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Good News/Bad News

● Good – The JBoss.org Maven Repo Refactoring is 
Complete

● Bad – No Maven Repository for JBoss Products

● Good – We're working on it!



Presentation Goals

● Learn more about Maven 
● repositories 
● dependency management

● Learn about the JBoss.org Maven repository

● Understand the process used to create JBoss products

● Learn about the upcoming JBoss product Maven 
repository



Overview

● Maven Repositories and SettingsMaven Repositories and Settings

● The JBoss.org Maven Repository

● Managing Project Dependencies

● Plans for the JBoss Product Maven Repository



What is a Maven repository?

● File server
● Local file system
● httpd

● Follows standard layout conventions
● Directory paths match groupId, artifactId, version

● Release vs. Snapshot repository
● Releases are never deleted
● Snapshots are periodically cleaned up



Why Use a Repository?

● Provides a central location for build artifacts
● Find and re-use artifacts
● Manage storage from a single place

● Manage dependencies across multiple projects

● Make component integration easier



How is the repository used?



Configuring Maven Repositories

● The Super POM



The Super POM – Central Maven Repository
  <repositories>
    <repository>
      <id>central</id>
      <name>Maven Repository Switchboard</name>
      <layout>default</layout>
      <url>http://repo1.maven.org/maven2</url>
      <snapshots>
        <enabled>false</enabled>
      </snapshots>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>central</id>
      <name>Maven Plugin Repository</name>
      <url>http://repo1.maven.org/maven2</url>
      <layout>default</layout>
      <snapshots>
        <enabled>false</enabled>
      </snapshots>
      <releases>
        <updatePolicy>never</updatePolicy>
      </releases>
    </pluginRepository>
  </pluginRepositories>



Repositories in Project POMs

● Add the JBoss.org repository to the build

  <repositories>
    <repository>
      <id>jboss-public-repository-group</id>
      <name>JBoss Public Maven Repository Group</name>
      <url>http://repository.jboss.org/nexus/content/groups/public/</url>
      <layout>default</layout>
      <releases>
        <enabled>true</enabled>
      </releases>
      <snapshots>
        <enabled>true</enabled>
      </snapshots>
    </repository>
  </repositories>



Maven Settings

● Global Settings (M2_HOME/conf/settings.xml)

● User Settings (~/.m2/settings.xml)

● Repositories can be added in profiles

  <profile>
    <id>jboss-public-repository-group</id>
    <repositories>
      <repository>
        <id>jboss-public-repository-group</id>
        <name>JBoss Public Repository Group</name>
        <url>http://repository.jboss.org/nexus/content/groups/public/</url>
      </repository>
    </repositories>
  </profile>



Pop Quiz

● You have a project with one repository (Jboss.org) 
configured in your project POM.

● Using a default Maven install, how many total 
repositories will Maven download from?



Answer

● ?

● Maven will first add the configured repository and 
central

● Maven will automatically use repositories found in 
dependencies POMs

● Good – These repositories don't require configuration

● Bad – Could cause unpredictable build results



Four ways a repository can get into the build 

● The super POM

● The project POM(s)

● Dependency POMs

● Maven Settings (settings.xml)



Maven Mirror Settings

● Located in settings.xml

● More control over repositories

● Example mirror configuration:

  <mirror>
    <id>superfast</id>
    <mirrorOf>cetral</mirrorOf>
    <name>Fast mirror of central</name>
    <url>http://superfast.org/maven2</url>
  </mirror>



Maven Mirror Settings cont.

● Controlling multiple repositories

  <mirror>
    <id>jboss-public-repository-group</id>
    <mirrorOf>*</mirrorOf>
    <name>JBoss.org Public Repository Group</name>
    <url>http://repository.jboss.org/nexus/content/groups/public/</url>
  </mirror>

  <mirror>
    <id>jboss-public-repository-group</id>
    <mirrorOf>*,!jboss-deprecated</mirrorOf>
    <name>JBoss.org Public Repository Group</name>
    <url>http://repository.jboss.org/nexus/content/groups/public/</url>
  </mirror>
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Rebuilding the JBoss.org Repository

● Old Repository
● Releases (repository.jboss.org/maven2)
● Snapshots (snapshots.jboss.org/maven2)

● Problems
● Deployment over SVN
● Manually Uploading Thirdparty Jars
● Manual Search Indexing
● Bad Artifacts
● No Staging



Goals for the New JBoss.org Repository

● Sort out the good from the bad

● Split the repository into several parts
● JBoss.org projects
● Copied artifacts
● Bad artifacts

● Improved Deployment/Releases

● Automated Validation/Cleanup

● Use a repository manager



Maven repository managers

● Features of a Maven repository manager
● Staging
● Proxy repositories
● Repository groups
● POM validation

● Common repository managers
● Archiva
● Artifactory
● Nexus



Rebuilding the Jboss.org repository

● Sort artifacts into one of several types
● JBoss Releases
● JBoss Snapshots
● JBoss Thirdparty Releases
● Thirdparty Artifacts copied from another repository
● Broken artifacts

● Artifacts that were copied but renamed
● Artifacts that were changed but not renamed

● Proxy Repositories (central, java.net, etc.)



Simplify Configuration Using Groups

● Repository Groups provides a unified view of several 
repositories



Speed Bumps

● Complex use of settings.xml

● Performance issues
● Legacy authentication system
● https

● All hope is not lost!
● The new system allows flexibility



Improving the Repository

● Use public group for all development

● Use mixed http/https

● Use repositories in POMs during development
● Stricter settings.xml during QA and release

● Don't require authentication for downloads



Improved Release Process

● Deploy to staging URL

● Automatic temporary 
staging repository

● Drop or promote



Lessons Learned

● Repositories in POMs vs. Settings
● Convenience vs. Reliability

● Repository Managers
● Provide more power and flexibility
● Add complexity

● Keep development simple and releases reliable 
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Maven Dependencies

● Fairly simple...
● GroupId, artifactId, version and forget it...right?

● So, why worry?
● Incorrect dependencies == painful to use!
● One of the few materials exported by your project

● What do I need to know?
● Dependency Scoping
● Inheritance and Reuse
● Conflicts and Exclusions



What are You Producing? Classifiers

● 1:1 POM:artifact is the rule for most cases

● Classifiers used for artifacts derived from main output

● “attached” to main POM / artifact pair for install / deploy

● Uses <classifier/> element when used as dependency

● Transitive dependencies may not work correctly

● Examples: javadocs, source jars, distro archives



What are You Producing? Types

● Roughly equivalent to file extensions

● Loosely related to POM <packaging/> element
● Multiple <packaging/> types may produce “jar” artifacts

● Determines dependency-handling rules
● Example: transitive deps not resolved for “war” type

● Custom type definitions injected via build extensions

● Uses <type/> element when used as dependency



How are You Using It? Dependency Scoping

● Many dependencies required for compiling, running
● <scope>compile</scope> (default, can be left off)

● Some dependencies are for testing
● <scope>test</scope>

● Others required only to run the application
● <scope>runtime</scope>

● Some are assumed to be provided by the platform
● <scope>provided</scope>

● Example: javamail API



Dependency Scoping (cont'd.)

● Scopes make dependencies available to certain parts 
of the build process

● Example: “test” scope available for unit testing

● Scopes can imply other scopes

● Runtime scope used to resolve transitive deps



Dependency Scoping: Example



Dependency Scoping: Compile

● Default is “compile”

● Platform APIs required to 
compile code

● Dynamically loaded 
classes NOT required

● Test code is separate, so 
test dependencies not 
required



Dependency Scoping: Test

● Tests need access to 
ALL dependencies

● Platform APIs, runtime 
deps may be required in 
testing environment



Dependency Scoping: Runtime

● Runtime scope == 
artifacts to be distributed 
with application

● Platform APIs excluded 
(provided scope)

● Used during transitive 
resolution



Review: Transitive Dependencies



Transitivity and Dependency Scoping



Common Dependencies

● How can we reuse common dependencies?

● Parent POMs are ideal for consolidating dependencies

● If all children need a dependency, simply declare in the 
parent:



Common Dependencies: DependencyManagement

● What if only SOME children use a dependency?

● Declare in <dependencyManagement/>, and reference 
in child POMs:



Common Deps: DependencyManagement (cont'd).

● Reference managed dependencies as needed in 
children:



Sharing Managed Dependencies

● What if more than one application needed the same 
groups of dependencies?



Sharing Managed Dependencies: The BOM

● Bill-of-Materials POMs (BOMs)

● Shared <dependencyManagement/> section in a POM



Sharing Managed Dependencies: The BOM

● BOM <dependencyManagement/> copied to 
referencing POM

● Reference using “import” scope, “pom” type:



When Things Go Wrong

● Polluters living upstream. Example: 
● One of the projects you use in your application declares 

a dependency on Junit with “compile” scope
● Version conflicts. Example:

● Your application uses version 1.2 of a logging library, 
and version 1.1 of some client library

● The client library uses version 1.0 of the same logging 
library



When Things Go Wrong: Dependency Pollution

● Add an exclusion to ban Junit coming from that 
dependency:



When Things Go Wrong: Version Conflicts

● Maven will automatically prefer the closest declaration:
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Putting these Principles to Use...

● Plan is to publish JBoss product artifacts as a Maven 
repository

● Allow developers to build against commercial versions 
of artifacts

● Harness product build process to populate
● Build in the advantages of JBoss products



Building a JBoss Product: Goals

● Audit Trail
● Certification of build process and resulting product
● Preserve unbroken chain of custody from source code 

to running software
● Ownership of Code

● If a bug is reported, we can fix it and rebuild



Building a JBoss Product: Certifying Results

● Preserve information about every step from source to 
binary

● Inputs, Outputs, Logs

● Secure all steps and machinery used
● Build-system interconnections authenticated
● Network traffic restricted
● Storage secured

● Build output (RPMs, etc.) signed

● Yum connections signed / secured



Building a JBoss Product: Tooling

● Modified version of Koji
● Isolated, cleanroom build environment
● Each environment contains EXACT build requirements 

for that project
● Tracks build input, output, logs
● Generates RPM and related Maven repository fragment

● Wraps existing builds provided by project where 
possible



Product Repository: Goals

● Automatically publish EXACT copy of any artifact 
included in a product

● Maintain compatibility with community projects and 
repository

● Minimize pain for users switching over from community 
projects and repository



Product Repository: Coordinate Design

● Preserve groupId's, artifactId's
● Changing these would require exclusions to ban 

corresponding community artifacts
● Coordinate must be different if the artifact is rebuilt

● Checksum, signatures will be different

● Provide visual clue to differentiate product artifacts 
from community ones

● Add “-redhat-#” to the end of artifact versions
● “#” signifies the rebuild index of that artifact



Product Repository: Usage Design

● Rely on Bill-of-Materials (BOM) POMs to group related 
JBoss artifacts

● BOMs available for both community projects and 
product

● Users reference BOM to “import” JBoss artifact versions
● Change BOM version to switch from community to 

commercial artifacts

● REQUIRES MAVEN 3



Product Repository: Process

● Aggregate Koji build output
● Remember those repository fragments?

● Indexed for searching by tools such as Nexus

● Hosted with UI to make consumption easier



Product Repository: Ease of Use

● Documentation
● Searching for dependencies
● Configuring Maven for the product repository

● Maven archetypes using product repository

● Integration with JBoss Tools (JBoss Developer Studio)

● Painless switchover from community to product 
artifacts

● Switch to product repository URL
● Switch to corresponding product BOM



Help Us Test!

● We're currently working on a prototype product 
repository

● Sign up to be part of the beta testing

● Questions?
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