SUMMIT

JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

www.theredhatsummit.com

Optimizing MRG Messaging Performance

Andy Goldstein Principal Architect Amentra, A Red Hat Company

James Kirkland Solutions Architect Red Hat

May 5, 2011

Agenda

- MRG Messaging Overview
- •What is Performance?
- General Tuning Guidelines
- Optimizing Throughput
- Optimizing Bandwidth
- Optimizing Latency
- •Q&A

Red Hat Enterprise MRG Messaging

- Open and unencumbered
- Fully featured
- Proven and reliable

- Highly performant & scalable for diverse workloads
- True interoperability with different application platforms

Core MRG Messaging Features

- Open specification for wire level protocol AMQP
- Supports multiple message distribution patterns
- Reliable messaging
- Transactions local and distributed
- Interoperable clients

Advanced MRG Messaging Features

- Federation
- Management framework (QMF)
- Active-Active Clustering
- SASL authentication
- SSL encryption
- ACLs

MRG Fundamentals

- Broker
- Exchanges
 - •e.g., Direct, Topic, Fanout, Header, XML
- Routing Key
- Binding Key
- Queue
- Connection
- Session
- Sender / receiver

Exchange examples

Direct Exchange

Keys directly match

Exchange examples

Keys matched on wildcards

Topic Exchange

Clustering

Broker A Clustering ____ High availability Fault tolerance amq.topic Broker B **Broker C** ---amq.topic amq.topic

Federation

- Federation
 - Forward messages between brokers

What is performance?

What are the key measures of messaging performance?

Throughput = Messages / second

Bandwidth = MB / second

Latency = Transit time / message

General Tuning Guidelines

- Broker deployment architecture
- Exchange types
- Broker configuration
- Processor affinity
- Persistence and durability
 - Journal size
 - Queue depth

Clustering and Federation

Clustering

- Multicast token ring for active-active replication
- Performance implications
- Use RHCS to prevent split-brain
- Client failover timing
- Federation
 - Only 1 connection between 2 broker peers
 - Acknowledgements

Optimizing throughput - Msg/sec

- Connection per thread
- Sender capacity
 - •1 4,300 msgs/sec
 - •30 25,000 msgs/sec
 - •50 30,000 msgs/sec
 - •100 34,000 msgs/sec
 - •1000 41,000 msgs/sec

Optimizing throughput - Msg/sec

- Receiver capacity
 - •1 4,300 msgs/sec
 - •30 20,000 msgs/sec
 - •50 34,000 msgs/sec
 - •100 39,000 msgs/sec
 - •1000 42,000 msgs/sec

Optimizing throughput - Msg/sec

- Message acknowledgement
 - Ack every message: 27,000 messages/sec
 - Ack in batches of 2: 36,000 messages/sec
 - Ack in batches of 10: 43,000 messages/sec
 - •No acks: 45,000 messages/sec

Optimizing bandwidth - MB/sec

Minimum AMQP 0-10 frame size - 12 bytes

Fewer frames

+ More data per frameHigher bandwidth utilization

"Container" message option

Optimizing bandwidth - MB/sec

- Utilize the fastest networking technology available
 - •10 Gigabit Ethernet
 - Infiniband

 Put messaging and cluster traffic on dedicated network

Optimizing bandwidth - MB/sec

Optimizing latency

- OS induced latency
- Realtime kernel
- Make the right I/O choice
- TCP nodelay
- Look for latency in your application

Latency - Dealing with SMIs

- Disable SMIs
 - Dynamic Power Savings Mode
 - CPU Utilization monitoring
 - P-state monitoring
 - ECC monitoring
- Benefits both RHEL & MRG operating environments

Latency - Dealing with SMIs

Latency spikes with standard BIOS settings

Latency when SMIs disabled in BIOS

Source: ftp://ftp.hp.com/pub/c-products/servers/linux/realtime/HPConWS-panel-Trieloff-Fisher-090914.pdf

I/O Technology Choices

- Network
 - InfiniBand
 - •10gigE
 - •RDMA
- Disk
 - •FC / FCoE
 - •iSCSI
 - Infiniband

What is RDMA?

- Remote Direct Memory Access
 - Originated with InfiniBand
 - Adopted in 10gigE as RoCE
- Direct memory to memory data copy
- Little CPU or OS overhead
- Latest iteration is QDR (40 Gbit/sec bandwidth and sub 3 µs latency)

Network Type & Latency

Operating System Tuning

- NUMA
 - Maximize CPU cache hits
 - Localize memory
- Move IRQ handlers
- Tune networking parameters

Q&A

29

SUMIT JBoss WORLD

LIKE US ON FACEBOOK

www.facebook.com/redhatinc

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#redhat

READ THE BLOG

summitblog.redhat.com

GIVE US FEEDBACK

www.redhat.com/summit/survey

