

Accelerate Your JBoss Enterprise

Middleware

Accelerate Your JBoss Enterprise

Middleware

Andrig (Andy) T. Miller
Global Platform Directory, Red Hat, Inc.
06.28.2012

Andrig (Andy) T. Miller
Global Platform Directory, Red Hat, Inc.
06.28.2012

Accelerate Your JBoss Enterprise Middleware –
Agenda

● Increase throughput!
● Remove bottlenecks through configuration.

● Pools of all kinds, Caching, Logging, Batching, Java Virtual
Machine, Operating system and Monitoring.

Accelerate Your JBoss Enterprise Middleware –
View from the Top of EAP 6

Web
Container

Web
Container

HTTP
Java

HTTP
Java

HTTP
APR

HTTP
APR

AJPAJP

RemotingRemoting

EJB 3.x
Container

EJB 3.x
Container

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

JMS
Provider
HornetQ

JMS
Provider
HornetQ

JCA
Container

JCA
Container

Web
Services

Web
Services

Logging
Java Virtual Machine

Operating System

Logging
Java Virtual Machine

Operating System

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

Web
Container

Web
Container

HTTP
Java

HTTP
Java

HTTP
APR

HTTP
APR

AJPAJP

●Use case – fairly low number of connections, but very high
concurrency.

● Use Java connector (blocking I/O).
●Use case – high number of connections, but low concurrency

● Use APR (non-blocking I/O) (Native to OS).
●Use case - Front end Apache HTTPD, with perhaps load
balancing, like mod_cluster.

● Use AJP connector.
●Important configuration parameters:

● max-connections
● Sets the maximum number of concurrent connections.
● When using the Java connector, it also sets the size of the thread pool

(unless using the next parameter, which defines an executor).
● executor

● Defines the name of a configured “executor”, or thread pool in JBoss
Threads.

● Can be used for all the connectors.
● native

● Determines whether you use the APR connector or Java.

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

Web
Container

Web
Container

HTTP
Java

HTTP
Java

HTTP
APR

HTTP
APR

AJPAJP

●What's a low number of connections vs. a high number of
connections?

● In our testing, on a two socket Nehalem based server (8
cores with hyper-threading), with 24 GB of RAM, the number
of connections that perform well for the Java blocking I/O
connector is approximately 2,000 users.
● After 2,000 users you start to see large degradation in

response times, and it completely falls off a cliff at 5,000
users.

● On the same test server, using the APR connector (native
code and non-blocking I/O), there is no appreciable
degradation 3,500 users, and scales nicely through 5,000
users.
● This is under the use case where you have high numbers

of users, but low concurrency. The test used client think
times randomly, but evenly distributed between 1 and 4
seconds.

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

1 User
10 Users

20 Users
30 Users

40 Users
50 Users

60 Users
70 Users

80 Users
90 Users

100 Users
110 Users

120 Users
130 Users

140 Users
150 Users

160 Users

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

3300

3600

3900

4200

4500

4800

5100

5400

EAP 6.0.0.GA

Java Endpoint vs. APR
High Concurrency (no think times)/Low User Count

EAP 6.0.0.GA Java Endpoint

EAP 6.0.0.GA Java Endpoint with TLS

EAP 6.0.0.GA APR

EAP 6.0.0.GA APR with TLS

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

1 User
10 Users

20 Users
30 Users

40 Users
50 Users

60 Users
70 Users

80 Users
90 Users

100 Users
110 Users

120 Users
130 Users

140 Users
150 Users

160 Users

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

EAP 6.0.0.GA

Java Endpoint vs. APR
High Concurrency (no think times)/Low User Count

EAP 6.0.0.GA Java Endpoint

EAP 6.0.0.GA Java Endpoint with TLS

EAP 6.0.0.GA APR

EAP 6.0.0.GA APR with TLS

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

1 User 500 Users 1000 Users1500 Users2000 Users2500 Users3000 Users3500 Users4000 Users4500 Users5000 Users
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

EAP 6.0.0.GA

Java Endpoint vs. APR
Test with Random (but evenly distributed) Think Times of 1 to 4 Seconds

EAP 6.0.0.GA Java Endpoint

EAP 6.0.0.GA APR

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

1 User 500 Users 1000 Users1500 Users2000 Users2500 Users3000 Users3500 Users4000 Users4500 Users5000 Users
0

40
80

120
160
200
240
280
320
360
400
440
480
520
560
600
640
680
720
760

EAP 6.0.0.GA

Java Endpoint vs. APR
Test with Random (but evenly distributed) Think Times of 1 to 4 Seconds

EAP 6.0.0.GA Java Endpoint

EAP 6.0.0.GA APR

Accelerate Your JBoss Enterprise Middleware –
Web Container – JBoss Web

<subsystem xmlns="urn:jboss:domain:threads:1.1">
 <unbounded-queue-thread-pool name="JBossWeb">
 <max-threads count="487"/>
 <keepalive-time time="75" unit="minutes"/>
 </unbounded-queue-thread-pool>
</subsystem>
...
<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-
host" native="true">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-
binding="http" enable-lookups="false" executor="JBossWeb" max-
connections="3260"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="jbosstesting.miller.org"/>
 </virtual-server>
</subsystem>

Accelerate Your JBoss Enterprise Middleware –
Web Services

Web
Services

Web
Services

●Web service stack is based on both the original JBoss Web Services native
code, specifically for JAX-RPC, and the Apache CXF, and is very high
performing out-of-the-box.

● Two things to consider from a configuration standpoint.
● HTTP thread pool will be the thread pool that is used to invoke web

service end points.
● Asynchronous web services, e.g. Web service end points annotated with

@OneWay, have an internal thread pool, since once invoked they need
to return to the client right away.
● This internal thread pool, can be configured through the descriptor for

the web service.
● Important configuration parameters in jboss-webservices.xml:

● maxQueueSize
● lowWaterMark
● highWaterMark
● initialThreads

Accelerate Your JBoss Enterprise Middleware –
Web Services

<?xml version="1.1" encoding="UTF-8"?>
<webservices
 xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.2"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee">

 <property>
 <name>cxf.queue.default.maxQueueSize</name>
 <value>500</value>
 </property>
 <property>
 <name>cxf.queue.default.highWaterMark</name>
 <value>300</value>
 </property>
 <property>
 <name>cxf.queue.default.lowWaterMark</name>
 <value>30</value>
 </property>
 <property>
 <name>cxf.queue.default.initialThreads</name>
 <value>150</value>
 <property>
 <property>
 <name>cxf.queue.default.dequeueTimeout</name>
 <value>120000</value>
 </property>
 ...
</webservices>

http://www.w3.org/2001/XMLSchema-instance

Accelerate Your JBoss Enterprise Middleware –
Web Services

Web
Services

Web
Services

●A couple of additional comments on the configuration parameters
● If you exceed the queue size, requests will start to be executed on the

calling thread.
● The calling thread will be the HTTP thread, and hence the web service

will cease to be asynchronous, but synchronous, losing all the benefits
of having annotated the web service with @OneWay to begin with.

● The initial threads parameter causes that number of threads to be
started at the time the AutomaticWorkerQueueImpl is started, so setting
to something reasonable is a good idea, considering threads won't be
started until the web service is invoked, and if that is under load, you
could have some severe startup performance issues, while threads are
being started.
● If you don't set the initial threads, but set a lowWaterMark, the

lowWaterMark will be used as the value of pre-starting threads in the
pool.

Accelerate Your JBoss Enterprise Middleware –
Remoting

RemotingRemoting

●EAP 6 contains an entirely new remoting layer, written from scratch.
● This new remoting layer is built on a JBoss project called XNIO,

which as you can probably surmise, is based on the JDK's NIO
capabilities.

● It's a completely non-blocking I/O design.
● Configuration is done through the subsystems that actually use

remoting.
● The EJB 3 container is the primary user of the remoting layer in

EAP 6.
● So, we will talk configuration of this as we talk about the EJB

3.x container.

Accelerate Your JBoss Enterprise Middleware –
EJB 3.x Container

●With EAP 6, our EJB 3 container has also had significant work done
to it.

● It's using the new remoting layer we talked about in the previous
slide.

● It's been simplified in terms of pooling.
● Key configuration parameters are:

● maxPoolSize (bean instance pools – MDB/SLSB)
● InstanceAcquisitionTimeout

● channelCreationOptions
● WORKER_READ_THREADS,

WORKER_WRITE_THREADS,
MAX_INBOUND_MESSAGES,
MAX_OUTBOUND_MESSAGES

● Thread pool
● max-threads
● Keepalive-time

● in-vm-remote-interface-invocation

EJB 3.x
Container

EJB 3.x
Container

Accelerate Your JBoss Enterprise Middleware –
EJB 3.x Container

<pools>
 <bean-instance-pools>
 <strict-max-pool name="slsb-strict-max-pool" max-pool-size="1300" instance-acquisition-timeout="1" instance-acquisition-
timeout-unit="MILLISECONDS"/>
 <strict-max-pool name="mdb-strict-max-pool" max-pool-size="180" instance-acquisition-timeout="1" instance-acquisition-
timeout-unit="MILLISECONDS"/>
 </bean-instance-pools>
 </pools>
...
<remote connector-ref="remoting-connector" thread-pool-name="default">
 <channel-creation-options>
 <option name="WORKER_READ_THREADS" value="2" type="xnio"/>
 <option name="WORKER_WRITE_THREADS" value="2" type="xnio"/>
 <option name="MAX_INBOUND_MESSAGES" value="165" type="remoting"/>
 <option name="MAX_OUTBOUND_MESSAGES" value="165" type="remoting"/>
 </channel-creation-options>
</remote>
...
<thread-pools>
 <thread-pool name="default">
 <max-threads count="165"/>
 <keepalive-time time="75" unit="minutes"/>
 </thread-pool>
</thread-pools>
...
<in-vm-remote-interface-invocation pass-by-value="false"/>

Accelerate Your JBoss Enterprise Middleware –
EJB 3.x Container

●Important notes:
● Default maxSession for Message Driven Beans (MDB), so

regardless of how large you set the pool size, only 15 will execute
concurrently, unless the maxSession is changed.
● Of course, that is per MDB, so you could have a pool that is

larger, and encompasses all the MDB's in the application, each
only needing 15 or less to run concurrently.

● The pool for stateless session beans needs to be sized, based on
the number of stateless session beans in the application, and the
concurrency rate in which those beans are invoked.
● e.g. Your application has 10 unique stateless session beans,

and all 10 are invoked at the same rate, and that rate is 10 per
second, and the response times of those invocations are 1
second each.
● This yields a pool size of at least 100.
● Decreases in response times, or increases in concurrency is

what drives the size.

EJB 3.x
Container

EJB 3.x
Container

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●With EAP 6, our persistence strategy is the same, but with a newer
version of Hibernate, as the JPA provider, Hibernate 4.1.x.

● Besides supporting the new Java EE 6 JPA specification, most of
the changes are internal, and there is little difference from a
configuration standpoint (at least what we will talk about here).

● Key topics for persistence:
● Second-level cache (based on Infinispan in EAP 6):

● Entity Caching
● Query Caching

● Batching
● Fetch sizes
● Batch inserts

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Entity Cache Keys:
● Read/Write Ratio

● Mostly read, with very little writes (inserts and/or updates)
● Query type

● entitymanager.find(class, pk)
● Cacheable query

● A cacheable query is one that always returns the exact same result.
● Cache Concurrency Strategy

● READ_ONLY
● The read only strategy applies to entities that are only read, or read and

inserted, but not updated.
● TRANSACTIONAL

● The transactional strategy is required if there are updates to the entity being
cached.

● Data Size
● There is only so much heap space to play with, and extremely large sets of

entities may suffer from low cache hit rates just because of the number of
entities involved.

● Access Pattern
● You may have a large set of entities, but if the access pattern is such that a small

subset of them are accessed very often, you may still derive benefits from
caching them.

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Query Cache Keys:
● Query type

● Cacheable query
● A cacheable query is one that always returns the exact same

result.
● Most of the time this means the application has either created

a query that is using the primary key, or the query results are
always the same because the entity is only read, and there
are no inserts or updates.

● The query cache only stores the keys of the result set!
● This means you “MUST” also cache the entity in the entity

cache.
● While a query may be cacheable, if the entity is not a good

candidate to be cached, then the query cache should not be
used.

● Sizing of the query cache is based on the number of unique
combinations of parameters in the query (all still must result in the
same result set).

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Key configuration parameters:
● Entity Cache

● Entity cache types
● local-cache, invalidation-cache, replicated-cache
● transaction mode
● eviction-strategy

● Defaults to LRU (Least recently used), but Infinispan gives a new
algorithm called LIRS (Low Inter-reference Recency Set), which
performs better in my tests.

● max-entries
● How many entries the cache can hold. Sizing this is based on the

number of entities to be cached, and perhaps a subset of them
based on the access pattern.

● expiration
● max-idle and lifespan

● Lifespan causes eviction regardless of whether it has been idle
or not.

● Max-idle, without specifying lifespan, will cause entities that
have not been accessed in that time, to be eligible to be evicted.

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

<cache-container name="hibernate" default-cache="local-query"
module="org.jboss.as.jpa.hibernate:4">
...
 <local-cache name="local-query">
 <transaction mode="NONE"/>
 <eviction strategy="LIRS" max-entries="180"/>
 <expiration max-idle="1200000" lifespan="1200000"/>
 </local-cache>
...
</cache-container>

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Key configuration parameters:
● Query Cache

● Entity cache types
● local-cache is really the only cache type that makes sense for

a query cache. You don't need to invalidate a cached query
on another node, as the result set is always the same. You
also don't want the overhead of replicating the cache, as
other nodes will execute the query once, and cache it
anyway.

● eviction-strategy
● max-entries
● expiration

● max-idle and lifespan

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

<cache-container name="hibernate" default-cache="local-query"
module="org.jboss.as.jpa.hibernate:4">
 <local-cache name="entity">
 <transaction mode="NON_XA"/>
 <eviction strategy="LIRS" max-entries="17030000"/>
 <expiration max-idle="1200000" lifespan="1200000"/>
 </local-cache>
...
</cache-container>

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

1 User
10 Users

20 Users
30 Users

40 Users
50 Users

60 Users
70 Users

80 Users
90 Users

100 Users
110 Users

120 Users
130 Users

140 Users
150 Users

160 Users

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500
4800
5100
5400
5700

EAP 6.0.0 w/o Second-level Cache vs. EAP 6.0.0 w/Second-level Cache

Throughput - Transactions per Second (Higher is Better)

EAP 6.0.0 w/o Second-level Cache

EAP 6.0.0

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

1 User
10 Users

20 Users
30 Users

40 Users
50 Users

60 Users
70 Users

80 Users
90 Users

100 Users
110 Users

120 Users
130 Users

140 Users
150 Users

160 Users

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

EAP 6.0.0 w/o Second-level Cache vs. EAP 6.0.0 w/Second-level Cache

Lower is Better (Response Times)

EAP 6.0.0 w/o Second-level Cache

EAP 6.0.0

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

1 User
10 Users

20 Users
30 Users

40 Users
50 Users

60 Users
70 Users

80 Users
90 Users

100 Users
110 Users

120 Users
130 Users

140 Users
150 Users

160 Users

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500
4800
5100
5400
5700

EAP 6.0.0 w/o Second-level Cache vs. EAP 6.0.0 w/Second-level Cache
and

EAP 5.1.2 w/Second-level Cache as a comparison

Throughput - Transactions per Second (Higher is Better)

EAP 6.0.0 w/o Second-level Cache

EAP 6.0.0

EAP 5.1.2 w/Second-level Cache

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Batching
● What is is?

● Well, this is Hibernate's ability to batch a set of SQL statements
to be executed and send them together to the database.

● This reduces latency, and optimizes the network between the
application server and the database server.

● Is specified through a Hibernate property:
● <property name="hibernate.jdbc.batch_size"
value="20"/>

● Sizing this parameter requires good knowledge of how many
inserts, deletes, updates, etc. there typically are in your
transactions.

● You can put this property in your persistence.xml.

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Fetch sizes
● In Hibernate you can specify how many rows to return from the

database at one time for queries that return more than one row.
● If you return one row at a time, and there are tens, hundreds, or

even thousands, its going to increase response times, but also
add lots of latency for the rounds trips to and from the database.

● You specify this through a Hibernate property:
● <property name="hibernate.jdbc.fetch_size" value="20"/>

● Sizing of this parameter requires knowledge of the application
queries and the typical usage of the result set.
● e.g., in the application that is represented by the graphs for the

second-level cache results, the fetch size is set to 20, even
though one of the main queries may return as many as 500
rows.
● The reason for 20, instead of 500, is that the result set is managed

by a stateful session bean that paginates by 20 rows at a time.
Understanding the frequency in which a user will even go past the
first 20 rows is important!

● Like the batch size, this can be set in the persistence.xml.

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Batch Inserts
● What do I mean by batch inserts?

● This is when you can take multiple insert statements, that would
normally be sent to and executed by the database one at a time,
and make it into a single insert statement.

● e.g.
● Insert into Table (id, val1, val2, val3) values ('x', 'x', 'x', 'x);
● Insert into Table (id, val1, val2, val3) values ('y', 'y', 'y', 'y');
● Insert into Table (id, val1, val2, val3) values ('z', 'z', 'z', 'z');
● And turn it into:

● Insert into Table (id, val1, val2, val3) values('x', 'x', 'x', 'x'),
('y', 'y', 'y', 'y'), ('z', 'z', 'z', 'z');

● This feature is dependent on two things. This first being a
Hibernate property:
● <property name="hibernate.order_inserts" value="true"/>

● The second being the JDBC driver's capabilities to rewrite the
statement:
● e.g., the MySQL JDBC driver has a connection property called:

● rewriteBatchedStatements

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

...
<datasource jndi-name="java:/MySqlDS" pool-name="MySqlDS" use-
ccm="false">
 <connection-url>
 jdbc:mysql://localhost:3306/EJB3
 </connection-url>
 <connection-property name="maintainTimeStats">
 false
 </connection-property>
 <connection-property name="rewriteBatchedStatements">
 true
 </connection-property>
...

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

●Important notes on batch inserts:
● You must both specify the ordered inserts parameter to Hibernate,

and have a JDBC driver that can rewrite the statements into one.
● The Hibernate property enables the JDBC driver to detect that fact

that all the inserts are to the same table, and can be rewritten.
● The Hibernate property orders the inserts statements by their primary

key values (actually uses the entities hash code).
● If your JDBC driver does not have the ability to rewrite the statements

into one, then throughput will suffer.
● You are adding the sort overhead before executing the statements,

so without benefit of the rewrite of the statement, that shortens the
insert time, you just make things take longer.

● This capability does show benefits in OLTP applications, as well as
batch applications, but careful testing is in order for OLTP workloads.

Persistence
JPA

Hibernate

Persistence
JPA

Hibernate

Accelerate Your JBoss Enterprise Middleware –
Persistence JPA/Hibernate

DC's/Regions Customers Products Inventory Suppliers Supplier Inventory

0

5000

10000

15000

20000

25000

30000

35000

40000

Throughput of Batch Inserts vs. Regular Inserts

T
h

ro
u

g
h

p
u

t p
e

r
S

e
co

n
d

Accelerate Your JBoss Enterprise Middleware –
JCA Container

●For the JCA container we are going to concentrate on data sources.
● The JCA container is responsible for the integration of our data

sources into the application server and provides services for them.
● The three areas we will concentrate on are:

● Database connection pooling, the Cached Connection Manager,
and Prepared Statement Caching.

● The size of the database connection pool is directly related to the
concurrent execution of queries across your application.
● To small a pool, and you add to your response times.
● The default timeout for a database connection is 30 seconds!

● This is a long time to wait, and you won't get the log message of a
timeout until you have real problems with application
performance.

● The Cached Connection Manager provides a debugging capability for
leaked database connections.
● Unless you are doing your own JDBC code, this is typically not

needed.
● It's much easier to turn off in EAP 6, than it was in EAP 5.

JCA
Container

JCA
Container

Accelerate Your JBoss Enterprise Middleware –
JCA Container

...
<datasource jndi-name="java:/MySqlDS" pool-name="MySqlDS" use-ccm="false">
 <connection-url>
 jdbc:mysql://localhost:3306/EJB3
 </connection-url>
...
<pool>
 <min-pool-size>200</min-pool-size>
 <max-pool-size>250</max-pool-size>
 <prefill>true</prefill>
</pool>
...
<statement>
 <prepared-statement-cache-size>100</prepared-statement-cache-size>
 <share-prepared-statements>true</share-prepared-statements>
</statement>
...

Accelerate Your JBoss Enterprise Middleware –
JCA Container

●Important notes on data source configuration:
● The shared-prepared-statements parameter, when set to true, along

with the cache being non-zero, will reuse the same prepared
statement if its executed more than once in the same transaction.
● This may or may not happen in your application, but I have seen lots

of applications that do this.
● Sizing of the prepared statement cache is based on the number of

prepared statements your application has within it.
● Of course, this is by data source, so if you application uses multiple

data sources (in JPA, multiple persistence units), then you would
configure a cache for each one, and it would be sized based on the
prepared statement count for that individual data source.

JCA
Container

JCA
Container

Accelerate Your JBoss Enterprise Middleware –
JMS Provider - HornetQ

●With the introduction of EAP 5.1.2, we had two JMS providers.
● The default is still JBoss Messaging, but we added HornetQ, the

successor to JBoss Messaging as a supported JMS provider.
● HornetQ is a very high performance, and highly reliable JMS

provider.
● In fact, it holds the world record SPECjms2007 result:

● http://www.spec.org/jms2007/results/res2011q2/
● With EAP 6, JBoss Messaging is no longer provided, and the sole

JMS provider is HornetQ.
● There is no longer a database backend for persistence. Instead,

there is a high performance journal maintained on disk.

JMS
Provider
HornetQ

JMS
Provider
HornetQ

http://www.spec.org/jms2007/results/res2011q2/

Accelerate Your JBoss Enterprise Middleware –
JMS Provider - HornetQ

●Key configuration parameters:
● journal-type

● ASYNCIO, NIO
● The ASYNCIO option specifies using native ASYNC I/O capabilities, plus

opens the file using DIRECT I/O, which bypasses the file system buffer
cache.

● The NIO option uses the JDK's NIO API's to write to the journal.
● journal-directory

● The placement of the journal files is important, as the default will be relative
to the install of the application server, and that may not be the best
performing file system to place your persistent messages on.

● Pooled connection factory:
● transaction mode

● Whether to use XA transactions or local transactions.
● min-pool-size, max-pool-size

● The session pool size.
● The sizing of this depends on the number of concurrent MDB's your

application may be executing, and relates to the maxSession on those
MDB's, or if you are using the JMS api directly, the number of concurrent
messages being processed.

JMS
Provider
HornetQ

JMS
Provider
HornetQ

Accelerate Your JBoss Enterprise Middleware –
JMS Provider - HornetQ

<hornetq-server>
...
 <journal-type>ASYNCIO</journal-type>
 <journal-directory>
 <path>/some/absolute/path</path>
 </journal-directory>
...
<pooled-connection-factory name="hornetq-ra">
 <transaction mode="xa"/>
 <min-pool-size>180</min-pool-size>
 <max-pool-size>198</max-pool-size>
...

Accelerate Your JBoss Enterprise Middleware –
JMS Provider - HornetQ

● Important Notes on configuration items:
● The path element requires an absolute path name, or it will be relative to the
jboss.server.data.dir value that is globally defined for the application
server.

● The ASYNCIO journal option is by far the highest performing option.
● This option uses a native code library, since Java cannot use native OS

asynchronous I/O (at least not JDK 6), plus it opens the files using
O_DIRECT, which no JDK supports.
● This native code only operates on the Linux platform.
● In order for this native code layer to load properly, there is also a

dependency on having libaio installed.
● For the transaction mode, which defaults to XA, you can set it to local or none.

● The default is XA, because in most applications, transactions span MDB's
and other components that use a database. You will in most cases having a
transaction span two resource manager's as a result.

● Be very careful about setting this to local or none. Only do this if you are
sure the messaging interactions are in their own transactions, or you don't
have any persistent messages.

JMS
Provider
HornetQ

JMS
Provider
HornetQ

Accelerate Your JBoss Enterprise Middleware –
Logging

LoggingLogging

ConsoleConsole Logging Level
jboss.server.log.dir

if debugEnabled()...

Accelerate Your JBoss Enterprise Middleware –
Logging

● Important Notes on logging:
● There is an entirely new logging implementation in EAP 6.
● This logging implementation is very high performance, supports

internationalization/localization (i18n/L10n), and is available as a public API for
applications to use.

● It doesn't suffer from the problems of some of the other logging
implementations where they don't check the log level until they are ready to try
and write to the log file.
● JBoss logging has a fail fast design for the log level.
● This makes most of the need to wrap statements with debugEnabled() calls,

or traceEnabled() calls go away.
● Having said that, there are still cases where you may be doing something

expensive in your logging code, like Object.toString(), and the statements
are still there to wrap those log statements so they don't get expensive.

LoggingLogging

Accelerate Your JBoss Enterprise Middleware –
Management

●So, why do we talk about “management”, like other subsystems within EAP?
● Management is now a built in part of the application server. It's not something

external.
● The management capability of the application server provides a command-line

interface (CLI), a domain model for each subsystem and the system as a
whole, that is described through XML schema, and a management console
that sits on top of both.

● The CLI is completely scriptable and is accessible over the network (with
proper security credentials).

●So, what does this have to do with performance?
● Well, there are some really nice performance related metrics that are exposed

through the management capability.
● We will talk about two of them, specifically data source metrics, and JPA

metrics.
● There are others, but time is short, and these will probably get used the most

heavily out of everything that is available.

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[root@jbosstesting bin]# ls
add-user.bat appclient.sh domain.sh JBossPublicKey.RSA product.conf
 standalone.conf.bat wsconsume.sh
add-user.sh client init.d jconsole.bat run.bat
 standalone.sh wsprovide.bat
appclient.bat domain.bat jboss-cli.bat jconsole.sh run.sh
 vault.bat wsprovide.sh
appclient.conf domain.conf jboss-cli.sh jdr.bat standalone.bat
 vault.sh
appclient.conf.bat domain.conf.bat jboss-cli.xml jdr.sh standalone.conf
 wsconsume.bat
[root@jbosstesting bin]# ./jboss-cli.sh
You are disconnected at the moment. Type 'connect' to connect to the server or 'help'
for the list of supported commands.
[disconnected /]connect jbosstesting.miller.org
Authenticating against security realm: ManagementRealm
Username: admin
Password:
[standalone@jbosstesting.miller.org:9999 /]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 /]ls
core-service deployment extension
interface path socket-
binding-group
subsystem system-property launch-
type=STANDALONE
management-major-version=1 management-minor-version=2
name=jbosstesting
namespaces=[] process-type=Server product-
name=EAP
product-version=6.0.0.GA profile-name=undefined release-
codename=Steropes
release-version=7.1.2.Final-redhat-1 running-mode=NORMAL schema-
locations=[]
server-state=running
[standalone@jbosstesting.miller.org:9999 /]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 /] cd deployment
[standalone@jbosstesting.miller.org:9999 deployment] ls
specj.ear
[standalone@jbosstesting.miller.org:9999 deployment] cd specj.ear
[standalone@jbosstesting.miller.org:9999 deployment=specj.ear] ls
subdeployment
subsystem
content=[{"path" => "deployments/specj.ear","relative-to" =>
"jboss.server.base.dir","archive" => true}]
enabled=true
name=specj.ear
persistent=false
runtime-name=specj.ear
status=OK
[standalone@jbosstesting.miller.org:9999 deployment=specj.ear] cd subdeployment
[standalone@jbosstesting.miller.org:9999 subdeployment] ls
specj.jar specj.war supplier.war
[standalone@jbosstesting.miller.org:9999 subdeployment] cd specj.jar
[standalone@jbosstesting.miller.org:9999 subdeployment=specj.jar] ls
subsystem
[standalone@jbosstesting.miller.org:9999 subdeployment=specj.jar] cd subsystem
[standalone@jbosstesting.miller.org:9999 subsystem] ls
ejb3 jpa web webservices
[standalone@jbosstesting.miller.org:9999 subsystem]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 subsystem] cd jpa
[standalone@jbosstesting.miller.org:9999 subsystem=jpa] ls
hibernate-persistence-unit
[standalone@jbosstesting.miller.org:9999 subsystem=jpa] cd hibernate-persistence-unit
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-unit] ls
specj.ear/specj.jar#Loader specj.ear/specj.jar#Mfg specj.ear/specj.jar#Order
 specj.ear/specj.jar#Supplier
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-unit] cd
specj.ear\/specj.jar#Order
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] ls
collection entity
entity-cache query-cache
close-statement-count=0 collection-fetch-count=0
collection-load-count=0 collection-recreated-count=0
collection-remove-count=0 collection-update-count=0
completed-transaction-count=0 connect-count=0
enabled=false entity-delete-count=0
entity-fetch-count=0 entity-insert-count=0
entity-load-count=0 entity-update-count=0
flush-count=0 optimistic-failure-count=0
prepared-statement-count=0 query-cache-hit-count=0
query-cache-miss-count=0 query-cache-put-count=0
query-execution-count=0 query-execution-max-time=0
query-execution-max-time-query-string=undefined scoped-unit-
name=specj.ear/specj.jar#Order
second-level-cache-hit-count=0 second-level-cache-miss-count=0
second-level-cache-put-count=0 session-close-count=0
session-open-count=0 successful-transaction-count=0

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] :write-attribute(name=enabled,value=true)
{"outcome" => "success"}
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order]ls
collection entity
entity-cache query-cache
close-statement-count=0 collection-fetch-count=0
collection-load-count=0 collection-recreated-count=0
collection-remove-count=0 collection-update-count=0
completed-transaction-count=0 connect-count=0
enabled=true entity-delete-count=0
entity-fetch-count=0 entity-insert-count=0
entity-load-count=0 entity-update-count=0
flush-count=0 optimistic-failure-count=0
prepared-statement-count=0 query-cache-hit-count=0
query-cache-miss-count=0 query-cache-put-count=0
query-execution-count=0 query-execution-max-time=0
query-execution-max-time-query-string=undefined scoped-unit-
name=specj.ear/specj.jar#Order
second-level-cache-hit-count=0 second-level-cache-miss-count=0
second-level-cache-put-count=0 session-close-count=0
session-open-count=0 successful-transaction-count=0
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] ls
...
entity-delete-count=43279
entity-fetch-count=36689
entity-insert-count=57687
entity-load-count=9338637
entity-update-count=49389
flush-count=47440
optimistic-failure-count=0
prepared-statement-count=471308
query-cache-hit-count=282440
query-cache-miss-count=35381
query-cache-put-count=35381
query-execution-count=91501
query-execution-max-time=9989
query-execution-max-time-query-string=select COUNT(a) from CustomerInventory a
scoped-unit-name=specj.ear/specj.jar#Order
second-level-cache-hit-count=56526784
second-level-cache-miss-count=28403
second-level-cache-put-count=265045
session-close-count=669836
session-open-count=669844
successful-transaction-count=47441
[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] :read-resource(include-runtime=true,recursive=true)
{
 ...
 "query-cache-hit-count" => 594027L,
 "query-cache-miss-count" => 48702L,
 "query-cache-put-count" => 48702L,
 ...
 "second-level-cache-hit-count" => 118996815L,
 "second-level-cache-miss-count" => 37320L,
 "second-level-cache-put-count" => 360120L,
 ...
 "collection" => {
 "org.spec.jent.ejb.orders.entity.Customer.customerInventories" => {
 "collection-fetch-count" => 0L,
 "collection-load-count" => 405550L,
 "collection-recreated-count" => 0L,
 "collection-remove-count" => 1L,
 "collection-update-count" => 66516L
 },
 "org.spec.jent.ejb.orders.entity.Order.orderLines" => {
 "collection-fetch-count" => 14292L,
 "collection-load-count" => 48602L,
 "collection-recreated-count" => 22261L,
 "collection-remove-count" => 7980L,
 "collection-update-count" => 0L
 }
 },
 ...

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] :read-resource(include-runtime=true,recursive=true)
{
...
"entity-cache" => {
 "org.hibernate.cache.internal.StandardQueryCache" => {
 "element-count-in-memory" => 84L,
 "hit-count" => 594214L,
 "miss-count" => 48705L,
 "put-count" => 48705L
 },
 "org.spec.jent.ejb.orders.entity.Item" => {
 "element-count-in-memory" => 26442L,
 "hit-count" => 119034411L,
 "miss-count" => 37323L,
 "put-count" => 360162L
 },
 "org.hibernate.cache.spi.UpdateTimestampsCache" => {
 "element-count-in-memory" => 4L,
 "hit-count" => 0L,
 "miss-count" => 0L,
 "put-count" => 0L
 }
 },
...

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 hibernate-persistence-
unit=specj.ear/specj.jar#Order] :read-resource(include-runtime=true,recursive=true)
{
...
"query-cache" => {
"SELECT_space_i_space_FROM_space_Item_space_i_space_WHERE_space_i.category_equal__colon
_category_space_ORDER_space_BY_space_i.id" => {
 "query-cache-hit-count" => 594116L,
 "query-cache-miss-count" => 48702L,
 "query-cache-put-count" => 48702L,
 "query-execution-average-time" => 31L,
 "query-execution-count" => 48702L,
 "query-execution-max-time" => 3639L,
 "query-execution-min-time" => 3L,
 "query-execution-row-count" => 9740400L,
 "query-name" => "SELECT i FROM Item i WHERE i.category=:category ORDER
BY i.id"
 },
...

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 /] ls
core-service deployment extension
interface path socket-
binding-group
subsystem system-property launch-
type=STANDALONE
management-major-version=1 management-minor-version=2
name=jbosstesting
namespaces=[] process-type=Server product-
name=EAP
product-version=6.0.0.GA profile-name=undefined release-
codename=Steropes
release-version=7.1.2.Final-redhat-1 running-mode=NORMAL schema-
locations=[]
server-state=running
[standalone@jbosstesting.miller.org:9999 /] cd subsystem
[standalone@jbosstesting.miller.org:9999 subsystem] ls
cmp configadmin datasources deployment-scanner ee
 ejb3
infinispan jacorb jaxr jaxrs jca
 jdr
jmx jpa jsr77 logging
mail messaging
naming osgi pojo remoting
resource-adapters sar
security threads transactions web
webservices weld

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 subsystem] cd datasources
[standalone@jbosstesting.miller.org:9999 subsystem=datasources] ls
data-source jdbc-driver xa-data-source
[standalone@jbosstesting.miller.org:9999 subsystem=datasources] cd xa-data-source
[standalone@jbosstesting.miller.org:9999 xa-data-source] ls
SPECjLoaderDS SPECjMfgDS SPECjOrderDS SPECjSupplierDS

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 xa-data-source] cd SPECjOrderDS
[standalone@jbosstesting.miller.org:9999 xa-data-source=SPECjOrderDS] ls
statistics xa-datasource-properties
allocation-retry=undefined allocation-retry-wait-
millis=undefined
allow-multiple-users=undefined background-validation=undefined
background-validation-millis=undefined blocking-timeout-wait-
millis=undefined
check-valid-connection-sql=undefined driver-name=mysql
enabled=false exception-sorter-class-
...

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 xa-data-source] cd SPECjOrderDS
[standalone@jbosstesting.miller.org:9999 xa-data-source=SPECjOrderDS] ls
statistics xa-datasource-properties
allocation-retry=undefined allocation-retry-wait-
millis=undefined
allow-multiple-users=undefined background-validation=undefined
background-validation-millis=undefined blocking-timeout-wait-
millis=undefined
check-valid-connection-sql=undefined driver-name=mysql
enabled=false exception-sorter-class-
...

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

[standalone@jbosstesting.miller.org:9999 xa-data-source=SPECjOrderDS] :read-
resource(include-runtime=true,recursive=true)
{
 "outcome" => "success",
 "result" => {
 ...
 "driver-name" => "mysql",
 ...
 "jndi-name" => "java:/jdbc/SPECjOrderDS",
 "jta" => true,
 "max-pool-size" => 550,
 "min-pool-size" => 50,
 ...
 "pool-prefill" => true,
 ...
 "prepared-statements-cache-size" => 32L,
 ...
 "share-prepared-statements" => true,
 "spy" => false,
 ...
 "transaction-isolation" => "TRANSACTION_READ_COMMITTED",
 ...
 "use-ccm" => false,
 ...
 "statistics" => {
 "jdbc" => {
 "PreparedStatementCacheAccessCount" => "2820107",
 "PreparedStatementCacheAddCount" => "16984",
 "PreparedStatementCacheCurrentSize" => "7705",
 "PreparedStatementCacheDeleteCount" => "9279",
 "PreparedStatementCacheHitCount" => "2803123",
 "PreparedStatementCacheMissCount" => "0"
 },
 "pool" => {
 "ActiveCount" => "502",
 "AvailableCount" => "550",
 "AverageBlockingTime" => "1",
 "AverageCreationTime" => "667",
 "CreatedCount" => "502",
 "DestroyedCount" => "0",
 "MaxCreationTime" => "1804",
 "MaxUsedCount" => "498",
 "MaxWaitTime" => "98",
 "TimedOut" => "0",
 "TotalBlockingTime" => "585",
 "TotalCreationTime" => "334901"
 }
 },
 "xa-datasource-properties" => {
 "serverName" => {"value" => "jbosstesting"},
 "databaseName" => {"value" => "specdb"},
 "maintainTimeStats" => {"value" => "false"},
 "rewriteBatchedStatements" => {"value" => "true"}
 }
 }
}
[standalone@jbosstesting.miller.org:9999 xa-data-source=SPECjOrderDS]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Management

...
 "statistics" => {
 "jdbc" => {
 "PreparedStatementCacheAccessCount" => "2820107",
 "PreparedStatementCacheAddCount" => "16984",
 "PreparedStatementCacheCurrentSize" => "7705",
 "PreparedStatementCacheDeleteCount" => "9279",
 "PreparedStatementCacheHitCount" => "2803123",
 "PreparedStatementCacheMissCount" => "0"
 },
 "pool" => {
 "ActiveCount" => "502",
 "AvailableCount" => "550",
 "AverageBlockingTime" => "1",
 "AverageCreationTime" => "667",
 "CreatedCount" => "502",
 "DestroyedCount" => "0",
 "MaxCreationTime" => "1804",
 "MaxUsedCount" => "498",
 "MaxWaitTime" => "98",
 "TimedOut" => "0",
 "TotalBlockingTime" => "585",
 "TotalCreationTime" => "334901"
 }
 },
 ...
 }
}
[standalone@jbosstesting.miller.org:9999 xa-data-source=SPECjOrderDS]

ManagementManagement

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● The Java Virtual Machine is our key piece of software, as the entire
platform is completely dependent on it.

● Tuning the JVM can be difficult.
● Start simple!
● Test one thing at a time!
● Understand your goals!
● Use the 64-bit JVM with Compressed Oops.

● Seems like the 32-bit JVM is on its way out, with perhaps the
exception of virtualized environments that have severe memory
contraints.

● Key topics:
● Garbage collection algorithms.

● CMS vs. Throughput on JDK 6.
● G1 vs. Throughput on JDK 7.

● Compressed Oops.
● Large Page Memory.

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

EAP 6.0.0 OpenJDK 6 w/CMS Collector
EAP 6.0.0 OpenJDK 6 w/Parallel Old Collector

EAP 6.0.0 OpenJDK 7 w/G1 Collector
EAP 6.0.0 OpenJDK 7 w/Parallel Old Collector

5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

Comparison of Different GC Algorithms
EJB 3 Application

Higher is Better (Throughput)

Transactions per Second

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

50000

100000

150000

200000

250000

300000

350000

Comparison of Different GC Algorithms
SPECjbb2005

Higher is Better (Throughput)

OpenJDK 6 w/CMS Collector

OpenJDK 6 w/Parallel Old Collector

OpenJDK 7 w/G1 Collector

OpenJDK 7 w/Parallel Old Collector

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

CreateVehicleEJB CreateVehicleWS Purchase Manage Browse
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

4.8

Comparison of Different GC Algorithms

SPECjEnterprise2010
Lower is Better (Response Times)

EAP 6.0.0 OpenJDK 6 w/CMS Collector

EAP 6.0.0 OpenJDK 6 w/Parallel Old Collector

EAP 6.0.0 OpenJDK 7 w/G1 Collector

EAP 6.0.0 OpenJDK 7 w/Parallel Old Collector

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● What are Compressed Oops?
● An "oop", or ordinary object pointer. An oop is normally the same size

as the word size of the server (64-bits on X86_64, and 32-bits on X86,
as an example).

● So, a compressed oop is an object pointer that instead of using the
word size (e.g. 64-bits), instead is compressed to 32-bits, or as a 32-
bit offset from the 64-bit heap base address.
● This allows a heap size of about 32 gigabytes (because they are an

offset, not a direct memory pointer).
● Compressed oops is enabled by default in update 23 and above of

JDK 6. For JDK 7 its on by default as long as the maximum heap size
is less than 32 GB's.
● EAP 6.0.0.GA sets the command-line option to enable compressed

oops for any Hotspot based 64-bit virtual machine.
● The flag is -XX:+UseCompressedOops.

●All tests in this presentation have compressed oops on, as its on by
default now.

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● What is large page memory?
● The normal memory page size in the OS is usually 4k. When you

consider the memory footprints of modern servers, there are an awful
lot of memory pages that the OS has to manage.

● Large page memory, is a larger memory page than 4k.
● Typically, on X86_64 systems, this is 2 MB.
● Newer X86_64 systems can support 1 GB page sizes.
● Another attribute of large pages (called HugeTLB in Linux), is that

they are locked into physical memory, and cannot be swapped to disk.
● This is a great attribute for the JVM.

● If you have ever experienced the JVM heap being swapped to disk,
you know this is a situation that often leads to the JVM crashing.

●How do we take advantage of large page memory?

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● The Sun JVM, as well as OpenJDK, requires the following option, passed
on the command-line, to use large pages:

● -XX:+UseLargePages
●There is also something in Linux called “Transparent huge pages”.

● Transparent huge pages allows the operating system (Linux) to
evaluate memory usage of processes and dynamically move from
regular pages to large pages (consolidates many 4k pages into a large
page).

● For some workloads this may be sufficient. For other, the static
configuration, and usage will be better.

● If you have transparent huge pages turned on in the Linux kernel, you
should not specify the JVM argument to use large pages. Only if you
opt for the static configuration, which I'll walk through next.

●From my testing so far, I would not recommend having both
statically defined large pages, and transparent huge page support on
at the same time!

● To turn off transparent huge pages, you can set a boot parameter
in grub.conf as follows:

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● To turn off transparent huge pages, you can set a boot parameter in
grub.conf as follows:

title Red Hat Enterprise Linux (2.6.32-220.el6.x86_64)
 root (hd0,0)
 kernel /vmlinuz-2.6.32-220.el6.x86_64 ro root=UUID=f8196a3a-1f1a-47f3-9141-1d33e3da4454
rd_NO_LUKS rd_NO_LVM LANG=en_US.UTF-8 rd_NO_MD quiet SYSFONT=latarcyrheb-sun16 rhgb
crashkernel=auto KEYBOARDTYPE=pc KEYTABLE=us rd_NO_DM transparent_hugepage=never
 initrd /initramfs-2.6.32-220.el6.x86_64.img

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● The Oracle JVM, as well as OpenJDK, requires the
following option:

● -XX:+UseLargePages
● The Oracle instructions leave it at that and you will most likely get the

following error:
● Failed to reserve shared memory (error-no=12).

● Next, you set the following in /etc/sysctl.conf
● kernel.shmmax = n

● Where n is equal to the number of bytes of the maximum shared memory
segment allowed on the system. You should set it to perhaps 3 times the
amount of physical memory.
● Setting this value smaller, may result in error-no=22 on startup of the

JVM. This error, is “no space left on device”, and is a rather new
phenomenon on the Linux kernel.

● vm.nr_hugepages = n
● Where n is equal to the number of large pages. You will need to look up

the large page size in /proc/meminfo.
● vm.huge_tlb_shm_group = gid

● Where gid is a shared group id for the users you want to have access to
the large pages.

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Java Virtual Machine

● Next, set the following:
● In /etc/security/limits.conf

● <username> soft memlock n
● <username> hard memlock n

● Where <username> is the runtime user of the JVM.
● Where n is the number of pages from vm.nr_hugepages * the page size

in KB from /proc/meminfo.
● The value for n can also be unlimited.

● You can now enter the command sysctl -p, and everything will be set and
survive a reboot.
● You can tell that the large pages are allocated by looking at
/proc/meminfo, and seeing a non-zero value for HugePages_Total.
● This may fail without a reboot, because when the OS allocates these

pages, it must find contiguous memory for them.
● WARNING: when you allocate large page memory, it is

not available to applications in general and you system
will look and act like it has that amount of memory
removed from it!

Java
Virtual

Machine

Java
Virtual

Machine

Accelerate Your JBoss Enterprise Middleware –
Operating System

● In this case, when we talk about operating system, we are going to be
talking specifically about Red Hat Enterprise Linux.

● All my testing was done on RHEL 6.2 (6.3 is out now, but I did not
have time to upgrade my test server and rerun all my tests).

● We will go over large page memory setup.
● We will cover NUMA architecture, and how you can leverage it for

EAP 6.

Operating
System

Operating
System

Accelerate Your JBoss Enterprise Middleware –
Operating System

Transactions per Second
5950

6000

6050

6100

6150

6200

Comparison of Using Large Page Memory vs. Regular Page Memory

EJB 3 Application
Higher is Better (Throughput)

EAP 6.0.0 OpenJDK 7 w/Large Page Memory

EAP 6.0.0 OpenJDK w/o Large Page Memory

Accelerate Your JBoss Enterprise Middleware –
Operating System

CreateVehicleEJB CreateVehicleWS Purchase Manage Browse
0

0.1

Comparison of Using Large Page Memory vs. Regular Page Memory

SPECjEnterprise2010
Lower is Better (Response Times)

EAP 6.0.0 OpenJDK 7 w/Large Page Memory

EAP 6.0.0 OpenJDK w/o Large Page Memory

Accelerate Your JBoss Enterprise Middleware –
Operating System

● What is NUMA?
● It stands for non-uniform memory architecture.
● Why is it important?

● It's important because all newer x86 architecture servers are based
on NUMA.

● The memory architecture of a NUMA system is laid out so that each
socket (with its cores) is attached directly to a single bank of memory.
● Accessing this bank of memory has the lowest latency of all memory

accesses.
● To access memory from any other bank of memory, it has to go

through the other sockets to access the memory adding significant
latency.

● The best performance comes from keeping processing running on a
single socket, and having its memory needs satisfied through the
local memory bank attached to that socket.

Operating
System

Operating
System

Core
3

Core
3

Core
0

Core
0

Core
1

Core
1

Core
2

Core
2

Accelerate Your JBoss Enterprise Middleware –
Operating System

Core
3

Core
3

Core
0

Core
0

Core
1

Core
1

Core
2

Core
2

NUMA
Node 0

NUMA
Node 1

Accelerate Your JBoss Enterprise Middleware –
Operating System

● How do you take advantage of NUMA?
● First, you have to understand your NUMA hardware layout.
● Second, you have to start the JVM with numactl.
● Third, you have to supply numactl the policy information necessary to

bind the process and its threads to the NUMA node, and its memory
accesses to the local memory of that NUMA node.

● Fourth, if you are using large page memory, you need to understand
how many large pages are on each NUMA node.

● Fifth, you have to understand the number of threads to use for GC, as
the default JVM ergonomics will not apply.

● In the test example I show, I set the number of GC threads to the
number of virtual cores (including hyper-threading) that were on
the NUMA node I bound the JVM too.

●So, let's take a look at the commands you have to issue to accomplish all
five points above.

Operating
System

Operating
System

Accelerate Your JBoss Enterprise Middleware –
Operating System
[root@jbosstesting ~]# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14
node 0 size: 12277 MB
node 0 free: 710 MB
node 1 cpus: 1 3 5 7 9 11 13 15
node 1 size: 12287 MB
node 1 free: 225 MB
node distances:
node 0 1
 0: 10 20
 1: 20 10

Accelerate Your JBoss Enterprise Middleware –
Operating System

if ["x$LAUNCH_JBOSS_IN_BACKGROUND" = "x"]; then
 # Execute the JVM in the foreground
 eval numactl –-membind 0 –cpunodebind 0 \"$JAVA\" -D\"[Standalone]\" $JAVA_OPTS \
 \"-Dorg.jboss.boot.log.file=$JBOSS_LOG_DIR/boot.log\" \
 \"-Dlogging.configuration=file:$JBOSS_CONFIG_DIR/logging.properties\" \
 -jar \"$JBOSS_HOME/jboss-modules.jar\" \
 -mp \"${JBOSS_MODULEPATH}\" \
 -jaxpmodule "javax.xml.jaxp-provider" \
 org.jboss.as.standalone \
 -Djboss.home.dir=\"$JBOSS_HOME\" \
 -Djboss.server.base.dir=\"$JBOSS_BASE_DIR\" \
 "$@"
 JBOSS_STATUS=$?
 else
 # Execute the JVM in the background
 eval numactl –-membind 0 –cpunodebind 0 \"$JAVA\" -D\"[Standalone]\" $JAVA_OPTS \
 \"-Dorg.jboss.boot.log.file=$JBOSS_LOG_DIR/boot.log\" \
 \"-Dlogging.configuration=file:$JBOSS_CONFIG_DIR/logging.properties\" \
 -jar \"$JBOSS_HOME/jboss-modules.jar\" \
 -mp \"${JBOSS_MODULEPATH}\" \
 -jaxpmodule "javax.xml.jaxp-provider" \
 org.jboss.as.standalone \
 -Djboss.home.dir=\"$JBOSS_HOME\" \
 -Djboss.server.base.dir=\"$JBOSS_BASE_DIR\" \
 "$@" "&"
 JBOSS_PID=$!
...

Accelerate Your JBoss Enterprise Middleware –
Operating System

[root@jbosstesting hugepages-2048kB]# pwd
/sys/devices/system/node/node0/hugepages/hugepages-2048kB
[root@jbosstesting hugepages-2048kB]# cat nr_hugepages
5376
[root@jbosstesting hugepages-2048kB]#

...

[root@jbosstesting hugepages-2048kB]# pwd
/sys/devices/system/node/node1/hugepages/hugepages-2048kB
[root@jbosstesting hugepages-2048kB]# cat nr_hugepages
5376
[root@jbosstesting hugepages-2048kB]#

Accelerate Your JBoss Enterprise Middleware –
Operating System

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

50000

100000

150000

200000

250000

300000

350000

400000

Multi-JVM and NUMA vs. Single JVM
SPECjbb2005

Higher is Better (Throughput)

OpenJDK 7 2 JVM's w/NUMA bindings

OpenJDK 7 1 JVM w/o NUMA bindings

OpenJDK 7 2 JVM's w/o NUMA bindings

References

●This presentation has shown a lot of XML
fragments. The following link is to the schema
definitions for the application server in GITHUB:

● https://github.com/jbossas/jboss-
as/tree/master/build/src/main/resources/docs/sc
hema

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

