

Getting Started with MRG-M

Version 1.3

April 2011

Red Hat Cloud Foundations Reference Architecture
Edition One: Getting Started with MRG

1801 Varsity Drive™

Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo, Xeon and Itanium are registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2010 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

http://www.opencontent.org/openpub/#_blank
mailto:security@redhat.com

 3 www.redhat.com

Table of Contents

1 Executive Summary .. 4

1.1 A history of messaging 4

1.2 The next generation 6

2 What is MRG-M? .. 7

2.1 The MRG-M Model 7

2.2 The MRG-M Wire-level Format 9

2.3 Messages in MRG-M 10

3 Hands-On: Single Broker ... 11

3.1 Starting the Message Server 11

3.2 Point-to-Point Messages with Java 11

3.3 Persistent Point-to-Point Messages with Java 15

3.4 Publisher/Subscriber Messages with Python 21

4 Hands-On: Clustered Brokers ..24

4.1 Starting Clustered Message Servers 24

4.2 Clustered Publisher/Subscriber Messages with Python 25

Appendix A: Installing MRG-M ..27

Installing MRG-M on Red Hat 27

Installing the examples 27

Installing MRG-M on Amazon EC2 27

Appendix B: Installing Putty ..28

Putty for Windows 28

Configuring a Connection in Putty 31

Connect to a Host using Putty 33

 www.redhat.com 4

 1 Executive Summary

Even 30 years into the digital age, ever-growing demand is being placed on systems. New

methods of delivery and sustenance are being tested on an almost weekly basis. CPU clock

time is now almost too slow, and business, even in times of downturn, marches on with a

steady pressure to achieve and out-perform the competition. Automation of business

process, our chosen profession, is ripe with new and challenging opportunities to solve

repetitive and daunting problems.

In this ecosystem, stabilizing the inter-operation of business systems with different agendas

has been the focus of not a few CIO’s and operations folks over the last several decades. As

systems become more “cloudy”, real-time connections between service providers and

subscribers are destined to become the norm, rather than the occasional exception. When

you combine the cloud with SOA, the requirement that sequestered systems find a way to

reach out to each other becomes part of the very fabric of corporate operations.

Although clouds and service-oriented methodology consume the real estate of most IT white

boards of every large organization in the country, some older concepts are still being

deployed as new code across all sectors of the

marketplace. One of those concepts is the idea of

using event-based messaging as a platform to

achieve parity of data across systems, both inside

the firewall and outside it. In today’s digital-biz

world, messaging is still a business-critical function,

and the middleware to support it still consumes

respectable slices of the budget.

As a social phenomenon, newly-formed digital cultures are twittering their way through

everyday life, sharing short messages that keep the connection-hungry apprised of every

move each other makes. In this same vein, short transactions are the lifeblood of integrity

for a host of business systems, from financial to manufacturing, government to

entertainment, and many others. Adoption of this form of loose-but-dependent connectivity

between systems will only increase as new and improved software architectural designs

become components of daily IT life.

 1.1 A history of messaging
In the mid-90’s, It had become apparent to system implementers that reliable integration
of business systems was best achieved by capturing relevant business events, and
broadcasting those events to appropriate systems that would consume the event and
respond according to that system's business rules. Asynchronous messaging architecture was
found to be effective in providing reliable delivery of events wrapped in messages between
digital stakeholders.

Short transactions are the
lifeblood of integrity for a
host of business systems.

 5 www.redhat.com

The software that supports the paradigm, often called middleware, has and continues to be

important due to its natural support for loosely coupled asynchronous event driven

architectures. Support of multi-tiered complex transactions makes middleware a good

choice for financial, stocks, telecomm, manufacturing, aerospace and defense, medicine

and transportation information silos. Traditional commercial middleware vendors such as

IBM, Oracle (BEA), Sonic and TIBCO continue to sell and improve the prospect of

interoperation with somewhat proprietary influences.

Over the last two decades, asynchronous messaging has solidified itself as the standard for
application integration. However, there are several nagging issues with messaging that
eventually made a new standard necessary for the industry:

 Integration is often 10-30% of every IT effort
 Proprietary middleware can be a source of vendor lock-in
 Existing middleware is too language-specific
 Wire-level interoperability is missing
 Interoperability remains more difficult than it should be
 Change is still the enemy

For example, in financial services, banks must connect with an expanding network of
customers and third parties, and as the sheer numbers of relationships and transactions
increases, complexity has become a way of life. In today’s ecosystem, the names change
about as fast as the Hang Seng Index.

One method of dealing with the need to interact with ever-
changing partners and customers is to develop proprietary
messaging formats, driving costs upward. Banks individually
shoulder the cost of supporting proprietary architectures, and
their clients support discrete communication tools across multiple
relationships.

With the advent of new regulations, pressure mounts to simplify
payments infrastructures. Large companies are particularly keen
to find smarter ways to navigate the financial supply chain,
including making it cheaper to move money to and from bank
accounts. Electronic invoice presentment and payment makes
streamlining connectivity with multiple service providers an issue.

Companies now need a more ubiquitous and secure means of transmitting business
messages without using proprietary formats and technologies. In short, they want to
process financial transactions with their partners as simply as they might tweet the
babysitter, but with security and higher predictability of delivery. We need a new standard,
one that will allow us to transmit authenticated financial events without resorting to
multiple layers of bit manipulation.

In many
businesses,

achieving 100%
reliable

conversational
clarity is job

one.

 www.redhat.com 6

 1.2 The next generation

Now arrives the Advanced Message Queuing Protocol (AMQP) which is intended to help
resolve some of these issues, and used as the basis for new set of products, integrated into
existing systems, with enhanced interoperability for common APIs, including JMS.

AMQP can be used with most of the current messaging and Web Service Specifications, such
as JMS, SOAP, WS-Security and WS-Transactions, and provides specified routing to and from
multicast for subnet optimizations or grid deployments.

By complying with the AMQP standard, middleware products written in several languages
for different platforms can share messages with one another. AMQP addresses the challenge
of reliable transport of valuable event-based messages across and between business
partners in near real-time.

As part of Red Hat’s Enterprise MRG suite, MRG-M messaging is our implementation of the
AMQP standard.

 7 www.redhat.com

 2 What is MRG-M?

JPMorgan Chase was a financial industry leader that decided to find a better way. Rather
than implementing yet another proprietary messaging system, the company decided to
sponsor an approach that could be replicated throughout the industry, and accepted as the
benchmark. Eventually AMQP was created as the network protocol for the solution.

The new protocol had to be simple and language neutral. To achieve this, JPMC decided
that it must be ubiquitous, and easily adopted everywhere. AMQP is an open Internet
protocol for business messaging which enables complete interoperability for messaging
middleware. Designed as a standard, it defines both the networking protocol and the
semantics of broker services.

AMQP defines an efficient wire-level protocol with modern features that allows message
producers and consumers to choose whatever technology they wish to envelop it. MRG-M is
Red Hat’s implementation of AMQP.

 2.1 The MRG-M Model

The MRG-M model explicitly defines a server's semantics because interoperability demands
the same semantics for any server implementation. The model specifies a modular set of
components and standard rules for connecting these components. It emulates the classic
messaging concepts of store-and-forward queues and topic subscriptions. It is then
enhanced by more advanced capabilities such as content-based routing, message queue
forking, and on-demand message queues.

There are three main types of components which are connected into processing chains in
the server to create the desired functionality:

 The exchange receives messages from publisher applications and routes these to
message queues, based on arbitrary criteria - usually message properties or content

 Message queues store messages until they can be safely processed by a consuming
client application (or multiple applications)

 Bindings define relationships between message queues and exchanges and provides
the message routing criteria

 www.redhat.com 8

You can think of an MRG-M server much
like an email server:

 Exchanges act as message transfer
agents

 Each message queue is a mailbox

 Bindings define the routing tables
in each transfer agent

 Publishers send messages to
individual transfer agents

 Transfer agents route the
messages into mailboxes

 Consumers take messages from
mailboxes

According to the specification, the implementation must:

 Guarantee interoperability between conforming implementations

 Provide explicit control over the quality of service

 Support any middleware domain: messaging, file transfer, streaming, RPC, etc.

 Accommodate existing open messaging API standards

 Be consistent and explicit in naming

 Allow complete configuration of server wiring via the protocol

 Use a command notation that maps easily into application-level API's

 Limit each operation to exactly one process

MRG-M supports a variety of message queues, including private or shared, durable or
transient, permanent or temporary. By selecting the desired properties, you can use a
message queue to implement conventional middleware entities such as

1. A standard store-and-forward queue, which holds messages and distributes these
between subscribers on a round-robin basis. Store and forward queues are typically
durable and shared between multiple subscribers.

2. A temporary reply queue, which holds messages and forwards these to a single
subscriber. Reply queues are typically temporary, and private to one subscriber.

3. A "pub-sub" subscription queue, which holds messages collected from various
"subscribed" sources, and forwards these to a single subscriber. Subscription queues
are typically temporary, and private to one subscriber.

There is no formal definition of these queues in AMQP: they are simply examples of how
message queues can be defined. According to the specification, it should be trivial to

 9 www.redhat.com

create new entities such as durable, shared subscription queues, and those with
persistence.

Prior to AMQP, most messaging architectures had several issues with their routing models:

 Opaque routing models were not explicitly defined

 Hidden semantics made changing the routing model through the protocol difficult

 Proprietary routing engines had limited or no extensibility or compose-ability

One of the design goals of the AMQP standard was to include explicitly-defined semantics
supporting multiple routing models. Therefore, complex routing is well-supported in MRG-
M.

Part of the lure of MRG-M comes from its ability to create transient queues, exchanges, and
routings at runtime, and chain these together in ways that go far beyond a simple mapping
of destinations as you would with JMS, for example.

The challenge in MRG-M is to route and store messages within and between servers. Routing
within a server and routing between servers are distinct problems and have distinct
solutions, if only for maintaining transparent performance. To route between MRG servers
with different owners, you set up an explicit bridge, where one MRG server acts as the
client of another server for the purpose of transferring messages between owners. This fits
early MRG adopters, since those bridges are likely to be preceded by complex business
processes, contractual obligations and security concerns. This model also makes spamming
with MRG more difficult.

 2.2 The MRG-M Wire-level Format

The MRG-M wire-level format is a binary framing with modern features: it is multi-channel,
negotiated, asynchronous, secure, portable, neutral, and efficient. It is compliant with the
AMQP specification.

The wire-level format is split into two layers; a functional layer and a transport layer. The
functional layer defines a set of commands (grouped into logical classes of functionality)
that do useful work on behalf of the application. The transport layer that carries these
methods from application to server, and back, and which handles channel multiplexing,
framing, content encoding, heart-beating, data representation, and error handling. Both
the transport layer & high-level layers are pluggable, which allows evolution of the protocol
and the adoption of emerging technologies.

According to the specification, the wire-level format must:

 Be compact, using a binary encoding that packs and unpacks rapidly

 Handle messages of any size without significant limit

 Permit zero-copy data transfer (e.g. remote DMA)

 www.redhat.com 10

 Carry multiple sessions across a single connection

 Allow sessions to survive network failure, server failover, and application recovery

 Be long-lived, with no significant in-built limitations

 Be asynchronous

 Be easily extended to handle new and changed needs

 Be forward compatible with future versions

 Be repairable, using a strong assertion model

 Be neutral with respect to programming languages

 Fit a code generation process

 2.3 Messages in MRG-M

A message is the atomic unit of routing and queuing. Messages have a header consisting of a
defined set of properties, and a body that is an opaque block of binary data.

Messages in MRG-M have these characteristics:

 They may be persistent - a persistent message is held securely on disk and
guaranteed to be delivered even if there is a serious network failure, server crash,
overflow etc.

 They can be prioritized - a high priority message may be sent ahead of lower priority
messages waiting in the same message queue

 The server may modify specific message headers prior to forwarding them to the
consumer

There are generally two types of messages that you may wish to send through a messaging
system:

1. Transient messages have a contract that says messages may be lost if the messaging
system itself loses transient state (e.g. in the case of a power outage).

2. Durable messages must make the guarantee that the message will be held in the
most durable store available for future triage after adverse runtime conditions are
mitigated

MRG-M supports both of these message types.

MRG-M also supports a variety of messaging transport architectures:

1. Store-and-forward with many writers and one reader
2. Transaction distribution with many writers and many readers
3. Publish-subscribe with many writers and many readers
4. Content-based routing with many writers and many readers
5. Queued file transfer with many writers and many readers
6. Point-to-point connection between two peers

 11 www.redhat.com

 3 Hands-On: Single Broker
The examples below are designed to demonstrate three basic uses of the messaging server:
point-to-point messaging, publisher/subscriber messaging, and persistent messaging. To get
set up, follow the instructions in the Appendix titled Installing MRG-M.

 3.1 Starting the Message Server

All the examples require a messaging service to be running. This section will show you how
to get the message server running.

1. Open a Putty terminal and connect to your server or cloud instance, as described in

the Appendix Connect to a Host using Putty.

2. Run the command shown here:

3. This will start the messaging server. If the server started successfully, one of the last

lines in the log file (/var/lib/qpidd/daemon.log) should say Broker running.

4. You are ready to try one of the example programs. Minimize the broker window. Make

sure not to close it or none of the examples will work!

 3.2 Point-to-Point Messages with Java

This example illustrates point-to-point functionality, or the queue destination type. In these
steps you will first run a command that populates a queue on the server with 5 messages.
Then you will run a command that reads all available messages on the queue and prints them
to the screen.

1. Open a Putty session to the server.

 www.redhat.com 12

2. First we need a queue to use to send messages. We will create a queue for the default

direct exchange amq.direct. Run the following command:

qpid-config add queue direct

3. Run the following command to verify that the queue has been successfully created:

qpid-config -b exchanges

4. You should see a binding from the default exchange to the direct queue.

5. Change to the examples directory.

6. Run the command: ./run.sh P2PSender.java

7. The P2PSender.java code added 5 messages through the amq.direct exchange.

The latest version of the messaging service provides more traditional object oriented

access to the messaging server.

 13 www.redhat.com

a. First, we instantiate a connection object.

b. Then, we create a session to that connection, route the session through a

queue, and create a message producer for that session and queue.

c. We then loop through all the messages and send them.

d. Finally, we send the control message which tells the consumer that the end of

messages has been received, which is simply a text message containing the

pattern „END‟. There is nothing special about this message to the messaing

system, the consumer example is simply programmed to terminate when it sees

that message.

for (int i = 0; i < messages.length; i++) {

 message.setText((i + 1) + " " + messages[i]);

 System.out.println("Sending message: " +

 message.getText());

 producer.send(message);

}

message.setText("END");

producer.send(message);

for (int i = 0; i < messages.length; i++) {

 message.setText((i + 1) + " " + messages[i]);

 System.out.println("Sending message: " +

 message.getText());

 producer.send(message);

}

message.setText("END");

producer.send(message);

Session session = connection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

AMQAnyDestination queue = new

 AMQAnyDestination("ADDR:direct; {}");

MessageProducer producer = session.createProducer(queue);

TextMessage message = session.createTextMessage();

connection = new

AMQConnection("amqp://guest:guest@clientid/test?brokerlist='

tcp://localhost:5672'");

 www.redhat.com 14

8. Now that messages are waiting on the server, we can run the command to retrieve

messages. To do so, run the command: ./run.sh P2PReceiver.java

9. The P2PReceiver.java code connected to the amq.direct exchange on the

server and retrieved messages until the control message “END” was received.

a. The sender and receiver commands are almost identical until this point. Here in

the sender, we created a sender object. In the receiver, as one would think, we

start the connection and create a receiver object instead of a sender.

b. Finally, the command loops indefinately until the control message “END” is

received.

while (true) {

 Message m = receiver.receive(1);

 if (m != null) {

 if (((TextMessage) m).getText().equals("END")) {

 break;

 } else {

 message = (TextMessage) m;

System.out.println("Reading message: " +

message.getText());

 }

 }

}

connection.start();

Session session = connection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

AMQAnyDestination queue = new AMQAnyDestination("ADDR:direct; {}");

MessageConsumer consumer = session.createConsumer(queue);

TextMessage message = null;

 15 www.redhat.com

 3.3 Persistent Point-to-Point Messages with Java
This example illustrates point-to-point functionality with persistence. These steps are identical
to the previous Point-to-Point Messaging example except that here the code has been
pointed to a durable (persistent) queue, and we will restart the broker between sending and
receiving messages.

1. Open a Putty session to the server.

2. Run the following command to verify that the persistent queue exists:

qpid-config -b exchanges

3. You should see a binding from the default exchange to the durable_q queue. If not,

run this command and return to step 2:

qpid-config add queue durable_q --durable

4. Go to the examples directory.

5. Run the command: ./run.sh P2PSenderP.java

 www.redhat.com 16

6. The P2PSenderP.java code added 5 messages through the amq.direct exchange

and the durable_q persistent queue. If you‟re familiar with the JMS API, the following

code examples will be second nature.

a. First, Java uses the JNDI API to locate and configure the messaging interface at

runtime. As seen below, JNDI is used to get a connection factory, then to

generate the actual connection handle to the messaging server, and it gets a

handle to the specific queue on the messaging server to which messages will be

sent.

b. Once the factory and queue handles are established, the connection can be

started.

c. From the connection, a session must be obtained. All message transmission

must occur within the context of a session.

d. From the session a sender or a reciever handle is obtained. Since we will only

send messages with this particular command, we need only create a sender

object.

/* START JNDI configuration */

Properties props = new Properties();

props.setProperty("java.naming.factory.initial", "org.apache

props.setProperty("connectionfactory.host", "amqp://guest:gu

props.setProperty("queue.name", "durable_q");

ctx = new InitialContext(props);

factory = (QueueConnectionFactory) ctx.lookup(“host”);

queue = (Queue) ctx.lookup(“name”);

/* END JNDI configuration */

/* START messaging code */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

sender = session.createSender(queue);

message = session.createTextMessage();

/* START messaging code */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

sender = session.createSender(queue);

message = session.createTextMessage();

 17 www.redhat.com

e. The last initialization task is creating a message object to transmit. We can use

the same object to send multiple messages, by changing the contents of the

object, so we need only create one.

f. Finally, we can transmit messages. Here, we set the contents of the message

object and transmit the message once for each string we wish to transmit.

g. To signal the end of a sequence of messages, we send a control message. This

control message is nothing special from the messaging server‟s perspective.

The receiving client is simply programmed to terminate when a text message of

value “END” is received.

/* START messaging code */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

sender = session.createSender(queue);

message = session.createTextMessage();

/* send the messages */

for (int i = 0; i < messages.length; i++) {

message.setText((i + 1) + " " + messages[i]);

 System.out.println("Sending message: " + message.getText());

 sender.send(message);

}

/* send a control message to signal termination */

message.setText("END");

sender.send(message);

/* START messaging code */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

sender = session.createSender(queue);

message = session.createTextMessage();

 www.redhat.com 18

7. Restart the broker this way: /etc/init.d/qpidd restart

8.
To verify that the messages still exist, run the command shown here:

9. The P2PReceiverP.java code connected to the amq.direct exchange on the

server and retrieved messages until the control message “END” was received.

a. The sender and receiver commands are almost identical until this point. Here in

the sender, we created a sender object. In the receiver, as one would think, we

are creating a receiver object instead.

/* receive messages */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

receiver = session.createReceiver(queue);

conn.start();

 19 www.redhat.com

b. Then, as required by the API, the connection is started in order to signal that

messages are about to be read.

c. Finally, the command loops indefinately until the control message “END” is

received.

z

 3.4 Point-to-Point Messages with Java and Python

This project illustrates how messaging can occur between clients with different languages. A

Java client will generate and send 5 messages to a queue. Then, a Python client will connect

and read those same 5 messages from the queue.

1. Open a Putty session to the server.

2. First we need a queue to use to send messages. We will create a queue for the default

direct exchange amq.direct. Run the following command:

qpid-config add queue direct_crosslang

3. Run the following command to verify that the queue has been successfully created:

qpid-config -b exchanges

4. You should see a binding from the default exchange to the direct queue.

while (true) {

 Message m = receiver.receive(1);

 if (m != null) {

 if (((TextMessage) m).getText().equals("END")) {

 break;

 } else {

 message = (TextMessage) m;

System.out.println("Reading message: " +

message.getText());

 }

 }

}

/* receive messages */

conn = factory.createQueueConnection();

session = conn.createQueueSession(false,Session.AUTO_ACKNOWLEDGE);

receiver = session.createReceiver(queue);

conn.start();

 www.redhat.com 20

5. Change to the examples directory.

6. Run the command: ./run.sh P2PCrossLangSender.java

7. Run the command: ./run.sh P2PCrossLangReceiver.py

8. The code for P2PCrossLangSender.java and P2PCrossLangReceiver.py, are

identical to P2PSender.java and P2PReceiver.py, respectively, except the queue

name is direct_crosslang in the CrossLang files.

 21 www.redhat.com

 3.5 Publisher/Subscriber Messages with Python

This project illustrates Publisher/Subscriber functionality, using the topic destination type. In
these steps you will create a topic to which to publish and subscribe. You‟ll then create a
subscriber process which listens indefinitely to your topic. Then you will generate messages
and send them to the topic, and watch what happens.

1. Open a Putty session to the server.

2. Run the following commands to create the required exchange, topic and respective

binding:

qpid-config add exchange topic pubsub_messages_x

qpid-config add queue pubsub_messages_q

qpid-config bind pubsub_messages_x pubsub_messages_q

pubsub_messages_q

3. Now execute qpid-config –b exchanges and you should then see the

pubsub_messages_x exchange bound to the pubsub_message_q:

4. Change to the examples directory.

5. Run the command: ./run.sh Subscriber.py

 www.redhat.com 22

6. Note that the subscriber will appear to hang as it waits for messages to be published.

a. First we configure a connection to the broker, and then we start the connection.

b. Next we create a session and generate a receiver handle:

c. Finally, loop indefinitely while receiving messages, print them to screen, and

acknowledge receipt to the broker:

7. Open a second Putty session to the server and go to the examples directory.

8. Run the command: ./run.sh Publisher.py

print “To end program, press Ctrl-c”

while True:

 try:

 message = receiver.fetch()

 print message.content

 session.acknowledge(message)

 except BaseException:

 break

connection = Connection(broker);

try:

 connection.connect()

 session = connection.session()

 receiver = session.receiver(address)

session = connection.session()

receiver = session.receiver(address)

print “To end program, press Ctrl-c”

while True:

 try:

 message = receiver.fetch()

 23 www.redhat.com

9. You will notice that the subscriber screen now shows messages being received:

10. Run ./run.sh Publisher.py again. You will notice that the subscriber continues to

receive messages.

Note that Publisher.py and Subscriber.py mainly differ after the session handle is

created. The only difference is that a „sender‟ handle is created from the session, instead of a

„receiver‟ handle, and messages are sent, instead of read:

session = connection.session()

sender = session.sender(address)

for i in range(len(messages)):

 message = str(i + 1) + “ “ + messages[i]

 print “Sending message: “ + message

 sender.send(Message(message))

 www.redhat.com 24

 4 Hands-On: Clustered Brokers
Let‟s now experiment with publish and subscribe messaging over clustered brokers.

 4.1 Starting Clustered Message Servers
Clustered broker examples require two messaging services to be running. This section will
show you how to get the message servers running.

1. Open a Putty terminal.

2. In the examples directory, run this command:

3. One messaging server will be started. If the server starts successfully, one of the last

lines printed to the screen should tell you that it‟s running.

4. Minimize the broker window. Make sure not to close it or none of the examples will

work!

5. Open another Putty terminal to the server.

6. Run the command below to start the second broker:

7. A second messaging server is started. If the server starts successfully, you‟ll get the

Broker running message.

 25 www.redhat.com

8. Minimize your second broker window. Make sure not to close it or none of the

examples will work!

9. You are now ready to run the clustering examples.

 4.2 Clustered Publisher/Subscriber Messages with
Python

This example illustrates Publisher/Subscriber functionality with a topic destination type over
clustered brokers. In these steps you will create a topic to receive messages, then create two
subscriber processes which listen indefinitely to your topic via a connection to broker 2
(/etc/qpidd_c2.conf). You then will generate messages and send them to the topic via a
connection to broker 1 (/etc/qpidd_c1.conf).

1. Open a Putty session to the server.

2. Run the following commands to create the required exchange, queue and respective
binding:

qpid-config add exchange topic pubsub_messages_x
qpid-config add queue pubsub_messages_q

qpid-config bind pubsub_messages_x pubsub_messages_q pubsub_messages_q

3. Run qpid-config -b exchanges and you should see the pubsub_messages_x

exchange bound to the pubsub_message_q:

4. In the examples directory, run the command: ./run.sh SubscriberCluster.py

5. Open a second Putty session to the server and repeat steps 3 and 4.

 www.redhat.com 26

6. Open a third Putty session to the server and change to the examples directory.

7. Run the command: ./run.sh PublisherCluster.py

8. You will notice that the subscriber screens now have output:

9. Run ./run.sh PublisherCluster.py again. You will notice that your subscribers

continue to receive messages!

Note that PublisherCluster.py and SubscriberCluster.py differ from

Publisher.py and Subscriber.py respectively only in the port number used to connect

to the broker service. Publisher.py and Subscriber.py both use the default port

number of 5672. PublisherCluster.py and SubscriberCluster.py use the ports

5670 and 5671 respectively, which are the ports on which the two clustered message server

instances are listening.

 27 www.redhat.com

Appendix A: Installing MRG-M

Installing MRG-M on Red Hat
For running the included projects, installation of MRG-M is really pretty easy. Execute these
commands on Red Hat Enterprise Linux 5, assuming you have a registered system on the
Red Hat Network and have access to the MRG Channel:

After installing the above packages, you need to edit the clustering manager.

1. Edit: /etc/ais/openais.conf

2. Set the bindnetaddr to your network address. For example, if your IP address is
192.168.1.100, and your netmask is 255.255.255.0, your network address is
192.168.1.0.

3. Run: mv /etc/rc5.d/K20openais /etc/rc5.d/S20openais

4. Run: /etc/init.d/openais start

Installing the examples
To install the examples for this paper, download the zipped archive from
http://redhat.com/someurl and unzip them to your home directory.

Then do the following:

1. After extracting the package, there will be a directory in your home directory: mrg-m
2. Change directory into the mrg-m directory.
3. Run: `rsync -avzr install/ /`

yum groupinstall "MRG Messaging"

yum install qpid-cpp-server-store qpid-cpp-server-cluster qpid-java-client

qpid-java-example python-qpid qpid-tools python-qmf qmf openais qmf-devel

java-1.6.0-openjdk java-1.6.0-openjdk-devel

http://redhat.com/someurl

 www.redhat.com 28

Appendix B: Installing Putty

Before you can try any of the examples, you must be able to connect to a terminal on the
server. This is accomplished by making a connection over SSH using Putty — a remote
terminal client. This demonstration shows how to set up a connection to Amazon‟s EC2 cloud.

Putty for Windows

This section will guide you through the process of downloading and installing Putty.

1. Find the Putty site and go to the downloads page:

2. Download the putty installer. (At the time this guide was written the latest Windows

installer was putty-0.60-installer.exe)

3. Run the installer.

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://aws.amazon.com/ec2/
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://the.earth.li/~sgtatham/putty/latest/x86/putty-0.60-installer.exe

 29 www.redhat.com

4. If prompted by Windows Vista or Windows 7 to approve the installation, click „Yes‟.

5. Proceed approving all the default settings by clicking „Next‟ on each of the installation

screens.

 www.redhat.com 30

6. Finally, click „Install‟ to begin the install process.

7. Once the installation completes, remove the check mark next to „View README.txt‟

and then click „Finish‟.

 31 www.redhat.com

Configuring a Connection in Putty

This section will guide you through the process of configuring a connection (which Putty calls
a session). This includes referencing a private key file used for authentication.

1. Open Putty from your

start menu.

2. Enter your username and host name in the „Host Name‟ box. Below, we have entered a

username of „root‟ and a hostname of „ec2-67-202-0-250.compute-1.amazonaws.com‟.

Notice the „@‟ sign between the username and host name.

3. Name your connection. A common practice is to simply use the name of the host name

here.

4. If you have a private key to use for authentication (file ends with .ppk extension), then

do the following.

 www.redhat.com 32

a. In the configuration navigation tree on the left select Connection->SSH->Auth,

then click „Browse‟.

b. Once you have selected the correct private key file, it will be listed in the box.

c. Return to „Session‟, at the top of the configuration navigation tree on the left.

 33 www.redhat.com

5. Click „Save‟ to store your configuration in the „Saved Sessions‟ list.

Connect to a Host using Putty

This section will guide you through the process of connecting to a server using a previously
saved session (connection configuration).

 www.redhat.com 34

1. Open Putty from your start menu.

2. Click on the session you want to open.

 35 www.redhat.com

3. Click „Open‟.

4. The first time you connect to the server, you will be notified that the server‟s host key is

unknown. Click „Yes‟ to acknowledge you are connecting to a new host.

 www.redhat.com 36

If you provided a private key, and it is valid,
you will be taken directly to a shell prompt,
like the one below. If you did not provide a
private key, then you will be prompted for
your password first.

