
Thursday, May 5, 2011

Keith Babo
SwitchYard Project Lead
JBoss by Red Hat
May 4th, 2011

ESB RELOADED
PROJECT SWITCHYARD

Thursday, May 5, 2011

Agenda
 Project Background
 What is an ESB?

 Just kidding
 Well, kind of

 How We Roll
 Demo
 Futures

Thursday, May 5, 2011

Me First!
 Keith Babo

 JBoss Core Developer at Red Hat
 Project Lead for SwitchYard
 Spent the 00s at Sun Microsystems developing EAI/B2B/ESB

products
 Experience in the field and the dungeon

Thursday, May 5, 2011

Introducing SwitchYard

 New JBoss community project with the goal of creating
our next generation Enterprise Service Bus

 What happened to JBoss ESB?
 Same team
 Active development continues in support of SOA-P

 Taking the next evolutionary step
 Focus on consistent, intuitive user experience
 Refactor core to eliminate known pain points
 Leverage standards and complimentary technologies

Thursday, May 5, 2011

Introducing SwitchYard

 Why a separate project?
 Isolate disruptive changes
 Focus community
 Implement faster, get feedback sooner

 Project goals aligned
 End deliverable is a better SOA Platform

Thursday, May 5, 2011

Activity

 SwitchYard
 Milestone 1 in February, 2011
 0.1 release end of May
 0.n releases every 8-10 weeks until 1.0

 JBoss ESB
 4.9 in August 2010
 SOA Platform 5.1 in March 2011
 4.10 in progress

Thursday, May 5, 2011

The Birth of the ESB

Business Domain

Integration Domain

Thursday, May 5, 2011

The Birth of the ESB

Business Domain

Integration Domain

ESB Goes Here

service
service

service

service

service

service

service

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

operation

operation

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

operation

operation

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

implementation

operation

operation

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

implementation

operation

operation

policy

Thursday, May 5, 2011

A Superficial Guide to Service-Oriented Principles

Service

interface

implementation

operation

operation

policy

Thursday, May 5, 2011

interface

operation

operation

implementation

Service

policy

A Superficial Guide to Service-Oriented Principles

Thursday, May 5, 2011

interface

operation

operation

implementation

Service

policy

A Superficial Guide to Service-Oriented Principles

Service

interface

reference

Thursday, May 5, 2011

interface

operation

operation

implementation

Service

policy

A Superficial Guide to Service-Oriented Principles

Service

interface

reference

binding

binding

Thursday, May 5, 2011

Thursday, May 5, 2011

Service Interface

public interface OrderService {
 OrderAck submitOrder(Order order);
}

Thursday, May 5, 2011

Service Implementation

public class OrderServiceBean implements OrderService {
 @Override
 public OrderAck submitOrder(Order order) {
 // Create an order ack
 return new OrderAck()
 .setOrderId(order.getOrderId())
 .setAccepted(true)
 .setStatus("Processing Order");
}

Thursday, May 5, 2011

Service Implementation

public class OrderServiceBean implements OrderService {
 @Override
 public OrderAck submitOrder(Order order) {
 // Create an order ack
 return new OrderAck()
 .setOrderId(order.getOrderId())
 .setAccepted(true)
 .setStatus("Processing Order");
}

@Service(OrderService.class)

Thursday, May 5, 2011

Service Reference

@Service(OrderService.class)
public class OrderServiceBean implements OrderService {

 @Inject @Reference
 private InventoryService _inventory;

 @Override
 public OrderAck submitOrder(Order order) {
 // Check the inventory
 Item orderItem = _inventory.lookupItem(order.getItemId());

 // Create an order ack
 ...
 }
}

Thursday, May 5, 2011

Service Binding

$ soap-binding bind-service
--serviceName OrderService
--wsdl wsdl/FeedbackService.wsdl

Thursday, May 5, 2011

Message Transformation

public class OrderAckTransform
extends BaseTransformer<OrderAck, Element> {

 public OrderAckTransform() {
 super(new QName("urn:examples:order:1.0", "submitOrderResponse"),
 new QName("java:org.examples.order.Order"));
 }

 @Override
 public Element transform(OrderAck orderAck) {
 // Transformation code goes here
 }
}

Thursday, May 5, 2011

Voilà!

InventoryService

inventory.wsdl

reference

OrderService.java

submitOrder OrderServiceBean

OrderService

SOAP

Thursday, May 5, 2011

Thursday, May 5, 2011

What’s In SwitchYard

Runtime

Registry
Exchange Bus

Configuration Model

API

Implementation
Component

Gateway
Component

InventoryService

inventory.wsdl

reference

OrderService.java

submitOrder OrderServiceBean

OrderService

SOAP

Transformers

To
ol

in
g

Te
st

Thursday, May 5, 2011

SwitchYard Core

 API
 Service registration
 Service metadata
 Message exchange
 Transformers
 Service Domain

 Runtime
 Local exchange bus
 Local registry
 Deploy anywhere (AS6, AS7, embedded)

Thursday, May 5, 2011

Transformation

 Ubiquitous challenge in application integration and SOA
 Three flavors of transformation

 Change in data representation
 Conversion

 Change in data format
 Translation

 Change in data itself
 Transformation as a service

Thursday, May 5, 2011

Transformation of Representation

 Change in representation
 Representation = Java type
 Transformation is simply a type conversion
 No semantic knowledge required

<order>
 <item>XYZ123</item>
 <quantity>5</quantity>
</order>

java.lang.String

<order>
 <item>XYZ123</item>
 <quantity>5</quantity>
</order>

org.w3c.dom.Node

<order>
 <item>XYZ123</item>
 <quantity>5</quantity>
</order>

java.io.InputStream

= =

Thursday, May 5, 2011

Transformation of Data Format

 Requires semantic understanding of data types
 Machines cannot do this on their own

 yet ...?

Thursday, May 5, 2011

Transformers

 Transformation is wired into SwitchYard core
 Types declared via service contract
 Transformer resolved dynamically at runtime

 Bring on the canonical data models
 Current Transformers

 Java, Smooks
 In the works

 XSLT, JSON, GPB

Thursday, May 5, 2011

Implementation Components

Service

interface

implementation

operation

operation

Thursday, May 5, 2011

Bean Component

 POJO = Service ... ‘nuff said
 Easy to use

 Annotation-based
 Config auto-generated
 Service auto-registered

 Consistent with core principles
 Services declare a service interface
 References injected based on service interface
 Dependencies are explicit

Thursday, May 5, 2011

Bean Component

 Implemented as a CDI Extension
 Standard programming model (JSR 299)
 ”The theme of CDI is loose-coupling with strong typing.”

 Weld provides the implementation framework
 Less work for us
 More features for users

 Straightforward integration into the web tier

Thursday, May 5, 2011

Camel Component

 Integrates Apache Camel with SwitchYard
 Camel provides

 Routing engine and language(s)
 Loads of EIP
 Cornucopia of components

 Camel as a service
 Routes provide pipeline orchestration
 Service interface
 Service references resolved independent of binding

Thursday, May 5, 2011

An Example Camel Route

<route>
 <from uri="file://orders/in"/>
 <log message="Order Received : ${body}"/>
 <to uri="OrderValidator”/>
 <filter>
 <xpath>/order[@priority='high']</xpath>
 <to uri="file://shipping/in"/>
 </filter>
</route>

Thursday, May 5, 2011

An Example Camel Route

Route

from "file://orders/in"

log

filter

to "file://shipping/in"

validate

Thursday, May 5, 2011

Camel In SwitchYard

<sca:component name="CamelComponent">

 <sca:service name="OrderService" >
 <sca:interface.java interface="org.example.OrderService"/>
 </sca:service>

 <sca:reference name="ShippingService">
 <sca:interface.java interface="org.example.ShippingService"/>
 </sca:reference>

 <implementation.camel>
 <route>
 <log message="Order Received : ${body}"/>
 <to uri="OrderValidator”/>
 <filter>
 <xpath>/order[@priority='high']</xpath>
 <to uri="switchyard://ShippingService?operationName=shipOrder"/>
 </filter>
 </route>
 </implementation.camel>

</sca:component>

Thursday, May 5, 2011

Camel In SwitchYard

Route

log

filter

to <service>

validate

Thursday, May 5, 2011

Gateway Components

 Provide protocol binding for services and references
 Gateway components are bi-directional

interface

operation

operation

implementation

Service Service

interface

reference

binding

binding

Thursday, May 5, 2011

Gateway Components

 Two fundamental rules of gateways
 Never have enough
 The ones you have don’t do enough

 Our approach
 Focus on key gateways for platform

 SOAP first
 Incorporate adapters from other communities

 Camel components
 Straightforward pluggability for rolling your own

 Tooling, configuration, deployment

Thursday, May 5, 2011

Camel Gateway

 Allows Camel components to be used as gateways
 Flexible schema allows for XML or URI endpoint

configuration

<camel:binding.camel
 configURI="file://tmp/in?autoCreate=true&initialDelay=10&delete=true">
 <camel:operationSelector operationName="print"/>
</camel:binding.camel>

<camel:binding.file>
 <camel:operationSelector operationName="print" />
 <camel:consume>
 <camel:inputDir>/tmp/in</camel:inputDir>
 <camel:autoCreate>true</camel:autoCreate>
 <camel:initialDelay>10</camel:initialDelay>
 <camel:delete>true</camel:delete>
 </camel:consume>
</camel:binding.file>

XML-Based

URI-Based

Thursday, May 5, 2011

Configuration

 We need a way to represent this

InventoryService

inventory.wsdl

reference

OrderService.java

submitOrder OrderServiceBean

OrderService

SOAP

Thursday, May 5, 2011

Configuration

Thursday, May 5, 2011

SCA - Service Component Architecture

 Set of specifications for building applications in a
manner consistent with SOA principles

 Assembly spec is none too shabby
 Service definition language
 Encapsulation model

 Better than defining our own configuration format?
 Skills portability is nice
 Runtime portability much less certain

Thursday, May 5, 2011

Testing

 Big Bang testing of SOA applications must stop!
 Develop and test your services iteratively

 Service, transformation, binding, etc.
 SwitchYardTestCase

 Bootstraps runtime, components, and application
 MixIns

 Enriches test case via composition vs. extension
 CDI, HTTP, Smooks

 Arquillian coming soon

Thursday, May 5, 2011

Maven Support

 Started with Maven, staying with Maven
 Modularity

 Project structure
 Artifacts

 Extends to SwitchYard applications
 Archetype
 Plugins

Thursday, May 5, 2011

Development Tooling

 Focus on intuitive user experience with quick onramp
 Seam Forge

 Rapid application development tool
 Ease of a wizard, power of a shell
 More coming in the demo ...

 IDEs
 Maven support provides baseline functionality across IDEs
 Graphical tooling in Eclipse/JBDS

Thursday, May 5, 2011

Demo

Thursday, May 5, 2011

Looking Forward

 0.1 -- 05/31
 Resolve ankle-biter issues
 Documentation
 Release drudgery

 0.2 -- 08/05
 Policy
 BPM

 Further release details available in JIRA

Thursday, May 5, 2011

Resistance is Futile - Join Us!

 Project Site
 http://www.jboss.org/switchyard

 Community and Forums
 http://community.jboss.org/en/switchyard

 IRC
 freenode : #switchyard

 JIRA
 https://issues.jboss.org/browse/SWITCHYARD

 GitHub
 https://github.com/jboss-switchyard

Thursday, May 5, 2011

https://github.com/jboss-switchyard
https://github.com/jboss-switchyard

Thursday, May 5, 2011

