENTED BY RED HAT

Dependency Scoping: Test

» Tests need access to
ALL dependencies

» Platform APls, runtime
deps may be required In
testing environment

org.example:lang:1.0
org.example:io:1.0:compile
org.example:bus-api:1.0:provided
org.example:bus-impl:1.0:runtime

org.example:test-harness:1.0:test

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Dependency Scoping: Runtime

* Runtime scope ==
artifacts to be distributed
with application

» Platform APIs excluded
(provided scope)

» Used during transitive
resolution

JBoss

SUMMIT “woro

org.example:lang:1.0
org.example:io:1.0:compile
org.example:bus-api:1.0:provided
org.example:bus-impl:1.0:runtime

org.example:test-harness:1.0:test

PRESENTED BY RED HAT

Review: Transitive Dependencies

application/pom.xmil: io/pom.xmil:
<dependencies> <dependencies>
<dependency> <dependency>

<groupld>org.example</groupld>

<artifactld>io</artifactid>

<version>1.0</version>
</dependency>

</dependencies>

mvn dependency:tree

<groupld>org.example</groupld>

<artifactld>lang</artifactld>

<version>1.0</version>
</dependency>

</dependencies>

[IN FO] org.example:application:jar:1.0

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

[INFO] +- org.example:io:jar:1.0:compile <~ [——direct dependency
[INFO] | \- org.example:lang:jar:1.0:compile -« | iransitive dependency

Transitivity and Dependency Scoping

application/pom.xmil: bus-api/pom.xmil:
org.example:bus-api:1.0:compile

org.example:io:1.0:compile
org.example:mailer:1.0:provided

io/pom.xmil:

org.example:lang:1.0:compile
org.example:reflect:1.0:runtime

excluded, wrong scope!
mvn dependency:tree

[INFO] org.example:application:jar:1.0
[INFO] +- org.example:bus-api:jar:1.0:compile

[INFO] \- org.example:io:jar:1l.0:compile
[INFO] +- org.example:lang:jar:1.0:compile
[INFO] \- org.example:reflect:jar:1.0:runtime

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Common Dependencies

How can we reuse common dependencies?
Parent POMSs are ideal for consolidating dependencies

f all children need a dependency, simply declare Iin the
parent:

org.ex:parent
junit:;junit:4.5:test
org.ex:app org.ex:io
org.ex:io:1.0:compile | |junit:;junit:4.5:test

'|unit:'|unit:4.5:test

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Common Dependencies: DependencyManagement

What if only SOME children use a dependency?
Declare in <dependencyManagement/>, and reference

In child POMs:
Parent: _ Child:
<dependencyManagement> <dependencies>
<dependencies> <dependency>
<dependency> <groupld>foo</groupld>
<groupld>foo</groupld> <artifactld>util</artifactid>
<artifactld>util</artifactld> </dependency>
<version>1.1</version> | </dependencies>
<scope>runtime</scope>
</dependencies>
</dependencyManagement>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Common Deps: DependencyManagement (cont'd).

Reference managed dependencies as needed In

children:

org.ex:parent

org.ex:io :1.0:compile
org.ex:db :1.0:runtime
foo:lang :1.1:compile
foo:util :1.0.1:runtime

org.ex:db org.ex:app org.ex:io
foo:util :1.0.1:runtime |_ |org.ex:io :1.0:runtime | |foo:lang:1.1:compile

org.ex:db :1.1:compile
foo:lang :1.0.1:compile

JBoss
WORLD

SUMIT

PRESENTED BY RED HAT

Sharing Managed Dependencies

What if more than one application needed the same
groups of dependencies?

org.ex2:parent
org.ex2:io :1.0:compile
org.ex2:db:1.0:runtime
foo:lang :1.1:compile
foo:util :1.0.1:runtime

/ N

org.ex:parent
org.ex:io :1.0:compile
org.ex:db:1.0:runtime
foo:lang :1.1:compile
foo:util :1.0.1:runtime

2T N

,_________________________________,
e —_—
—— i ——————————————————————————

org.ex:app org.exio org.ex2.app org.ex2:io
org.ex:io fooslang arg.ex2:ic A | 00:lang
’ —| — . |
org.ex:db org.ex2:dp
too:lang — loclang T
org.ecdh 0rg.ex2:db
foo:Ltil foo:util

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Sharing Managed Dependencies: The BOM

Bill-of-Materials POMs (BOMS)
Shared <dependencyManagement/> section in a POM

foo:bom:1
foo:lang:1.1:compile |
foo:util :1.0.1:compile

org.ex2:parent i
org.ex2:io :jar:1.0:compile |i
org.ex2:db:jar:1.0:runtime |

— — — — — — — — " — .

e L N— |foo:bom :pom:1.0:import]

i org.ex:parent | /;? ‘;\ '
.) " .

| org.ex:lo :jar:1.0:compile | !

: . . . : | | org.exZapp org.ex2:io :

i org.ex:db:jar:1.0:runtime || {[oeezo | _\ —[To0Tang

: P—— — > . | 1| org.ex2:db ’

| [eeexo | |fOO:bOM :pom:1.0:import|: Ltooiang [

| arg.ex:db ! § —

: foo:lang -hh"'"""w" :r': J R e Too:utl

i .] |

: arg.exdb L‘ii—_‘. 1&EE:S = :

: foo:uti :

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Sharing Managed Dependencies: The BOM

BOM <dependencyManagement/> copied to

referencing POM

Reference using “Import” scope, “pom” type:

BOM: Referencing POM:
<dependencyManagement> <dependencyManagement>
<dependencies> <dependencies>
<dependency> <dependency>
<groupld>foo</groupld> <groupld>foo</groupld>

<artifactld>util</artifactld>
<version>1.1</version>
<scope>runtime</scope>
</dependencies>
</dependencyManagement>

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

<artifactld>bom</artifactid>
<version>1.1</version>
<type>pom</type>
<scope>impori</scope>
</dependencies>

</dependencyManagement>

When Things Go Wrong

Polluters living upstream. Example:

One of the projects you use in your application declares
a dependency on Junit with “compile” scope

Version conflicts. Example:

Your application uses version 1.2 of a logging library,
and version 1.1 of some client library

The client library uses version 1.0 of the same logging
library
application/pom.xml: client/pom.xml:

org.ex:logging:1.2 ‘Drg.ex:lnggingﬂ 0 \

org.ex:client:1.1

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

When Things Go Wrong: Dependency Pollution

Add an exclusion to ban Junit coming from that

dependency:

JBoss

SUMMIT “woro

<dependency>
<groupld>org.ex</groupld>
<artifactld>io</artifactld>
<version>1.0</version>
<exclusions>
<exclusion>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
</exclusion>
</exclusions>
</dependency>

PRESENTED BY RED HAT

When Things Go Wrong: Version Conflicts

- Maven will automatically prefer the closest declaration:

application/pom.xml: client/pom.xmi:

org.ex:logging:1.2 ‘nrg.ex:lnggingﬂ) \

org.ex:client:1.1

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Overview

Maven Repositories and Settings

The JBoss.org Maven Repository

Managing Project Dependencies

Plans for the JBoss Product Maven Repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Putting these Principles to Use...

Plan is to publish JBoss product artifacts as a Maven
repository

Allow developers to build against commercial versions
of artifacts

Harness product build process to populate
Build in the advantages of JBoss products

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Building a JBoss Product: Goals

Audit Trall

Certification of build process and resulting product

Preserve unbroken chain of custody from source code
to running software

Ownership of Code

If a bug Is reported, we can fix it and rebuild

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Building a JBoss Product: Certifying Results

Preserve information about every step from source to
binary

Inputs, Outputs, Logs
Secure all steps and machinery used

Build-system interconnections authenticated
Network traffic restricted
Storage secured

Build output (RPMs, etc.) signhed
Yum connections signed / secured

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Building a JBoss Product: Tooling

Modified version of Ko

|Isolated, cleanroom build environment

Each environment contains EXACT build requirements
for that project

Tracks build input, output, logs
Generates RPM and related Maven repository fragment

Wraps existing builds provided by project where
possible

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Product Repository: Goals

Automatically publish EXACT copy of any artifact
Included in a product

Maintain compatibility with community projects and
repository

Minimize pain for users switching over from community
projects and repository

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Product Repository: Coordinate Design

Preserve groupld's, artifactld's

Changing these would require exclusions to ban
corresponding community artifacts

Coordinate must be different if the artifact is rebuilt
Checksum, signatures will be different

Provide visual clue to differentiate product artifacts
from community ones

Add “-redhat-#” to the end of artifact versions
“#" signifies the rebuild index of that artifact

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Product Repository: Usage Design

Rely on Bill-of-Materials (BOM) POMSs to group related
JBoss artifacts

BOMs available for both community projects and
product

Users reference BOM to “import” JBoss artifact versions

Change BOM version to switch from community to
commercial artifacts

REQUIRES MAVEN 3

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Product Repository: Process

Aggregate Koji build output
Remember those repository fragments?
Indexed for searching by tools such as Nexus

Hosted with Ul to make consumption easier

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Product Repository: Ease of Use

Documentation

Searching for dependencies
Configuring Maven for the product repository

Maven archetypes using product repository
Integration with JBoss Tools (JBoss Developer Studio)

Painless switchover from community to product
artifacts

Switch to product repository URL
Switch to corresponding product BOM

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

Help Us Test!

» We're currently working on a prototype product
repository

» Sign up to be part of the beta testing
* Questions?

JBoss

SUMMIT “woro

PRESENTED BY RED HAT

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

Hsummitjbw

READ THE BLOG

http://summitblog.redhat.com/

SUMMIT “worw

PRESENTED BY RED HAT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

