

Edson Tirelli
Drools Fusion Lead, Red Hat
May 6th, 2011

DEMISTIFYING COMPLEX

EVENT PROCESSING

Agenda

o Brief introduction on CEP and Terminology
o Drools Fusion: Complex Event Processing extensions

o Event Declaration and Semantics
o Event Cloud, Streams and the Session Clock
o Temporal Reasoning
o Sliding Window Support
o Streams Support
o Memory Management

o Questions & Answers

“An event is an observable occurrence.”

“An event in the Unified Modeling Language is a notable
occurrence at a particular point in time.”

http://www.wikipedia.org

“Anything that happens, or is contemplated as happening.”

“An object that represents, encodes or records an event,
generally for the purpose of computer processing”

http://complexevents.com

Terminology: Event

http://www.wikipedia.org/
http://complexevents.com/

For the scope of this presentation:

“An event is a significant change of
state at a particular point in time”

Terminology: Event

“Complex Event, is an abstraction of other events called its members.”

o Examples:
o The 1929 stock market crash – an abstraction denoting many

thousands of member events, including individual stock trades)
o The 2004 Indonesian Tsunami – an abstraction of many natural events
o A completed stock purchase -an abstraction of the events in a

transaction to purchase the stock
o A successful on-line shopping cart checkout – an abstraction of

shopping cart events on an on-line website

 Source: http://complexevents.com

Terminology: Complex Event

http://complexevents.com/

“Complex Event Processing, or CEP, is primarily an event
processing concept that deals with the task of processing multiple
events with the goal of identifying the meaningful events within
the event cloud.

CEP employs techniques such as detection of complex patterns of
many events, event correlation and abstraction, event
hierarchies, and relationships between events such as causality,
membership, and timing, and event-driven processes.”

-- wikipedia

Terminology: CEP

o Examples:
o Emergency Response Systems
o Credit Card Fraud Detection
o Logistics Real-Time Awareness solution
o Neonatal ICU: infant vital signs monitoring

Terminology: CEP

Complex Event Processing, or CEP, and Event Stream
Processing, or ESP, are two technologies that were born
separate, but converged.

● An oversimplification: In their origins...
 Event Stream Processing focused on the ability to process high

volume streams of events.
 Complex Event Processing focused on defining, detecting and

processing the relationships among events.

Terminology: CEP vs ESP

For the scope of this presentation:

“CEP is used as a common term meaning
both CEP and ESP.”

Terminology: CEP and ESP

“Event Driven Architecture (EDA) is a software architecture pattern
promoting the production, detection, consumption of, and reaction to
events. An event can be defined as "a significant change in state"[1].
For example, when a consumer purchases a car, the car's state
changes from "for sale" to "sold". A car dealer's system architecture
may treat this state change as an event to be produced, published,
detected and consumed by various applications within the
architecture.”

http://en.wikipedia.org/wiki/Event_Driven_Architecture

Terminology: EDA

Source: http://elementallinks.typepad.com/.shared/image.html?/photos/uncategorized/simple_event_flow.gif

CEP is a component of the EDA

EDA vs CEP

EDA vs SOA

o EDA is **not** SOA 2.0
o Complementary architectures
o Metaphor

o In our body:
o SOA is used to build our muscles and organs
o EDA is used to build our sensory system

EDA vs SOA

Source: http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Complex Event Processing

o A few characteristics of common CEP scenarios:
o Huge volume of events, but only a few of real interest
o Usually events are immutable
o Usually queries/rules have to run in reactive mode
o Strong temporal relationships between events
o Individual events are usually not important
o The composition and aggregation of events is

important

Drools Vision

“A common platform to model and govern the business
logic of the enterprise.”

JBoss Enterprise BRMS v5.2

Drools Fusion: Enables…

• Event Detection:
• From an event cloud or set of streams, select all the meaningful

events, and only them.

• [Temporal] Event Correlation:
• Ability to correlate events and facts declaring both temporal and

non-temporal constraints between them.
• Ability to reason over event aggregation

• Event Abstraction:
• Ability to compose complex events from atomic events AND

reason over them

Drools Fusion

o Features:
o Event Semantics as First Class Citizens
o Allow Detection, Correlation and Composition
o Temporal Constraints
o Session Clock
o Stream Processing
o Sliding Windows
o CEP volumes (scalability)
o (Re)Active Rules
o Data Loaders for Input

Demo

● Twitter Stream CEP Demo:
● Listen to the Twitter Stream API

● Twitter4J API
● Listens to a random sample of tweets

● Detects patterns and reacts
● Drools Fusion

● Simple one process (multi-thread) demo
● Focus on specific features

Event Declaration and Semantics

Event semantics:
● Point-in-time and Interval

An event is a fact with a few special
characteristics:

● Usually immutable, but not
enforced

● Strong temporal relationships

● Lifecycle may be managed

● Allow use of sliding windows

“All events are facts, but not all facts
are events.”

// declaring existing class

import some.package.VoiceCall

declare VoiceCall

 @role(event)

 @timestamp(calltime)

 @duration(duration)

end

// generating an event class

declare StockTick

 @role(event)

 symbol : String

 price : double

end

Temporal Reasoning

o Semantics for:
o time: discrete
o events: point-in-time and interval

o Ability to express temporal relationships:
o Allen’s 13 temporal operators

o James F. Allen defined the 13 possible temporal relations between
two events.

o Eiko Yoneki and Jean Bacon defined a unified semantics for event
correlation over time and space.

Temporal Relationships

rule “Shipment not picked up in time”

when

 Shipment($pickupTime : scheduledPickupTime)

 not ShipmentPickup(this before $pickupTime)

then

 // shipment not picked up... action required.

end

rule “Shipment not picked up in time”

when

 Shipment($pickupTime : scheduledPickupTime)

 not ShipmentPickup(this before $pickupTime)

then

 // shipment not picked up... action required.

end

Temporal Relationships

rule “Shipment not picked up in time”

when

 Shipment($pickupTime : scheduledPickupTime)

 not ShipmentPickup(this before $pickupTime)

then

 // shipment not picked up... Action required.

end

rule “Shipment not picked up in time”

when

 Shipment($pickupTime : scheduledPickupTime)

 not ShipmentPickup(this before $pickupTime)

then

 // shipment not picked up... Action required.

end

Temporal
Relationship

Allen’s 13 Temporal Operators

Point-Point Point-Interval Interval-Interval

A before B

A meets B

A overlaps B

A finishes B

A includes B

A starts B

A coincides B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

Allen’s 13 Temporal Operators

Point-Point Point-Interval Interval-Interval

A after B

A metBy B

A overlapedBy B

A finishedBy B

A during B

A finishes B

A
B

A
B

A
B

A
B

A
B

A
B

Streams : Simple Example Scenario

Stream Support (entry-points)

o A scoping abstraction for stream support
o Rule compiler gather all entry-point declarations and

expose them through the session API
o Engine manages all the scoping and synchronization

behind the scenes.

rule “Stock Trade Correlation”

when

 $c : Customer(type == “VIP”)

 BuyOrderEvent(customer == $c, $id : id) from entry-point “Home Broker Stream”

 BuyAckEvent(sourceEvent == $id) from entry-point “Stock Trader Stream”

then

 // take some action

end

rule “Stock Trade Correlation”

when

 $c : Customer(type == “VIP”)

 BuyOrderEvent(customer == $c, $id : id) from entry-point “Home Broker Stream”

 BuyAckEvent(sourceEvent == $id) from entry-point “Stock Trader Stream”

then

 // take some action

end

CLOUD

• No notion of “flow of time”: the
engine sees all facts without
regard to time

• No attached Session Clock

• No requirements on event
ordering

• No automatic event lifecycle
management

• No sliding window support

STREAM

• Notion of “flow of time”: concept
of “now”

• Session Clock has an active
role synchronizing the
reasoning

• Event Streams must be
ordered

• Automatic event lifecycle
management

• Sliding window support

• Automatic rule delaying on
absence of facts

Cloud Mode, Stream Mode, Session Clock

Reference Clock

o Reference clock defines the flow of time

o Named Session Clock
o is assigned to each session created

o Synchronizes time sensitive operations
o duration rules
o event streams
o process timers
o sliding windows

Session Clock

o Uses the strategy pattern and multiple implementations:
o Real-time operation
o Tests
o Simulations
o etc

Session Clock

o Selecting the session clock:

o API:

KnowledgeSessionConfiguration conf = ...

conf.setOption(ClockTypeOption.get(“realtime”));

o System Property or Configuration File:

drools.clockType = pseudo

Sliding Window Support

o Allows reasoning over a moving window of “interest”
o Time
o Length

Sliding window 1

Sliding window 2

Sliding Window Support

o Allows reasoning over a moving window of “interest”
o Time
o Length

Sliding window 1

Sliding window 2

Joined window

Delaying Rules

o Negative patterns may require rule firings to be delayed.

rule “Order timeout”

when

 $bse : BuyShares ($id : id)

 not BuySharesAck(id == $id, this after[0s,30s] $bse)

then

 // Buy order was not acknowledged. Cancel operation

 // by timeout.

end

rule “Order timeout”

when

 $bse : BuyShares ($id : id)

 not BuySharesAck(id == $id, this after[0s,30s] $bse)

then

 // Buy order was not acknowledged. Cancel operation

 // by timeout.

end

Temporal Dimension

o Requires the support to the temporal dimension
o A rule/query might match in a given point in time, and not match in the

subsequent point in time

o That is the single most difficult requirement to support in a way that the
engine:
o stays deterministic
o stays a high-performance engine

o Achieved mostly by compile time optimizations that enable:
o constraint tightening
o match space narrowing
o memory management

Q&A
o Drools project site:

o http://www.drools.org (http://www.jboss.org/drools/)
o Documentation:

o http://www.jboss.org/drools/documentation.html

Edson Tirelli – etirelli@redhat.com

	Slide 1
	Slide 2
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	EDA vs SOA
	Slide 14
	Complex Event Processing
	“A common platform to model and govern the business logic of the enterprise.”
	Slide 17
	Drools Fusion: Enables…
	Drools Fusion
	Slide 20
	Event Declaration and Semantics
	Temporal Reasoning
	Temporal Relationships
	Slide 24
	Allen’s 13 Temporal Operators
	Slide 26
	Simple Example Scenario
	Stream Support (entry-points)
	Slide 29
	Reference Clock
	Session Clock
	Slide 32
	Slide 33
	Sliding Window Support
	Delaying Rules
	Temporal Dimension
	Q&A
	Slide 38

