

Improving Mobile Ad-hoc Network

(MANET) Communications with

Red Hat Enterprise MRG Messaging

Rich Lucente
JBoss Solutions Architect, Red Hat
06.27.12

MRG-M Improves Mobile Communications

● TCP/IP challenges in a mobile environment

● Intermediate MRG-Messaging brokers improve TCP/IP

● RHEL emulates networks out-of-the-box

TCP/IP Challenges in a Mobile Environment

Mobile Ad-hoc Network

No connection to destination

No connection to source

Unreliable connections

TCP/IP Challenges

● Poor performance in MANET
● Packet losses

● Network disconnect/reconnect
● Poor R/F conditions

● Re-transmits from source
● “Slow start” congestion control

A Better Way

● Avoid end-to-end communications
● Eliminate cumulative effects over multiple hops

● Use intermediate message brokers
● Store and forward
● Trade latency for better throughput

Test Scenarios

Red Hat MRG-Messaging Enhances AMQP

JP Morgan Chase and Red Hat – Where it all
started...

Interest in AMQP is growing

Red Hat is committed to AMQP

But remember AMQP is a specification

AMQP and MRG-Messaging

AMQP = MRG Messaging

AMQP + Lots of Features = MRG Messaging

Advanced Queueing Features

Core Messaging

P2P, fanout, pub-sub, sync, async

Reliable messaging

Transactions local to dtx

Multiple clients (C++, JMS, .NET, Python, Ruby, Perl)

Advanced Features

Queue Semantics: TTL, Ring Queue, Last Value Queue, Initial Value
Exchange

Routing patterns, including XML XQuery

Management and Security

Management tools
Web-based GUI

Command line tools

AMQP-based framework & APIs (QMF)

Security
SASL authentication

SSL/TLS/ Kerberos encryption

Role-based Access Control (ACL)

Performance and High Availability

High Performance
C++ broker, optimized for RHEL

AIO for high-speed durability

RDMA support for ultra low latency

High Availability
Active-Active Broker Clustering

Federated disaster recovery

The AMQP Model

● The AMQP architecture specifies building blocks
● Exchanges

● Message “routing key” determines destination queue

● Queues
● Stores messages for delivery

● Bindings
● Defines routing criteria between Exchange and Queue

Exchange Types
● Default Exchange

● Binding key is name of queue
● AMQP 0-10 automatically binds every queue
● Only one allowed

Exchange Types
● Direct Exchange

● Routing key matches binding key
● AMQP 0-10 provides “amq.direct”
● Multiple allowed

● Fanout, Topic, Headers, XML (custom type)

MRG-M Federation

● Message routes that connect one or more brokers
● Durable
● Dynamically created
● Automatic delivery

● Queues hold messages when connection dropped
● Resilient connections (auto reconnect with backoff)

Message Routes

● Queue Route
● Source queue to destination exchange
● Can be push or pull
● Optional acknowledgments

● Others
● Exchange, Dynamic Exchange

Test Setup

RHEL Emulates Networks Out-of-the-box

Network Simulation

● How do you simulate a unreliable network?
● Buy dedicated hardware and/or software
● Use other open source tools like WANem
● Use built-in RHEL facilities

● Traffic control (tc)
● Network emulation (netem)

Linux Networking

Queuing Discipline

● qdisc
● Algorithm that manages a queue
● Can be classful or classless

● root qdisc
● Every network device has at least one qdisc
● Default is pfifo_fast

● class
● Parent can be qdisc or another class
● Leaf must have qdisc

htb qdisc

● Used with netem to limit rate

● Rate limit via token bucket filter (tbf) algorithm
● Bucket fills with tokens at constant rate
● As bytes sent, token are removed
● If insufficient tokens, packet is held

● Hierarchy Token Bucket (htb) qdisc
● Enables rich link sharing via a hierarchy of classes
● Filters direct packets to different qdiscs
● Enables single link to act like multiple virtual links

netem qdisc

● Nearly all functionality of full blown emulator
● Latency (and jitter)
● Loss
● Duplication
● Corruption
● Reordering

● Add randomness and correlation
● distribution tables (Normal, Pareto, or experimental)

Network Setup

ethtool –offload eth0 tso off

tc qdisc replace dev eth0 root
 handle 1: htb default 1

tc class add dev eth0 parent 1:
 classid 1:1 htb rate 100Mbps

tc qdisc add dev eth0 parent 1:1
 handle 10: netem limit 9000
 delay 100ms loss 0.1%

tso – TCP Segmentation Offload

Test Methodology
● Spout on Node1

● Messages varying in size from 1K to 128K
● Drain on Node3

● Write received messages to file
● Determine elapsed time from first to last message
● Calculate receive rate

● Two scenarios
● Intermediate MRG-M broker (Node 1 -> 2 -> 3)
● No Intermediate MRG-M broker (Node 1 -> 3)

● Vary packet loss and latency

Let's take a look at the results ...

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

MRG-M Improves Throughput

What did we learn?

● 3X improvement with intermediate MRG-M broker
● Packet loss and latency devastating to TCP/IP

● Cumulative effects crush throughput
● Next steps

● Run in non-virtual environment
● Collect additional metrics on TCP/IP performance
● Investigate tuning of TCP/IP to maximize performance

Learn More!

● Red Hat's web site has links to videos, white papers, and more under
Resources tab

● http://www.redhat.com/products/jbossenterprisemiddleware/messaging/

● MRG-Messaging Documentation

● http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/index.html

● Red Hat Enterprise Linux Manual Pages

● tc, tc-htb

● Linux Advanced Routing and Traffic Control

● http://lartc.org

http://www.redhat.com/products/jbossenterprisemiddleware/messaging/
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/index.html

Sessions

● Thursday
● 1:20, Room 310: MRG Update and Roadmap

● 2:30, Room 309: Real World Perspectives Panel

● Clark Palmer, Chief Engineer for Meteorcomm
● 4:50, Room 209: MRG-Messaging Taste of Training

● 6:00: Jim Whitehurst Innovation Hour with Tim Potter of
Meteorcomm

● Friday

● 9:45, Room 206: Realtime Intelligent Messaging with MRG-M

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

