

Rich Raposa
JBoss Curriculum Manager
Red Hat, Inc.
May 6, 2011

TROUBLESHOOTING

JBOSS EAP 5: PART 1

Troubleshooting JBoss EAP 5, Part 1

● There are often hiccups on the way to production.

● Identifying potential issues and resolving them are
important for server administrators and developers
alike.

● My talks today will focus on two main elements:

1) Common Bottlenecks

2) JBoss Memory Consumption

Common Bottlenecks

● Bottlenecks can occur in many places:
● 75% of performance issues originate from the

application
● Database connections
● EJBs/Servlets/Web components
● The Java Virtual Machine (JVM)
● Logging
● Any areas causing bottlenecks for you?

Client 1

Client 2

Client 3

Client
requests

JBoss EAP

DB

EJB

Servlet

JSP

JMS

Web Services

Seam

JNDI

JSF

Client Requests (HTTP or AJP)

EAP Instance

My Application

Client 1

Client 2

Client 3

Client 100

?

Client
requests

The Connector

EAP Instance

My Application

Client 1

Client 2

Client 3

Client 100

Connector

Client
requests

What is the configuration file for modifying the
settings of your HTTP or AJP Connectors?

● The file name is server.xml

● Located in:
● /jboss-as/server/<profile-name>/deploy/jbossweb.sar

The <Connector> Tag

 The default settings look like:

<Connector protocol="HTTP/1.1" port="8080"

 address="${jboss.bind.address}"

 connectionTimeout="20000" redirectPort="8443" />

Let's take a look at some important Connector
attributes...

acceptCount

● acceptCount
● The maximum queue length for incoming requests.
● Default is 100
● Any requests received when the queue is full will be

refused.
● Make sure this value is large enough to handle the

number of requests that you expect at peak times.
● Careful: it's not the number of clients, but the number

of requests, which is typically much higher than the
number of clients.

maxKeepAliveRequests

ConnectorClient

Keep the connection between client and server
open between requests

1. Request #1 opens a connection

2. Subsequent requests don't need to open a
new connection

● maxKeepAliveRequests
● Default is 100
● Set to 1 to disable it (will likely lead to disaster!)
● Set to -1 for unlimited (only limited by hardware

constraints)
● Opening and closing an HTTP connection is not a huge

expense, but like any aspect of a high-volume
application, every little bit helps!

The other side of the Connector...

Connector

EJB

Web
Component

JMS

Web
Service

Thread
Pool

maxThreads and minSpareThreads

● maxThreads
● The maximum number of simultaneous requests that

can be handled.
● Default is 200, which is not very high!

● minSpareThreads
● The minimum number of threads always kept running.
● Default is 10
● Set to the # of threads needed at peak load
● Set maxThreads equal to minSpareThreads (or a

slightly larger value)

What happens after the Connector?

● OK – so we have gotten the request through the
Connector

● And it is being handled by a thread in the JVM.

● What happens next is based on the end target of the
request. Some examples include:

● An EJB method
● A Servlet, JSP, JSF, Seam or other Web component
● A Web Service
● A Message Queue or Topic

Pooling EJBs

● Whether an EJB is stateless or stateful, pooling
instances greatly improves performance.

Pool of
BeanX

instancesClient 1 Thread handling
the client's

request.

Stateless Session Bean Pools

● There are two types of pools that can be configured for
use with stateless session beans:

● 1. ThreadlocalPool: a pool of EJB instances local to a
thread. It has no limit (so there is no need to configure
it), and there is a pool for each thread.

● 2. StrictMaxPool: a single pool shared by all threads
that has a fixed maximum size.

● You need to monitor and test your applications using
both modes to determine which is faster.

How large is my thread pool?

● The size of the thread pool, as well as the number of
threads being used, is available through JMX.

● Use any of these tools to monitor the pool size:
● JBoss Operations Network (JON)
● Jconsole, JVisualVM, JMX Console
● or any other JMX-supported tool

Configuring StrictMaxPool

● If all EJB instances in a StrictMaxPool are used, the
waiting thread blocks and waits for one to become
available.

● To configure this setting, open the file:
● ejb3-interceptors-aop.xml

● in your profile's /deploy folder. Search for:

@org.jboss.ejb3.annotation.Pool
(value="StrictMaxPool", maxSize=500,
timeout=10000)

Stateful Session Beans

● Performance tuning Stateful EJBs involves configuring
the cache in your cluster.

● The config file is:
● jboss-cache-manager-jboss-beans.xml

● located in the following folder:
● jboss-as/server/<profile>/deploy/cluster/jboss-cache-

manager.sar/META-INF

Stateful Session Beans

● The settings of interest are:

<property name="nodeLockingScheme">

PESSIMISTIC

</property>

<property name="isolationLevel">

REPEATABLE_READ

</property>

● These are typically the best values for performance
and reliability.

Seam Performance Tip

● If a Seam component is accessed many times, you
can greatly improve performance by disabling the
interceptor stack.

@BypassInterceptors

public class MySeamComponent

{ ... }

● This might not be an option! But if it is, the benefit can
be significant.

Database Connection Pools

DB

EAP

Connection
pool

Object that needs
DB access

Configuring the DB Pool Size

● Within your *-ds.xml file:

<min-pool-size>1000</min-pool-size>

<max-pool-size>3000</max-pool-size>
● The default value of min-pool-size is 0, which rarely is

a good option.

● Best practice: set min-pool-size to the minimum you
need for maximum throughput.

● Set max-pool-size much higher than your
expectations.

● Use JMX or JON to watch the pool size.

The JCA Thread Pool

● The JCA container has its own thread pool (also
called the Work Manager thread pool).

● The pool needs to be sized appropriately to handle the
messaging load of your applications.

● MessageDriven Beans and your JMS code all share
the same JCA Thread Pool.

Configuring the JCA Thread Pool
● The config file for this pool is in your /deploy folder:

● jca-jboss-beans.xml
● The bean named “WorkManagerThreadPool”

contains the important settings:

<property name="maximumQueueSize">

1024

</property>

<property name="maximumPoolSize">

100

</property>

Monitoring the JCA Thread Pool

● Make sure maximumPoolSize contains enough
threads to handle your peak volume.

● If all the threads are in use, the message is placed in a
separate queue and waits for a thread to become
available.

● Use your favorite JMX tool to monitor your JMS and
make sure “QueueSize” is always 0.

● If it's ever not 0, your thread pool is too small!

A Performance Tip for JMS

● If you are using the Java Messaging Service in your
EAP applications,

● then use HornetQ for the implementation.

● Run ./build.sh in HornetQ config/jboss-as-5 directory
● This creates EAP profiles for use in EAP5

● Instead of a database, HornetQ uses the Java NIO for
persisting messages, using the native OS's
asynchronous I/O.

The System's Basic Thread Pool

● Configured in jboss-service.xml (in /conf folder)

● <mbean code="org.jboss.util.threadpool.BasicThreadPool"

● name="jboss.system:service=ThreadPool">

● <attribute name="Name">JBoss System Threads</attribute>

● <attribute name="ThreadGroupName">System Threads</attribute>

● <attribute name="KeepAliveTime">60000</attribute>

● <attribute name="MaximumPoolSize">10</attribute>

● <attribute name="MaximumQueueSize">1000</attribute>

● </mbean>

A Peformance Tip for Logging

● Logging is configured in the file:

/<profile>/conf/jboss-log4j.xml
● In production, TURN OFF console logging. It is the

most expensive form of logging.

● Test asynchronous logging (the JMS appender), which
may improve performance is you have a high
frequency of logging.

Wrap Log Statements

● If you have a lot of log statements that occur
frequently, consider wrapping them in “if” statements:

if(debugging()) {

log.debug(...);

}
● If debugging is turned off, you save the time and

memory of wasted log objects that a call to “log”
creates.

Troubleshooting Bottlenecks

● First off, you need a good monitoring tool:
● Java VisualVM
● JON
● jmx-console

● Don't forget your helpful system tools:
● top
● vmstat
● iostat

CPU Under Utilization

● Monitor trends in your CPU usage

● Under utilization may not be a good thing!

● Watch for high CPU idle time followed by degrading
response times (once traffic picks back up)

● This may be a sign that JBoss is waiting for resources
to be released by another process.

● Perform a thread dump to see which threads are
waiting.

CPU Over Utilization

● High CPU may not always be a bad thing!

● Of course, many times it can be a sign of bottlenecks.

● One useful task is to use vmstat to check the size of
the run queue

● procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu-----

● r b swpd free buff cache si so bi bo in cs us sy id wa st

● 1 0 0 701768 97128 771036 0 0 67 14 312 469 7 1 90 2 0

● If the value or r is bigger than the # of CPU's, than you
likely have resource issues.

High Disk I/O

● Use iostat to monitor possible bottlenecks caused by
high usage of disk input/output.

● iostat -xd sda

● Linux 2.6.32-71.14.1.el6.x86_64 (rraposa.csb) 05/06/2011 _x86_64_ (4 CPU)

● Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

● sda 3.99 6.72 8.09 5.58 405.79 93.39 36.52 0.23 16.62 3.74 5.11

● If service time (svctm) and %util are high:
● Excessive logging
● Excessive passivating of Stateful Session Beans
● Poorly configured database connection pool
● Use multiple and/or faster file systems

Thanks and Recognition to...

● The information on performance tuning can be found in
the paper titled “Performance Tuning Guide for EAP”
by Andrig Miller

In summary...

● Thank you for attending and I hope you gained some
useful information in tuning your applications.

● If you stick around, the next talk will be on
understanding the various JVM memory settings.

