

JBoss Maven Repository

Paul Gier and John Casey
Red Hat
June 25, 2010

Good News/Bad News

● Good – The JBoss.org Maven Repo Refactoring is
Complete

● Bad – No Maven Repository for JBoss Products

● Good – We're working on it!

Presentation Goals

● Learn more about Maven
● repositories
● dependency management

● Learn about the JBoss.org Maven repository

● Understand the process used to create JBoss products

● Learn about the upcoming JBoss product Maven
repository

Overview

● Maven Repositories and SettingsMaven Repositories and Settings

● The JBoss.org Maven Repository

● Managing Project Dependencies

● Plans for the JBoss Product Maven Repository

What is a Maven repository?

● File server
● Local file system
● httpd

● Follows standard layout conventions
● Directory paths match groupId, artifactId, version

● Release vs. Snapshot repository
● Releases are never deleted
● Snapshots are periodically cleaned up

Why Use a Repository?

● Provides a central location for build artifacts
● Find and re-use artifacts
● Manage storage from a single place

● Manage dependencies across multiple projects

● Make component integration easier

How is the repository used?

Configuring Maven Repositories

● The Super POM

The Super POM – Central Maven Repository
 <repositories>
 <repository>
 <id>central</id>
 <name>Maven Repository Switchboard</name>
 <layout>default</layout>
 <url>http://repo1.maven.org/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>

Repositories in Project POMs

● Add the JBoss.org repository to the build

 <repositories>
 <repository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Maven Repository Group</name>
 <url>http://repository.jboss.org/nexus/content/groups/public/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
 </repositories>

Maven Settings

● Global Settings (M2_HOME/conf/settings.xml)

● User Settings (~/.m2/settings.xml)

● Repositories can be added in profiles

 <profile>
 <id>jboss-public-repository-group</id>
 <repositories>
 <repository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Repository Group</name>
 <url>http://repository.jboss.org/nexus/content/groups/public/</url>
 </repository>
 </repositories>
 </profile>

Pop Quiz

● You have a project with one repository (Jboss.org)
configured in your project POM.

● Using a default Maven install, how many total
repositories will Maven download from?

Answer

● ?

● Maven will first add the configured repository and
central

● Maven will automatically use repositories found in
dependencies POMs

● Good – These repositories don't require configuration

● Bad – Could cause unpredictable build results

Four ways a repository can get into the build

● The super POM

● The project POM(s)

● Dependency POMs

● Maven Settings (settings.xml)

Maven Mirror Settings

● Located in settings.xml

● More control over repositories

● Example mirror configuration:

 <mirror>
 <id>superfast</id>
 <mirrorOf>cetral</mirrorOf>
 <name>Fast mirror of central</name>
 <url>http://superfast.org/maven2</url>
 </mirror>

Maven Mirror Settings cont.

● Controlling multiple repositories

 <mirror>
 <id>jboss-public-repository-group</id>
 <mirrorOf>*</mirrorOf>
 <name>JBoss.org Public Repository Group</name>
 <url>http://repository.jboss.org/nexus/content/groups/public/</url>
 </mirror>

 <mirror>
 <id>jboss-public-repository-group</id>
 <mirrorOf>*,!jboss-deprecated</mirrorOf>
 <name>JBoss.org Public Repository Group</name>
 <url>http://repository.jboss.org/nexus/content/groups/public/</url>
 </mirror>

Overview

● Maven Repositories and Settings

● The JBoss.org Maven RepositoryThe JBoss.org Maven Repository

● Managing Project Dependencies

● Plans for the JBoss Product Maven Repository

Rebuilding the JBoss.org Repository

● Old Repository
● Releases (repository.jboss.org/maven2)
● Snapshots (snapshots.jboss.org/maven2)

● Problems
● Deployment over SVN
● Manually Uploading Thirdparty Jars
● Manual Search Indexing
● Bad Artifacts
● No Staging

Goals for the New JBoss.org Repository

● Sort out the good from the bad

● Split the repository into several parts
● JBoss.org projects
● Copied artifacts
● Bad artifacts

● Improved Deployment/Releases

● Automated Validation/Cleanup

● Use a repository manager

Maven repository managers

● Features of a Maven repository manager
● Staging
● Proxy repositories
● Repository groups
● POM validation

● Common repository managers
● Archiva
● Artifactory
● Nexus

Rebuilding the Jboss.org repository

● Sort artifacts into one of several types
● JBoss Releases
● JBoss Snapshots
● JBoss Thirdparty Releases
● Thirdparty Artifacts copied from another repository
● Broken artifacts

● Artifacts that were copied but renamed
● Artifacts that were changed but not renamed

● Proxy Repositories (central, java.net, etc.)

Simplify Configuration Using Groups

● Repository Groups provides a unified view of several
repositories

Speed Bumps

● Complex use of settings.xml

● Performance issues
● Legacy authentication system
● https

● All hope is not lost!
● The new system allows flexibility

Improving the Repository

● Use public group for all development

● Use mixed http/https

● Use repositories in POMs during development
● Stricter settings.xml during QA and release

● Don't require authentication for downloads

Improved Release Process

● Deploy to staging URL

● Automatic temporary
staging repository

● Drop or promote

Lessons Learned

● Repositories in POMs vs. Settings
● Convenience vs. Reliability

● Repository Managers
● Provide more power and flexibility
● Add complexity

● Keep development simple and releases reliable

Overview

● Maven Repositories and Settings

● The JBoss.org Maven Repository

● Managing Project DependenciesManaging Project Dependencies

● Plans for the JBoss Product Maven Repository

Maven Dependencies

● Fairly simple...
● GroupId, artifactId, version and forget it...right?

● So, why worry?
● Incorrect dependencies == painful to use!
● One of the few materials exported by your project

● What do I need to know?
● Dependency Scoping
● Inheritance and Reuse
● Conflicts and Exclusions

What are You Producing? Classifiers

● 1:1 POM:artifact is the rule for most cases

● Classifiers used for artifacts derived from main output

● “attached” to main POM / artifact pair for install / deploy

● Uses <classifier/> element when used as dependency

● Transitive dependencies may not work correctly

● Examples: javadocs, source jars, distro archives

What are You Producing? Types

● Roughly equivalent to file extensions

● Loosely related to POM <packaging/> element
● Multiple <packaging/> types may produce “jar” artifacts

● Determines dependency-handling rules
● Example: transitive deps not resolved for “war” type

● Custom type definitions injected via build extensions

● Uses <type/> element when used as dependency

How are You Using It? Dependency Scoping

● Many dependencies required for compiling, running
● <scope>compile</scope> (default, can be left off)

● Some dependencies are for testing
● <scope>test</scope>

● Others required only to run the application
● <scope>runtime</scope>

● Some are assumed to be provided by the platform
● <scope>provided</scope>

● Example: javamail API

Dependency Scoping (cont'd.)

● Scopes make dependencies available to certain parts
of the build process

● Example: “test” scope available for unit testing

● Scopes can imply other scopes

● Runtime scope used to resolve transitive deps

Dependency Scoping: Example

Dependency Scoping: Compile

● Default is “compile”

● Platform APIs required to
compile code

● Dynamically loaded
classes NOT required

● Test code is separate, so
test dependencies not
required

Dependency Scoping: Test

● Tests need access to
ALL dependencies

● Platform APIs, runtime
deps may be required in
testing environment

Dependency Scoping: Runtime

● Runtime scope ==
artifacts to be distributed
with application

● Platform APIs excluded
(provided scope)

● Used during transitive
resolution

Review: Transitive Dependencies

Transitivity and Dependency Scoping

Common Dependencies

● How can we reuse common dependencies?

● Parent POMs are ideal for consolidating dependencies

● If all children need a dependency, simply declare in the
parent:

Common Dependencies: DependencyManagement

● What if only SOME children use a dependency?

● Declare in <dependencyManagement/>, and reference
in child POMs:

Common Deps: DependencyManagement (cont'd).

● Reference managed dependencies as needed in
children:

Sharing Managed Dependencies

● What if more than one application needed the same
groups of dependencies?

Sharing Managed Dependencies: The BOM

● Bill-of-Materials POMs (BOMs)

● Shared <dependencyManagement/> section in a POM

Sharing Managed Dependencies: The BOM

● BOM <dependencyManagement/> copied to
referencing POM

● Reference using “import” scope, “pom” type:

When Things Go Wrong

● Polluters living upstream. Example:
● One of the projects you use in your application declares

a dependency on Junit with “compile” scope
● Version conflicts. Example:

● Your application uses version 1.2 of a logging library,
and version 1.1 of some client library

● The client library uses version 1.0 of the same logging
library

When Things Go Wrong: Dependency Pollution

● Add an exclusion to ban Junit coming from that
dependency:

When Things Go Wrong: Version Conflicts

● Maven will automatically prefer the closest declaration:

Overview

● Maven Repositories and Settings

● The JBoss.org Maven Repository

● Managing Project Dependencies

● Plans for the JBoss Product Maven RepositoryPlans for the JBoss Product Maven Repository

Putting these Principles to Use...

● Plan is to publish JBoss product artifacts as a Maven
repository

● Allow developers to build against commercial versions
of artifacts

● Harness product build process to populate
● Build in the advantages of JBoss products

Building a JBoss Product: Goals

● Audit Trail
● Certification of build process and resulting product
● Preserve unbroken chain of custody from source code

to running software
● Ownership of Code

● If a bug is reported, we can fix it and rebuild

Building a JBoss Product: Certifying Results

● Preserve information about every step from source to
binary

● Inputs, Outputs, Logs

● Secure all steps and machinery used
● Build-system interconnections authenticated
● Network traffic restricted
● Storage secured

● Build output (RPMs, etc.) signed

● Yum connections signed / secured

Building a JBoss Product: Tooling

● Modified version of Koji
● Isolated, cleanroom build environment
● Each environment contains EXACT build requirements

for that project
● Tracks build input, output, logs
● Generates RPM and related Maven repository fragment

● Wraps existing builds provided by project where
possible

Product Repository: Goals

● Automatically publish EXACT copy of any artifact
included in a product

● Maintain compatibility with community projects and
repository

● Minimize pain for users switching over from community
projects and repository

Product Repository: Coordinate Design

● Preserve groupId's, artifactId's
● Changing these would require exclusions to ban

corresponding community artifacts
● Coordinate must be different if the artifact is rebuilt

● Checksum, signatures will be different

● Provide visual clue to differentiate product artifacts
from community ones

● Add “-redhat-#” to the end of artifact versions
● “#” signifies the rebuild index of that artifact

Product Repository: Usage Design

● Rely on Bill-of-Materials (BOM) POMs to group related
JBoss artifacts

● BOMs available for both community projects and
product

● Users reference BOM to “import” JBoss artifact versions
● Change BOM version to switch from community to

commercial artifacts

● REQUIRES MAVEN 3

Product Repository: Process

● Aggregate Koji build output
● Remember those repository fragments?

● Indexed for searching by tools such as Nexus

● Hosted with UI to make consumption easier

Product Repository: Ease of Use

● Documentation
● Searching for dependencies
● Configuring Maven for the product repository

● Maven archetypes using product repository

● Integration with JBoss Tools (JBoss Developer Studio)

● Painless switchover from community to product
artifacts

● Switch to product repository URL
● Switch to corresponding product BOM

Help Us Test!

● We're currently working on a prototype product
repository

● Sign up to be part of the beta testing

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

