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Agenda

e Better Maven builds

- composition:

e projects

e dependencies
- distribution:

e assemblies
e javadocs

- release
e Maven and JBoss
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Why “Maven Best Practices”?

e Trip hazards for new users
- many are conceptual
 New potential for trouble

- network problems
- other people’s bad ideas

e (Just) enough rope to hang yourself
e More than just creating jars and zips

- requires a little more thought to get right
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Review: Maven Design Goals

e Address both user and developer concerns
- ZERO project-specific knowledge to run a build
- minimal project-specific knowledge required to design a build

- standard build lifecycle
e controlled scaffold of build “verbs”

e Reuse build logic
e Network of related projects and artifacts
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Better Projects

e Common problems with projects:

- unnecessarily unique layout
- monolithic projects may present usability problems
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Using Maven’s Defaults

e Most configurations have defaults
- use them
e Avoid pain
- unnecessary maintenance burden
- potential for untested configurations
e Let go and let Maven
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Default Project Layout

e |-- pom.xml
T —-- src
| -- main
| [-- Java
||  T-- org
I T -- myproj
| | > —- SomethingCool. java
| S -- resources
| “—- log4j.properties
T -- test
|-- java
| T-- org
| " —- myproj
| “—- SomethingCoolTest.java
" —-- resources
| -- log4j.properties
"—— templates
|-- email.vm
| -- print.vm
" —- screen.vm
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Default Project Layout

T —-- src
| -- main
|-- java
T -- org
"~ —- myproj
" —=— SomethingCool.java
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Default Project Layout

T —= src
| -- main

|
|
|
!
-- resources
"—-— log4j.properties

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT



Default Project Layout

S == Ssrc

T —-- test
|-- java
T —-- org
T —— myproj
" —- SomethingCoolTest.java
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Default Project Layout

-= Src

] ———————

-- test

] ————

-- resources
| -- log4j.properties
"—-- templates

| -- email.vm
| -- print.vm
" —-- screen.vm
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1:1 POM-to-Artifact Relationship

e POM contains dependency statement for your jar

e Goes on the classpath?
- probably needs its own POM
e Assemblies can be gray areas...

JBoss

SUMMIT “worw

PRESENTED BY RED HAT



When to Modularize

e Generate multiple output jars from one build
e Separate API from implementation
e Publish functional subsets of project code
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Better Dependencies

e Common problems with dependencies

- misuse of -SNAPSHOT
- misunderstanding of scope

JBoss

SUMMIT vorwo

PRESENTED BY RED HAT



Building on Shifting Sand
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Building on Shifting Sand
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Building on Shifting Sand

l___'l_ l_ Il___

T DR

._._._l - — — ] _._._.l - — — ] - — — ] - — — ] - — — ] - — — ] _._._.l
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Snapshot Dependencies

e \What does a snapshot version imply?

e \What are you committing your developers to?

e How much volatility are you prepared to handle?
e How do you limit volatility?
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Building on (Less) Shifting Sand

—— — — — — — — — — — — — — — — — — — — — — — — — ——

Your Project
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Dependency Scoping

e Two considerations:

- How is it used in the build?
- Do users need it?

e What does each scope mean?
compile
runtime

provided
test
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Dependency Scoping

Compiling:
Build
—Fy [org.foo:foo
C Complle >compile
~ (Funtine
I/ org.fwk:api
provided
—

|org.proj:core I
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Dependency Scoping

Testing:

org.foo:foo

compile

org.bar:bar

runtime

org.fwk:api |
lprovided L—d
junit;junit |

Itest L—J
|org.proj:core I
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Dependency Scoping

“Running”:

—

org.foo:foo

compile

org.bar:bar

runtime

C Assemble

CITI

|org.proj:core I
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Dependency Scoping

What the user sees: .
org.user.project

org.proj.core

lorg.foo:foo |

compile

(org.bar:bar

|runtime Lﬁ

—
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Questions So Far?

e Next Up:

- Improving project distributions
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Better Assemblies

e Common problems aggregating multi-module projects...

- use a distribution module assembly at the top
- use ONLY assembly:single
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Better Assemblies

 Add dependencies on the other child modules

- sorts the distro to the end of the build order

<dependencies>
<dependency>
<groupIld>${project.groupld}</groupIld>
<artifactId>childl</artifactId>
<version>${project.version}</version>
</dependency>

[...]

</dependencies>
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Better Assemblies

e ...Then, use special moduleSets to aggregate:

<moduleSet>
<useAllReactorProjects>true</useAllReactorProjects>
<binaries>
<outputDirectory>lib</outputDirectory>
</binaries>
</moduleSet>
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Better Assemblies

e ...Or better yet, use dependencySets:

<dependencySets>
<dependencySet>
<outputDirectory>lib</outputDirectory>
</dependencySet>
</dependencySets>
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Better JavaDocs

e Aggregating javadocs can be a mess...

- recombining javadoc jars from modules is ugly
- javadoc:aggregate goal considered harmful
- ANSWER: use the distribution dependencies instead!
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Better JavaDocs

e First, in non-distribution modules:
- maven-source-plugin: jar

- maven-javadoc-plugin: resource-bundle
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Non-Distro Module Configuration

e Bundle the sources for dependency modules:

<plugin>
<artifactId>maven-source-plugin</artifactId>
<version>2.1.2</version>
<executions>
<execution>
<id>sources</id>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
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Non-Distro Module Configuration

Bundle javadoc resources for dependency modules:

(in src/main/javadoc/ by default)

<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.7</version>
<executions>
<execution>
<id>javadoc-bundle</id>
<goals>
<goal>resource-bundle</goal>
</goals>
</execution>
</executions>
</plugin>
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Better JavaDocs

e Now, in the distribution module:

- include dependencies for aggregation
- enable includeDependencySources

- Use javadoc: jar
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Distribution Module Configuration

 Now, aggregate those dependencies!

<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<version>2.7</version>
<executions>
<execution>
<id>aggregated-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
<configuration>
<includeDependencySources>true</includeDependencySources>
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Questions So Far?

e Next Up:

- Better releases
- JBoss dependencies in Maven builds
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Better Releases

e Release workflow

*mvn clean release:prepare release:perform

- consider extra steps for better verification
e Requirements

e Common mistakes
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Release Plugin Workflow

*release:prepare
- “test” build
- update version (1.0)
- commit / tag
- update version (1.1-SNAPSHOT)
- commit
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Release Plugin Workflow

*release:perform

- checkout
- “release” build
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Better Releases

e Extra steps to consider:
- staging
- verifying
- promoting

e Some repository managers support this “extended”
release process
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Release Plugin Requirements

e Single-pass build is critical!
e Using a release profile?

- consider testing the profile before releasing.
e Required POM sections...
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Better Releases

Enable project deployment:

<distributionManagement>
<repository>
<id>deployment</id>
<name>Deployment Repository</name>
<url>http://repo.myco.com/deployment/path</url>
</repository>
</distributionManagement>

JBoss

SUMMIT “worw

PRESENTED BY RED HAT



http://repo.myco.com/deployment/path
http://repo.myco.com/deployment/path

Better Releases

Enable SCM tagging:

<scm>
<connection>
scm:git:http://github.com/jdcasey/myproj.git
</connection>

<developerConnection>
scm:git:git@github.com:jdcasey/myproj.git
</developerConnection>

<url>
http://github.com/jdcasey/myproj
</url>
</scm>
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http://jdcasey@github.com/jdcasey/EMB.git
http://jdcasey@github.com/jdcasey/EMB.git
mailto:git@github.com
mailto:git@github.com
http://github.com/jdcasey/EMB
http://github.com/jdcasey/EMB

Better Releases

e Avoid exotic deployment transports
- deploying to SVN is NOT a good idea
e Avoid strange configurations

- Maven calls Ant, which calls Maven...
- Maven calls Maven
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Maven and JBoss

e JBoss Nexus instance

http://repository.jboss.org/nexus/content/groups/public/

e JBoss community BOMs:

<dependencyManagement>
<dependencies>
<dependency>
<grouplIld>org.jboss.as</groupIld>
<artifactId>jboss-as-parent</artifactId>
<version>7.0.0.Beta2</version>
<scope>import</scope>
<type>pom</type>
</dependency>

[o..]

e Yes, but what about JBoss products?
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http://repository.jboss.org/nexus/content/groups/public/
http://repository.jboss.org/nexus/content/groups/public/

Maven and EAP

e Maven repository ZIP archive for EAP 5.1.x
e One BOM to rule them all...

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com. jboss.eap</groupId>
<artifactId>eap-bom</artifactId>
<version>5.1.0</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
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Maven and EAP

e Depend on EAP client APIs via jbossall-client:

<dependencies>
<dependency>
<groupId>org.jboss.jbossas</groupId>
<artifactId>jbossall-client</artifactId>
</dependency>
</dependencies>
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Maven and EAP
You are
Here

- 5.1.x repository is “reconstructed”

e Thar be monsters!

- POMs lack transitive dependency metadata
e EAP G

- native Maven builds
- high-quality Maven repository will be a side effect
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Questions?
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www.facebook.com/redhatinc

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

Hredhat

summitblog.redhat.com

GIVE US FEEDBACK

www.redhat.com/summit/survey
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