JBoss

SUMMIT “womeo

PRESENTED BY RED HAT

LEARN. NETWORK.
EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

MAVEN BEST PRACTICES

John Casey
Senior Software Engineer, Red Hat
4 May 2011

SUMMIT Womo

PRESENTED BY RED HAT

Agenda

e Better Maven builds

- composition:

e projects

e dependencies
- distribution:

e assemblies
e javadocs

- release
e Maven and JBoss

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Why “Maven Best Practices”?

e Trip hazards for new users
- many are conceptual
 New potential for trouble

- network problems
- other people’s bad ideas

e (Just) enough rope to hang yourself
e More than just creating jars and zips

- requires a little more thought to get right

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Review: Maven Design Goals

e Address both user and developer concerns
- ZERO project-specific knowledge to run a build
- minimal project-specific knowledge required to design a build

- standard build lifecycle
e controlled scaffold of build “verbs”

e Reuse build logic
e Network of related projects and artifacts

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Projects

e Common problems with projects:

- unnecessarily unique layout
- monolithic projects may present usability problems

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Using Maven’s Defaults

e Most configurations have defaults
- use them
e Avoid pain
- unnecessary maintenance burden
- potential for untested configurations
e Let go and let Maven

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Default Project Layout

e |-- pom.xml
T —-- src
| -- main
| [-- Java
|| T-- org
I T -- myproj
| | > —- SomethingCool. java
| S -- resources
| “—- log4j.properties
T -- test
|-- java
| T-- org
| " —- myproj
| “—- SomethingCoolTest.java
" —-- resources
| -- log4j.properties
"—— templates
|-- email.vm
| -- print.vm
" —- screen.vm

JBoss

SUMMIT “worwo

PRESENTED BY RED HAT

Default Project Layout

T —-- src
| -- main
|-- java
T -- org
"~ —- myproj
" —=— SomethingCool.java

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Default Project Layout

T —= src
| -- main

|
|
|
!
-- resources
"—-— log4j.properties

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Default Project Layout

S == Ssrc

T —-- test
|-- java
T —-- org
T —— myproj
" —- SomethingCoolTest.java

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Default Project Layout

-= Src

] ———————

-- test

] ————

-- resources
| -- log4j.properties
"—-- templates

| -- email.vm
| -- print.vm
" —-- screen.vm

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

1:1 POM-to-Artifact Relationship

e POM contains dependency statement for your jar

e Goes on the classpath?
- probably needs its own POM
e Assemblies can be gray areas...

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

When to Modularize

e Generate multiple output jars from one build
e Separate API from implementation
e Publish functional subsets of project code

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Dependencies

e Common problems with dependencies

- misuse of -SNAPSHOT
- misunderstanding of scope

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Building on Shifting Sand

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Building on Shifting Sand

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Building on Shifting Sand

l___'l_ l_ Il___

T DR

._._._l - — —] _._._.l - — —] - — —] - — —] - — —] - — —] _._._.l

SUMMIT worw

PRESENTED BY RED HAT

Snapshot Dependencies

e \What does a snapshot version imply?

e \What are you committing your developers to?

e How much volatility are you prepared to handle?
e How do you limit volatility?

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Building on (Less) Shifting Sand

—— ——

Your Project

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Dependency Scoping

e Two considerations:

- How is it used in the build?
- Do users need it?

e What does each scope mean?
compile
runtime

provided
test

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Dependency Scoping

Compiling:
Build
—Fy [org.foo:foo
C Complle >compile
~ (Funtine
I/ org.fwk:api
provided
—

|org.proj:core I

JBoss

SUMMIT womo

PRESENTED BY RED HAT

Dependency Scoping

Testing:

org.foo:foo

compile

org.bar:bar

runtime

org.fwk:api |
lprovided L—d
junit;junit |

Itest L—J
|org.proj:core I

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Dependency Scoping

“Running”:

—

org.foo:foo

compile

org.bar:bar

runtime

C Assemble

CITI

|org.proj:core I

JBoss

SUMMIT Worw

PRESENTED BY RED HAT

Dependency Scoping

What the user sees: .
org.user.project

org.proj.core

lorg.foo:foo |

compile

(org.bar:bar

|runtime Lﬁ

—

JBoss _’-
SUMMIT “worwo

PRESENTED BY RED HAT

Questions So Far?

e Next Up:

- Improving project distributions

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Better Assemblies

e Common problems aggregating multi-module projects...

- use a distribution module assembly at the top
- use ONLY assembly:single

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Assemblies

 Add dependencies on the other child modules

- sorts the distro to the end of the build order

<dependencies>
<dependency>
<groupIld>${project.groupld}</groupIld>
<artifactId>childl</artifactId>
<version>${project.version}</version>
</dependency>

[...]

</dependencies>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Assemblies

e ...Then, use special moduleSets to aggregate:

<moduleSet>
<useAllReactorProjects>true</useAllReactorProjects>
<binaries>
<outputDirectory>lib</outputDirectory>
</binaries>
</moduleSet>

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Better Assemblies

e ...Or better yet, use dependencySets:

<dependencySets>
<dependencySet>
<outputDirectory>lib</outputDirectory>
</dependencySet>
</dependencySets>

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Better JavaDocs

e Aggregating javadocs can be a mess...

- recombining javadoc jars from modules is ugly
- javadoc:aggregate goal considered harmful
- ANSWER: use the distribution dependencies instead!

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better JavaDocs

e First, in non-distribution modules:
- maven-source-plugin: jar

- maven-javadoc-plugin: resource-bundle

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Non-Distro Module Configuration

e Bundle the sources for dependency modules:

<plugin>
<artifactId>maven-source-plugin</artifactId>
<version>2.1.2</version>
<executions>
<execution>
<id>sources</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Non-Distro Module Configuration

Bundle javadoc resources for dependency modules:

(in src/main/javadoc/ by default)

<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.7</version>
<executions>
<execution>
<id>javadoc-bundle</id>
<goals>
<goal>resource-bundle</goal>
</goals>
</execution>
</executions>
</plugin>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better JavaDocs

e Now, in the distribution module:

- include dependencies for aggregation
- enable includeDependencySources

- Use javadoc: jar

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Distribution Module Configuration

 Now, aggregate those dependencies!

<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.7</version>
<executions>
<execution>
<id>aggregated-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
<configuration>
<includeDependencySources>true</includeDependencySources>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Questions So Far?

e Next Up:

- Better releases
- JBoss dependencies in Maven builds

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Releases

e Release workflow

*mvn clean release:prepare release:perform

- consider extra steps for better verification
e Requirements

e Common mistakes

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Release Plugin Workflow

*release:prepare
- “test” build
- update version (1.0)
- commit / tag
- update version (1.1-SNAPSHOT)
- commit

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Release Plugin Workflow

*release:perform

- checkout
- “release” build

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Better Releases

e Extra steps to consider:
- staging
- verifying
- promoting

e Some repository managers support this “extended”
release process

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Release Plugin Requirements

e Single-pass build is critical!
e Using a release profile?

- consider testing the profile before releasing.
e Required POM sections...

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT

Better Releases

Enable project deployment:

<distributionManagement>
<repository>
<id>deployment</id>
<name>Deployment Repository</name>
<url>http://repo.myco.com/deployment/path</url>
</repository>
</distributionManagement>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

http://repo.myco.com/deployment/path
http://repo.myco.com/deployment/path

Better Releases

Enable SCM tagging:

<scm>
<connection>
scm:git:http://github.com/jdcasey/myproj.git
</connection>

<developerConnection>
scm:git:git@github.com:jdcasey/myproj.git
</developerConnection>

<url>
http://github.com/jdcasey/myproj
</url>
</scm>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

http://jdcasey@github.com/jdcasey/EMB.git
http://jdcasey@github.com/jdcasey/EMB.git
mailto:git@github.com
mailto:git@github.com
http://github.com/jdcasey/EMB
http://github.com/jdcasey/EMB

Better Releases

e Avoid exotic deployment transports
- deploying to SVN is NOT a good idea
e Avoid strange configurations

- Maven calls Ant, which calls Maven...
- Maven calls Maven

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Maven and JBoss

e JBoss Nexus instance

http://repository.jboss.org/nexus/content/groups/public/

e JBoss community BOMs:

<dependencyManagement>
<dependencies>
<dependency>
<grouplIld>org.jboss.as</groupIld>
<artifactId>jboss-as-parent</artifactId>
<version>7.0.0.Beta2</version>
<scope>import</scope>
<type>pom</type>
</dependency>

[o..]

e Yes, but what about JBoss products?

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

http://repository.jboss.org/nexus/content/groups/public/
http://repository.jboss.org/nexus/content/groups/public/

Maven and EAP

e Maven repository ZIP archive for EAP 5.1.x
e One BOM to rule them all...

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com. jboss.eap</groupId>
<artifactId>eap-bom</artifactId>
<version>5.1.0</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

JBoss

SUMMIT “worwo

PRESENTED BY RED HAT

Maven and EAP

e Depend on EAP client APIs via jbossall-client:

<dependencies>
<dependency>
<groupId>org.jboss.jbossas</groupId>
<artifactId>jbossall-client</artifactId>
</dependency>
</dependencies>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Maven and EAP
You are
Here

- 5.1.x repository is “reconstructed”

e Thar be monsters!

- POMs lack transitive dependency metadata
e EAP G

- native Maven builds
- high-quality Maven repository will be a side effect

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

Questions?

JBoss

SUMMIT “worw

PRESENTED BY RED HAT

www.facebook.com/redhatinc

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

Hredhat

summitblog.redhat.com

GIVE US FEEDBACK

www.redhat.com/summit/survey

JBoss

SUMMIT Womo

PRESENTED BY RED HAT

