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MRG-M Improves Mobile Communications

● TCP/IP challenges in a mobile environment

● Intermediate MRG-Messaging brokers improve TCP/IP

● RHEL emulates networks out-of-the-box



TCP/IP Challenges in a Mobile Environment



Mobile Ad-hoc Network



No connection to destination



No connection to source



Unreliable connections



TCP/IP Challenges

● Poor performance in MANET
● Packet losses

● Network disconnect/reconnect
● Poor R/F conditions

● Re-transmits from source
● “Slow start” congestion control



A Better Way

● Avoid end-to-end communications
● Eliminate cumulative effects over multiple hops

● Use intermediate message brokers
● Store and forward
● Trade latency for better throughput



Test Scenarios



Red Hat MRG-Messaging Enhances AMQP



JP Morgan Chase and Red Hat – Where it all 
started...



Interest in AMQP is growing

Red Hat is committed to AMQP

But remember AMQP is a specification

AMQP and MRG-Messaging

AMQP = MRG Messaging 

AMQP + Lots of Features = MRG Messaging 



Advanced Queueing Features

Core Messaging

P2P, fanout, pub-sub, sync, async

Reliable messaging

Transactions local to dtx

Multiple clients (C++, JMS, .NET, Python, Ruby, Perl)

Advanced Features

Queue Semantics: TTL, Ring Queue, Last Value Queue,  Initial Value 
Exchange

Routing patterns, including XML XQuery



Management and Security

Management tools
Web-based GUI

Command line tools

AMQP-based framework & APIs (QMF)

Security
SASL authentication

SSL/TLS/ Kerberos encryption

Role-based Access Control (ACL)



Performance and High Availability

High Performance
C++ broker, optimized for RHEL

AIO for high-speed durability 

RDMA support for ultra low latency

High Availability
Active-Active Broker Clustering

Federated disaster recovery



The AMQP Model

● The AMQP architecture specifies building blocks
● Exchanges

● Message “routing key” determines destination queue

● Queues
● Stores messages for delivery

● Bindings
● Defines routing criteria between Exchange and Queue



Exchange Types
● Default Exchange

● Binding key is name of queue
● AMQP 0-10 automatically binds every queue
● Only one allowed



Exchange Types
● Direct Exchange

● Routing key matches binding key
● AMQP 0-10 provides “amq.direct”
● Multiple allowed

● Fanout, Topic, Headers, XML (custom type)



MRG-M Federation

● Message routes that connect one or more brokers
● Durable
● Dynamically created
● Automatic delivery

● Queues hold messages when connection dropped
● Resilient connections (auto reconnect with backoff)



Message Routes

● Queue Route
● Source queue to destination exchange
● Can be push or pull
● Optional acknowledgments

● Others
● Exchange, Dynamic Exchange



Test Setup



RHEL Emulates Networks Out-of-the-box



Network Simulation

● How do you simulate a unreliable network?
● Buy dedicated hardware and/or software
● Use other open source tools like WANem
● Use built-in RHEL facilities

● Traffic control (tc)
● Network emulation (netem)



Linux Networking



Queuing Discipline

● qdisc
● Algorithm that manages a queue
● Can be classful or classless

● root qdisc
● Every network device has at least one qdisc
● Default is pfifo_fast

● class
● Parent can be qdisc or another class
● Leaf must have qdisc



htb qdisc

● Used with netem to limit rate

● Rate limit via token bucket filter (tbf) algorithm
● Bucket fills with tokens at constant rate
● As bytes sent, token are removed
● If insufficient tokens, packet is held

● Hierarchy Token Bucket (htb) qdisc
● Enables rich link sharing via a hierarchy of classes
● Filters direct packets to different qdiscs
● Enables single link to act like multiple virtual links



netem qdisc

● Nearly all functionality of full blown emulator
● Latency (and jitter)
● Loss
● Duplication
● Corruption
● Reordering

● Add randomness and correlation
● distribution tables (Normal, Pareto, or experimental)



Network Setup

ethtool –offload eth0 tso off

tc qdisc replace dev eth0 root     
    handle 1: htb default 1

tc class add dev eth0 parent 1:    
    classid 1:1 htb rate 100Mbps

tc qdisc add dev eth0 parent 1:1   
   handle 10: netem limit 9000     
  delay 100ms loss 0.1%

tso – TCP Segmentation Offload 



Test Methodology
● Spout on Node1

● Messages varying in size from 1K to 128K
● Drain on Node3

● Write received messages to file
● Determine elapsed time from first to last message
● Calculate receive rate

● Two scenarios
● Intermediate MRG-M broker (Node 1 -> 2 -> 3)
● No Intermediate MRG-M broker (Node 1 -> 3)

● Vary packet loss and latency



Let's take a look at the results ...



MRG-M Improves Throughput
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MRG-M Improves Throughput



MRG-M Improves Throughput



What did we learn?

● 3X improvement with intermediate MRG-M broker
● Packet loss and latency devastating to TCP/IP

● Cumulative effects crush throughput
● Next steps

● Run in non-virtual environment
● Collect additional metrics on TCP/IP performance
● Investigate tuning of TCP/IP to maximize performance



Learn More!

● Red Hat's web site has links to videos, white papers, and more under 
Resources tab

● http://www.redhat.com/products/jbossenterprisemiddleware/messaging/

● MRG-Messaging Documentation

● http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/index.html

● Red Hat Enterprise Linux Manual Pages

● tc, tc-htb

● Linux Advanced Routing and Traffic Control

● http://lartc.org

http://www.redhat.com/products/jbossenterprisemiddleware/messaging/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/index.html


Sessions

● Thursday
● 1:20, Room 310:  MRG Update and Roadmap

● 2:30, Room 309:  Real World Perspectives Panel

● Clark Palmer, Chief Engineer for Meteorcomm
● 4:50, Room 209:  MRG-Messaging Taste of Training

● 6:00:  Jim Whitehurst Innovation Hour with Tim Potter of 
Meteorcomm

● Friday

● 9:45, Room 206:  Realtime Intelligent Messaging with MRG-M
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