
GET STARTED WITH INFINISPAN

Sandeep Khemani | Jim Tyrrell
April / 18 / 2011

Through this lab, application developers who are seeking a scalable caching & compute data grid solution,
will get a hands on introduction to Infinispan. A fully certified, supported offering based on the Infinispan
project will manifest itself in the near future – please stay tuned for details.

Contents
 1 INTRODUCTION TO INFINISPAN..2

 1.1 Audience for this document..2
 1.2 Prerequisites...3

 2 INFINISPAN LAB: INTRODUCTION...3
 2.1 Pre-requisites to this Lab..3
 2.2 What will we do in today’s Infinispan workshop..4
 2.3 Set Up Lab Environment: Unzip Infinispan ...4
 2.4 Concept: JBoss JGroups & its Relevance to Infinispan...5

 3 LAB: THE OUT OF THE BOX INFINISPAN GUI EXAMPLE...6
 4 LAB: IMPLEMENT THE CODE TO START AN INFINISPAN CLUSTER ..9
 5 LAB: NO STRINGS ATTACHED – WORKING WITH OBJECTS..12
 6 LAB: USING A CONFIG XML FOR A CUSTOM CACHE CONFIGURATION...12
 7 LAB: REGISTERING EVENT LISTENERS TO OBSERVE EVENTS...16
 8 ADDITIONAL RESOURCES ON PROJECT INFINISPAN..19

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

Copyright © 2011 Red Hat, Inc. “Red Hat,” Red Hat Linux, the Red Hat “Shadowman” logo, and the products listed are trademarks of Red Hat, Inc., registered in
the U.S. and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

 1 INTRODUCTION TO INFINISPAN
The Infinispan solution is a 100% open source solution that is written in Java and aims to provide a
scalable & available, data grid platform. It will also be highly concurrent, clustered compute data
grid that will make the most of modern multi-processor/multi-core architectures while at the same
time providing distributed cache capabilities. It will be optionally backed by a peer-to-peer network
architecture to distribute state efficiently around a data grid running on multiple physical servers.

Offering high availability of state across a network as well as persisting state to configurable data
stores, Infinispan offers enterprise features such as efficient eviction for efficient memory usage as
well as JTA compatibility.

In addition to the peer-to-peer architecture of Infinispan, on the roadmap is the ability to run farms
of Infinispan instances as servers and connecting to them using a plethora of clients - both written
in Java as well as other popular platforms.

Here are some of the features of Infinispan:

State-of-the-Art Core - Infinispan's core is a specialized data structure, tuned to and geared for
concurrency - especially on multi-CPU/multi-core architectures. The internals are intended to be
lock and synchronization free, favoring state-of-the-art non-blocking algorithms and techniques
wherever possible.

Massive Heap - If you have 100 blade servers with 2GB nodes each in a replicated cache, you
end with 2 GB of total data. Every server is just a copy. On the other hand, with a distributed grid -
assuming you want a total of 2 copies per data item - you get a 100 GB memory backed virtual
heap that is efficiently accessible from anywhere in the grid. If a server fails, the grid simply creates
new copies of the lost data, and puts them on other servers. This means that applications looking
for ultimate performance are no longer forced to delegate the majority of their data lookups to slow
backend data repositories (such as databases, flatfiles and mainframes) That expensive bottleneck
of data lookups and joins exists in over 80% of enterprise applications!

Extreme Scalability - Since data is evenly distributed, there is essentially no major limit to the size
of the grid, except group communication on the network - which is minimized to discovery of new
nodes. All data access patterns use peer-to-peer communication where nodes directly speak to
each other, which Infinspan has a stated goal of near linear scalability.

Not Just for Java (PHP, Python, Ruby, C, etc.) - The roadmap has a plan for a language-
independent server module. This will support both the popular memcached protocol - with existing
clients for almost every popular programming language - as well as an optimized Infinispan-specific
protocol. This means that Infinispan is not just useful to Java. Any major website or application that
wants to take advantage of a fast data grid will be able to do so. If this will be supported in the
product at the time of this writing is still being determined.

Support for Compute Grids - Also on the roadmap is the ability to pass a Runnable around the
grid. You will be able to push complex processing towards the server where data is local, and pull
back results using a Future. This map/reduce style paradigm is common in applications where a
large amount of data is needed to compute relatively small results.

Grid Management - When running a grid on several servers, management is no longer an after
thought, it becomes a necessity. This is on Infinispan's roadmap and rich tooling in this area, with
many integration opportunities is planned.

 1.1 Audience for this document

IT professionals interested in a data grid solution (Project Infinispan) as a means to reduce the load
on backend data stores, boost the performance of applications by pushing data to the edge.
Professionals may include architects, application developers and application administrators. If you
are already familiar with proprietary data grid solutions – you are at the right place and can
potentially leverage a supported JBoss Enterprise solution in the future which will be based on
Infinispan.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

 1.2 Prerequisites

This is a hands on introduction to Infinispan. We will be writing Java code and launching some pre-
built Infinispan examples. It is highly recommended to be Java coder, although the instructions in
this document are intended to be lucid and should be able to give you a perspective to the product
even if you are not a Java coder on a day to day basis.

 2 INFINISPAN LAB: INTRODUCTION
This lab should take between 60-90 minutes of time.

 2.1 Pre-requisites to this Lab

Inspect Lab Artifacts: All required files are in the “Downloads” directory on your Desktop, with
the following contents / structure:

Infinispan.pdf – this lab guide you are
reading. Lab commands for cut-paste
convenience are in the document
Readme_Infinispan_Lab_Commands

The “src” directory is your working directory
and contains stub classes - you will be
implementing your code in these
classes.

The “classes” directory is where your code
will be compiled.

The “solutions” directory contains lab
solutions you may refer to.

The “Infinispan” directory contains
Infinispan software you will be
installing.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

 2.2 What will we do in today’s Infinispan workshop

As mentioned in the introductory section, Infinispan is a highly scalable, resilient data grid. In this
workshop we will illustrate some introductory concepts of Infinispan. As part of the labs, we will -

1. Launch the GUI example application that comes out of the box with
Infinispan. We will create a grid or cluster of multiple cache nodes, and insert
literal / primitive data into the grid via the GUI interface. Once a grid is
created with data loaded, we will demonstrate data resilience and data
distribution by removing / adding node members from the grid.

2. Get under the hood – we will write Java classes to programmatically create a
data grid and insert a simple key-value (String) data into the cache

3. We will update the cache to insert a serializable object to the data grid –
moving away from using literals.

4. Attach event listeners to caches – meaning data changes are captured
realtime – potentially for alerting realtime clients. We will also now cluster our
Infinispan node with a set of existing nodes from the GUI demo

5. Discuss configuration options for the data grid.

6. Pointers to additional online resources to extend your learning of Infinispan

 2.3 Set Up Lab Environment: Unzip Infinispan

Since JAVA_HOME and the PATH environment variables are already set on your machine you are
ready to install Infinispan. Note that JAVA_HOME is set to your JDK home directory and is
generally required to run most JBoss projects and products. Infinispan requires JDK 1.6 or higher,
and you can check this via java -version, and see which version is installed.

The next thing to do is to unzip infinispan-5.0.0.BETA2-all.zip – this is available at
~student/Desktop/Downloads/Infinispan/Infinispan.

This should create a directory called infinispan-5.0.0.BETA2 where you unzipped it (as follows)

Congratulations, you just installed INFINISPAN. Inspect the contents of the unzipped (installed)
directory locations.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

– infinispan-core.jar: This binary is the core library for Infinispan. This alongwith the Jars in the
lib directory mentioned below are almost always required for development and for running your
Infinispan cluster
– lib: This directory contains the jar files that are typically required to be in the classpath along

with the infinispan-core.jar mentioned above
– bin: This directory contains the various scripts used by infinispan – there are scripts for starting
an infinispan node, starting several other examples. We will be using the runGuiDemo.sh in our lab
(adjust to runGuiDemo.bat if you are using a windows development environment)
– doc: The Javadocs for this version of Infinispan for reference

Now a few more checks -

Check JAVA_HOME – The JAVA_HOME environment variable should be already set for you on
your desktop. You can validate its value by opening a shell window [Right click on the Desktop and
choose “Open in Terminal”] and run the following command ...

echo $JAVA_HOME

You should see the home directory location of the provided JDK 1.6+ that has already been
installed on your system.

Check HOME – The HOME environment variable should also be already set for you on your
desktop. You can validate its value by running the following command on your shell window ...

 echo $HOME

You should see something like the following screenshot, for the provided computers it will be
/home/student:

COPY - PASTE CAUTION: When copying and pasting commands from this pdf to the shell window
you will see characters dropped or spaces added – your commands will not work. You should
instead copy and paste from the provided document - Readme_Infinispan_Lab_Commands

 2.4 Concept: JBoss JGroups & its Relevance to Infinispan

As mentioned above, Infinispan enables you to create a data grid – meaning that you can use
memory and compute power of available physical machines to create one or more contiguous data
grid/s. This distributed architecture provides resilience, dynamic scale, optimal resource utilization
to store (and access) objects that otherwise would require fetches from multiple data sources and
the marshalling/unmarshalling overhead. Your consuming applications (other processes or the
presentation tier) will perform better and you will reduce the load on backend data sources.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

However, running a data grid (or a cluster of a large number of data / cache nodes) means that the
inter-process communication between the nodes must be optimized and efficient – inter-process
communication is used for data transfer & balancing, grid memberships (joins and leaves), running
queries, object updates, etc.

If you are familiar with JBoss, you probably are familiar with JGroups – . Infinispan re-uses JGroups
for inter process communication for the cache/data grid. Lets talk a little bit more about JGroups.

What is JGroups? The JBoss JGroups framework provides services to enable peer-to-peer
communications between nodes in a cluster. It is built on top a stack of network communication
protocols that provide transport, discovery, reliability and failure detection, and cluster membership
management services. Essentially it is a stable and mature toolkit for reliable multicast
communication. That this doesn't necessarily mean IP Multicast only. JGroups can also use
transports such as TCP, leveraging a point to point topology. It can be used to create groups of
processes whose members can send messages to each other. The main features include -

- Group creation and deletion. Group members can be spread across LANs or WANs
- Joining and leaving of groups
- Membership detection and notification about joined/left/crashed members
- Detection and removal of crashed members
- Sending and receiving of member-to-group messages (point-to-multipoint)
- Sending and receiving of member-to-member messages (point-to-point)

 3 LAB: THE OUT OF THE BOX INFINISPAN GUI EXAMPLE

We are now ready to see some action. We will start with the sample GUI application that ships out
of the box -

STEP 1: Start the Out of the Box Demo GUI . Open a shell window (unless already open) and
execute the following commands:

cd ~/Desktop/Downloads/Infinispan/Infinispan/
cd infinispan5.0.0.BETA2/bin
./runGuiDemo.sh

This should bring up the following swing window.

STEP 2: Start the cache in the GUI above, using the Start Cache button.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

You should see that the cache starts (as screenshot below) and displays the configuration file it is
using.

Click on the manipulate data button.

STEP 3: Manipulate data: In the Manipulate Data tab, add entries, generate random data, etc.
It might be suggest to put in 10,10: 20, 20 and 30,30

STEP 4: Start more cache instances: Repeat Steps 1 and 2 above to launch and start up more
caches (ensure you hit the Start Cache button on each new window as specified in Step 2). Watch
cluster formation in the Cluster View tab.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

From the screenshot above, you can see that we launched the ./runGuiDemo.sh three more
times; we hit the start cache button on each and hence we see that the total of 4 nodes that started
and formed a cluster.

STEP 5: Manipulate more data: Add and remove data on any of the nodes, and watch state being
distributed (Note the number of entries each node contains, ie data is not copied to all the other
nodes – see the statement below the “Refresh view” button).

Shut nodes down to witness data durability.

QUIZ:
– What happens to the data when you shut down all except 1 node?

[HINT:] Ideally if the last node has enough JVM capacity, it will hold all the data
that was inserted from any where else in the data grid ...

– What happens when you re-start new nodes and kill the original node?
[HINT:] When new nodes are started, data is re-distributed to ensure additional
capacity is utilized. The node holds some primary and some backup data. When
other nodes die, the backup data for their primaries residing on other nodes is
promoted to becoming primary

– What happens when you kill the (coord) node
[HINT:] Another node takes that responsibility

– In the control panel, you see the XML configuration details. What does
<clustering mode=“distribution”> mean?
[HINT:] Means data is not replicated or copied to each node. Data is distributed
across the available members in the data grid – each member holds its primary
data and 1 or more nodes can hold copies of another member’s data (for high
availability)

– Inspect the contents of the XML shown – we will discuss this in a later section
– What are some usecases for Infinispan in your company?

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

At this time, please shutdown all the GUI windows that are open to stop the running cache nodes.
In the shutdown process, you can see data being re-distributed and the cluster details changing in
the GUI.

 4 LAB: IMPLEMENT THE CODE TO START AN INFINISPAN CLUSTER

In this lab, we will use an existing stubbed Java class (Node1.java) that uses Infinispan APIs to
programmatically create an Infinispan node and place a simple key-value based data in the grid.
Your lab implementation will also print out the size of the cluster. This means that as an Infinispan
node comes up, it will try to cluster with existing Infinispan nodes. Follow the steps below:

STEP 1: Open a shell window and navigate to the stubbed out lab class Node1.java provided to
you:

cd ~/Desktop/Downloads/Infinispan/src/org/infinispan/examples/

STEP 2: Open the file Node1.java using the editor of your choice (gedit, vi, emacs, nano, etc).
nano -w Node1.java

STEP 3: Add code to Node1.java (which you just opened) to implement an instance of an
Infinispan node.

• To the (stubbed) init method add the following code to create the cache manager
and get a handle to the cache we will use in the next example. A cache manager
is the mechanism for retrieving a cache instance, and is used as a starting point
to using the cache. Cache managers are heavyweight objects, and no more than
one cache manager is to be used per JVM. Constructing a cache manager is
done via one of its constructors, which optionally take in a configuration or a path
or URL to a configuration XML file. Please read the code carefully before adding
to the init method of Node1.java

 //BEGIN
try{

GlobalConfiguration gc =
 GlobalConfiguration.getClusteredDefault();

 Configuration c = new Configuration();

// DIST_SYNC – the cache will not replicate data across
// all members of the cluster but distribute it
// Updates will be synchronous to the primary and the
// secondary copies

 c.setCacheMode(Configuration.CacheMode.DIST_SYNC);
 cacheManager = new DefaultCacheManager(gc, c);
}

 catch (Exception e){
 System.out.println("Error creating custom Cache Manager."

+ " Creating DefaultCache!");
this.cacheManager = new DefaultCacheManager();

 }
//END

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

• To the (stubbed) placeItemInCache method we need to add the following code.
Please read the code carefully – it should be self explanatory.

 //BEGIN
 Cache<String, Object> cache = this.cacheManager.getCache();

 cache.put("key1" , "value1");

System.out.println("keyvalue String pair inserted into"
+ " infinispan cluster!");

 System.out.println("The size of the cluster is: " +
this.cacheManager.getClusterSize());

//END

• Compile your code using the following command:

javac cp $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:$
{HOME}/Desktop/Downloads/Infinispan/classes Xlint:deprecation d $
{HOME}/Desktop/Downloads/Infinispan/classes Node1.java

What did you just do?

You compiled Node1.java using a classpath that included the required libraries at:

• {HOME}/Desktop/Downloads/Infinispan/Infinispan/infin
ispan5.0.0.BETA2/lib/*

• $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infin
ispan5.0.0.BETA2/infinispancore.jar

• ${HOME}/Desktop/Downloads/Infinispan/classes

Your class file was generated at -

• {HOME}/Desktop/Downloads/Infinispan/classes

STEP 4: Execute (and start the first node in the Infinispan cluster) using the following command:

java cp $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:$
{HOME}/Desktop/Downloads/Infinispan/classes
Dbind.address=127.0.0.1 Djava.net.preferIPv4Stack=true
Dlog4j.configuration=file:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/etc/log4j.xml org.infinispan.examples.Node1

What did you just do?

You executed class org.infinispan.examples.Node1 using a classpath
that included the required libraries at:

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

• {HOME}/Desktop/Downloads/Infinispan/Infinispan/
infinispan5.0.0.BETA2/lib/*

• $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/
infinispan5.0.0.BETA2/infinispancore.jar

• ${HOME}/Desktop/Downloads/Infinispan/classes

You also provided the following System Parameters (-D parameters) to the JVM
(explanations below)

• bind.address=127.0.0.1
Infinispan requires the bind.address system property to be set
to function as a distributed cache

• java.net.preferIPv4Stack=true
It ensures that the program uses IPv4, a system of addresses
used to identify devices on a network.

• log4j.configuration=file:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/
infinispan5.0.0.BETA2/etc/log4j.xml
The default logging configuration through the log4j.xml file used
by Infinispan node

See following screenshots on what to expect ...

You should see the first node in the cluster starting up (as shown in the screenshot below)
– it shows that the node started and added a simple piece of data to the cluster. It also
shows that the size of the cluster is 1, given that this is the first node in the cluster.

STEP 5: Open a new shell window (cntrl-shift-t) make this really easy, and start a second node in
the Infinispan cluster using the same java command as in STEP 4. You should see that a second
node started up and it shows that the size of the cluster now is 2. You may choose to launch 1-2
more nodes using the same command (WARNING: The number of nodes you can launch is a
function of the available memory and the compute capacity of the system. See screenshot below.

At this time, please shutdown all running Infinispan cache nodes.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

 5 LAB: NO STRINGS ATTACHED – WORKING WITH OBJECTS

Thus far data inserted into the data grid has been Strings – lets insert a serializable object into the
data grid.

For this section, we will use the Person.java class at the following location
~/Desktop/Downloads/Infinispan/src/org/infinispan/examples/Person.java

This is a simple Java class that just has 2 String attributes – firstname and lastname, a constructor
and mutators (setXXX) and accessors (getXXX) implemented. The Person class implements:

java.io.Serializable

Open a shell window and navigate to

~/Desktop/Downloads/Infinispan/src/org/infinispan/examples/

Open (gedit, nano, or vi) and Update Node2.java at the location and ensure you are inserting a
Person object in the API placeItemInCache()
nano w Node2.java :

cache.put("person1" , new Person("a", "b"));

Inspect and compile Person.java using the following command:

javac d ${HOME}/Desktop/Downloads/Infinispan/classes Person.java

Compile Node2.java using the following command:

javac cp ${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:${HOME}/Desktop/Downloads/Infinispan/classes
Xlint:deprecation d ${HOME}/Desktop/Downloads/Infinispan/classes Node2.java

Execute Node2 using the following command:

java cp ${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:${HOME}/Desktop/Downloads/Infinispan/classes
Dbind.address=127.0.0.1 Djava.net.preferIPv4Stack=true
Dlog4j.configuration=file:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/etc/log4j.xml org.infinispan.examples.Node2

“You should see that the Person object was inserted into the infinispan cluster.”

At this time, please shutdown all running Infinispan cache nodes.

 6 LAB: USING A CONFIG XML FOR A CUSTOM CACHE CONFIGURATION

In your projects it's likely that you want to provide a custom configuration. You have two options to
configure Infinispan: programmatically (as above Labs illustrate) or by using a configuration file. In
this Lab we will be using the same configuration (via XML) as used for the GUI demo. This
configuration file is located at

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

~/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/etc/configsamplesguidemocache
config.xml

Lets explain the XML code in the file – refer to the XML comments below for explanations:

<?xml version="1.0" encoding="UTF8"?>

<!
‘infinispan’ is the root element: the minimum required
for a configuration file

 >

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
 xsi:schemaLocation="urn:infinispan:config:4.0

http://www.infinispan.org/schemas/infinispanconfig4.0.xsd"
 xmlns="urn:infinispan:config:4.0">

 <!
‘global’ contains System wide local settings

 >

 <global>

 <!
’transport’ configures transport used for network
communications across the cluster. ‘clusterName’defines the
cluster name & nodes connect to clusters sharing the same name.
‘ globalJmxStatistics’ if global statistics are gathered and
reported via JMX for all caches under this cache manager.

 >

 <transport clusterName="demoCluster"/>
 <globalJmxStatistics enabled="true"/>
 </global>

 <!
‘default’ is the configuration used by all Infinispan caches.

 >

 <default>
 <jmxStatistics enabled="true"/>

<!
‘clustering’ defines clustered characteristics of the cache.
 >

 <clustering mode="distribution">

<!
‘l1’configures the L1 cache behavior in 'distributed' caches
instances. ‘lifespan’ is the max lifespan of an entry placed in
the cache. ‘hash’ allows finetuning of rehashing characteristics
in distributed cache mode. ‘numOwners’ is # of clusterwide
replicas for each cache entry. ‘sync’ means communications are
synchronous and blocking until it receives an acknowledgement
 >

 <l1 enabled="true" lifespan="60000"/>
 <hash numOwners="2" rehashRpcTimeout="120000"/>
 <sync/>
 </clustering>
 </default>
</infinispan>

A Configuration file can also defined named caches as follows. Named caches define custom
specialized caches:

<infinispan>
 <global />
 <default />

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

 <namedCache name="A">
 <namedCache name="B">
</infinispan>

If you want to define a custom cache for evicting data from the cache you could use the following
syntax:

If you want to refer all the configuration options, please refer to the document at -

http://docs.jboss.org/infinispan/4.0/apidocs/config.html#ce__infinispan

More details about configuring a cache programmatically: This is accomplished through an instance
of the org.infinispan.config.Configuration class where you can set custom attributes.

STEP 1: In this lab we will enable our java program to use the same config XML file as was used by
the GUI example / lab we completed in SECTION 3 LAB: THE OUT OF THE BOX INFINISPAN GUI
EXAMPLE

Open a shell window.

Open the lab source code (Node3.java) at -
~/Desktop/Downloads/Infinispan/src/org/infinispan/examples

The location of this XML file will be passed to the java process (Node3) as a commandline
program argument.

In the API init() instantiate the variable cacheManager using the
configurationFileLocation - the following is the code to do so ...

this.cacheManager
= new DefaultCacheManager(configurationFileLocation, true);

Explaining the parameters above:
• configurationFile - name of configuration file to use as a template for all caches

created
• start - if true, the cache manager is started

STEP 2: On a shell window and at the right location where your lab version of Node3.java exists,
compile Node3.java using the following command:

javac cp ${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:$
{HOME}/Desktop/Downloads/Infinispan/classes Xlint:deprecation d $
{HOME}/Desktop/Downloads/Infinispan/classes Node3.java

STEP 3: Execute Node3 using the following command (pay attention to the commandline program
argument after the classname

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

http://docs.jboss.org/infinispan/4.0/apidocs/config.html#ce__infinispan

java cp ${HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/infinispancore.jar:$
{HOME}/Desktop/Downloads/Infinispan/classes Dbind.address=127.0.0.1
Djava.net.preferIPv4Stack=true Dlog4j.configuration=file:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/etc/log4j.xml org.infinispan.examples.Node3 $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/etc/configsamples/guidemocacheconfig.xml

Your cache node should come up with a Person object inserted as below.

STEP 4: We will now start a GUI demo to cluster our programmatic node with a GUI launched
node.

Open another shell window. Change the directory location to where the demo script is
location (Do not launch it yet)

 cd ~/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/bin

Run the following command to add the location of our compiled Person.class for the GUI
demo – the demo script internally will append its classpath to this CP variable.

export CP=${HOME}/Desktop/Downloads/Infinispan/classes

./runGuiDemo.sh

Click on the Start Cache button.

Click on the Cluster View tab to check if the GUI demo node has clustered with your
Node3

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

Click on the Data View tab to check if the Person object inserted from Node3 appears in
the data view.

Feel free to add additional data from the GUI demo, open mutiple GUI windows and test
the resilience of data by stopping some cache nodes.

At this time, please shutdown all running Infinispan cache nodes.

 7 LAB: REGISTERING EVENT LISTENERS TO OBSERVE EVENTS

In this section we will discuss Infinispan's event notification system and actually attach a simple
Listener on a cache we create.

This mechanism allows you to receive notifications when interesting things happen. The API in
question is encapsulated by the Listenable interface. Both Cache and CacheManager
interfaces extend Listenable.

Registering listeners: Listeners themselves are simple POJO instances. These POJOs need to be
annotated with @Listener. Listener instances themselves should expose one or more methods
which are invoked when events happen. These methods should then be annotated with the event it
is interested in.

Events that occur on the Cache interface are represented by annotations in the
org.infinispan.notifications.cachelistener.annotation package, such as the
@CacheEntryModified annotation.

Similarly, events that occur on the CacheManager interface are represented by annotations in the
org.infinispan.notifications.cachemanagerlistener.annotation package, such
as @CacheStarted.

Methods on listeners: Listener methods annotated with these events must be public, return a void,
and take in a single parameter representing the event type, or something that the event type can be
assigned to. For example, a method annotated with @CacheEntryModified may look like the
following:

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

Multiple annotations can be placed on the same method, too:

@CacheEntryModified
@CacheEntryVisited
public void handle(Event e) {}

... because both CacheEntryModifiedEvent and CacheEntryVisitedEvent can be
assigned to Event.

You may want to know what type of event you've received. You have two ways of doing this; either
testing the type of the event passed in (using instanceof) or by inspecting the results of
Event.getType() which returns an enumeration, which allows use within a switch block.

Event ordering: Event notifications are fired both before and after an event happens. So if you
register a listener interested in, say, @CacheEntryModified, your listener will be called both
before and after the event takes place. Querying Event.isPre() will tell you whether the
callback is before or after the event takes place.

Threads and notification dispatching: Notifications are, by default, dispatched synchronously. That
is, the callback your listener receives happens on the same thread that causes the event. This
means that if your listener performs tasks that could be slow, the original caller's thread that
triggered the event will block until your listener completes.

This side-effect can be undesirable for certain applications, so the general recommendation is that
your listener implementations must not perform any long-running tasks, or tasks that could block. If
you do need to perform such tasks, annotate your listener with @Listener(sync = false) to
force asynchronous dispatch of notifications for this listener. This means that notifications will be
invoked by a separate thread pool, and won't block the original caller's thread that triggered the
event.

Let us introduce you to the event listener technology within Infinispan.

STEP 1: Open and inspect the CacheListener.java, a class available at
~/Desktop/Downloads/Infinispan/src/org/infinispan/examples. Based on the concepts explained
above, uncomment the annotations for data added (@CacheEntryCreated) and removed
(@CacheEntryRemoved) from the cache. Also uncomment @Listener at the class level and the 2
System.out.println statements so we can (later) visually see our APIs being called.
You will uncomment five lines.

STEP 2: Associate that listener class to the API placeItemInCache() in class Node4.java
[~/Desktop/Downloads/Infinispan/src/org/infinispan/examples]. The code to be added just below
line - Cache<String, Object> cache = this.cacheManager.getCache() is :

STEP 3: Open a shell window, navigate to location
/Desktop/Downloads/Infinispan/src/org/infinispan/examples and compile classes
CacheListener.java and Node4.java using the command below:

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

javac cp $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/infinispan
core.jar:${HOME}/Desktop/Downloads/Infinispan/classes Xlint:deprecation d $
{HOME}/Desktop/Downloads/Infinispan/classes CacheListener.java

javac cp $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/infinispan
core.jar:${HOME}/Desktop/Downloads/Infinispan/classes Xlint:deprecation d $
{HOME}/Desktop/Downloads/Infinispan/classes Node4.java

STEP 4: Run Node4 using the following command -

java cp $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/lib/*:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/infinispan
core.jar:${HOME}/Desktop/Downloads/Infinispan/classes Dbind.address=127.0.0.1
Djava.net.preferIPv4Stack=true Dlog4j.configuration=file:$
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan
5.0.0.BETA2/etc/log4j.xml org.infinispan.examples.Node4 $
{HOME}/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/etc/config
samples/guidemocacheconfig.xml

You should see something like the following screenshot – you should notice that the event was fired
upon inserting the Person object to the cache

STEP 5: Bring up GUI demo (instructions below). Start by opening up a shell command.

cd ~/Desktop/Downloads/Infinispan/Infinispan/infinispan5.0.0.BETA2/bin

export CP=${HOME}/Desktop/Downloads/Infinispan/classes

./runGuiDemo.sh

Start the cache and insert data from the GUI window. You should see your CacheListener
picking up the data inserted event and events printed on your command line shell.

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

You have successfully completed all the hands on labs. At this time, please shutdown all running
Infinispan cache nodes.

 8 ADDITIONAL RESOURCES ON PROJECT INFINISPAN

What is Infinispan? http://community.jboss.org/wiki/WhatisInfinispan

The Infinispan user guide is at - http://community.jboss.org/wiki/infinispan

The Project Infinispan page is at http://www.jboss.org/infinispan

A JBoss application can be configured to use Infinispan as the Hibernate 2nd-level cache,
replacing JBoss Cache. William DeCoste explains in more detail at -
http://community.jboss.org/wiki/InfinispanasHibernate2nd-LevelCacheinJBossAS5x

Infinispan can optionally be configured with one or several cache stores allowing it to store data in
a persistent location such as shared JDBC database, a local filesystem, etc. Using a Cache store
requires to define a Cache with a loader element. Infinispan can handle updates to the cache store
in two different ways:

Write-Through (Synchronous)
Write-Behind (Asynchronous)

More details at - http://community.jboss.org/wiki/Write-ThroughAndWrite-BehindCaching

A tutorial that defines a cache which uses a Flat file Cache store is available at the following
location (courtesy Francesco Marchioni)
http://www.mastertheboss.com/jboss-application-server/249-infinispan-tutorial-part-2.html

Get Started with Infinispan | Jim Tyrrell & Sandeep Khemani

http://www.mastertheboss.com/jboss-application-server/249-infinispan-tutorial-part-2.html
http://community.jboss.org/wiki/Write-ThroughAndWrite-BehindCaching
http://community.jboss.org/wiki/InfinispanasHibernate2nd-LevelCacheinJBossAS5x
http://www.jboss.org/infinispan
http://community.jboss.org/wiki/infinispan
http://community.jboss.org/wiki/WhatisInfinispan

	Sandeep Khemani | Jim Tyrrell
April / 18 / 2011
	Through this lab, application developers who are seeking a scalable caching & compute data grid solution, will get a hands on introduction to Infinispan. A fully certified, supported offering based on the Infinispan project will manifest itself in the near future – please stay tuned for details.
	 1 INTRODUCTION TO INFINISPAN
	 1.1 Audience for this document
	 1.2 Prerequisites

	 2 INFINISPAN LAB: INTRODUCTION
	 2.1 Pre-requisites to this Lab
	 2.2 What will we do in today’s Infinispan workshop
	 2.3 Set Up Lab Environment: Unzip Infinispan 	
	 2.4 Concept: JBoss JGroups & its Relevance to Infinispan

	 3 LAB: THE OUT OF THE BOX INFINISPAN GUI EXAMPLE
	 4 LAB: IMPLEMENT THE CODE TO START AN INFINISPAN CLUSTER
	 5 LAB: NO STRINGS ATTACHED – WORKING WITH OBJECTS
	 6 LAB: USING A CONFIG XML FOR A CUSTOM CACHE CONFIGURATION
	 7 LAB: REGISTERING EVENT LISTENERS TO OBSERVE EVENTS
	 8 ADDITIONAL RESOURCES ON PROJECT INFINISPAN

