

JBoss Enterprise BRMS:

Best Practices

Edson Tirelli
Principal Software Engineer, Red Hat
06.27.12

Why use best practices / blue prints?

It is not just about performance...

Agenda

● BRMS Adoption Goals
● Under the Hood
● Best Practices

● Architecture
● Rules Authoring

BRMS adoption goals

Goal #1: Decision Automation

Adapted from a presentation by James Taylor, Sep/2011

Time

B
us

in
es

s
V

al
ue

Business EventBusiness Event

ReactionReaction

V
al

ue
 L

os
s

Time Loss

Conclusion: Time is Money!

Goal #1: Decision Automation

● James Taylor, CEO of DMS:
● 75%-95% of operational day-to-day decisions can be

automated

● Benefits:
● improves consistency and audit-ability
● reduces costs
● speeds processing
● focus staff’s expertise

Goal #2: Independent Lifecycle Management*

* a.k.a. Business Agility

Goal #3: Expressiveness and Visibility

rule “Send shipment pick-up SMS alert”

when

 There is a shipment order

 There is a route assigned to the order

 There is a truck GPS reading and the truck is 15 minutes

 away from the pick-up location

then

 Send SMS to customer: “Arriving in 15 minutes”

end

rule “Send shipment pick-up SMS alert”

when

 There is a shipment order

 There is a route assigned to the order

 There is a truck GPS reading and the truck is 15 minutes

 away from the pick-up location

then

 Send SMS to customer: “Arriving in 15 minutes”

end

Focus on “what to do” instead of “how to do it”

Goal #4: Performance and Scalability

● Real time, online, systems
● Millisecond response times

● Hundreds of thousands of rules
● JBoss BRMS: 700k+ rules

● Millions of data instances (facts)

● Incremental (re-)evaluation
● Changes in data can't reset reasoning

Goal #5..#7: other technical goals

● Logic, Data and Tasks split

● Centralization of Knowledge

● Consistency
● Testing / Simulation
● Auditing

● Explanation Facility

Knowledge
Base

(rules/events/
processes)

Knowledge
Session

(data)
Inference
Engine

Tasks

BRMS: a simple analogy

Business Rules ManagementBusiness Rules Management
SystemsSystems
(Rules)(Rules)

Database ManagementDatabase Management
SystemsSystems

(Data)(Data)

JBoss BRMS: under the hood

Engine's Algorithm – 30 seconds crash course

Customer Order Total
Amount

Discount

Gold 15%

Silver < $1000 5%

Silver >= $1000 10%

Decision Table: User's View

Data

Customer Order

Gold Silver < $1000 >=$1000

Discount: 15% Discount: 5% Discount: 10%

Rete Network: Computer's View

Clear, Concise, Objective

Efficient, Effective

JBoss BRMS – some optimizations

● Support to POJOs as facts
● no mapping/data copy necessary

● Full split between Knowledge Base and Session
● lightweight session creation
● knowledge base sharing

● Completely Dynamic Knowledge Base
● Hot addition/removal/updates of rules/queries/processes

● Full support to First Order Logic and Set operations

● JIT compilation for constraints and data access

JBoss BRMS – More optimizations

Data

Customer Order

Gold Silver < $1000 >=$1000

Discount: 15% Discount: 5% Discount: 10%

Alpha Hashing

Node Sharing

Data Indexing

Lazy Matching

JBoss BRMS – Best Practices

Best Practices – Architecture

● Partition your Knowledge Bases properly

● Subject matter
● Transaction / Service / Unit of Work
● Business Entity

● Avoid monolithic Knowledge Bases

● Avoid fine grained Knowledge Bases

Knowledge
Base

Knowledge
Session

Inference
Engine

Tasks

Best Practices – Architecture

● Batch data loads

● Load 1000 facts and fire the rules faster than fire rules after
each loaded fact

● Partition the data into multiple sessions

● Transaction / Service / Unit of work
● Creating a new session is cheap

● Cheaper than removing facts
Knowledge

Base
Knowledge

Session
Inference
Engine

Tasks

Best Practices – Architecture

● Quality of the data/fact model is directly proportional to the
performance and maintainability of the rules using it

● Think about the DBMS analogy
● Flatter models improve performance
● Smaller classes help avoiding recursions

Knowledge
Base

Knowledge
Session

Inference
Engine

Tasks

Best Practices – Architecture

● Know your runtime environment

● Resource pooling
● JVM policies
● Instrumentation

Knowledge
Base

Knowledge
Session

Inference
Engine

Tasks

JBoss BRMS – Best Practices in Rules Authoring

Best Practices – Rules Authoring

● Don't try to micro-control rules execution

● Use the Conflict Resolution Strategies instead
● Salience
● Agenda groups
● Ruleflow / Processes
● Dynamic Enablement

Knowledge
Base

Knowledge
Session

Inference
Engine

Tasks

Best Practices – Rules Authoring

● Don't overload rules

● Each rule should describe one and only one
scenario→action mapping

● The engine will optimize shared conditions
● The engine supports inference

Knowledge
Base

Knowledge
Session

Inference
Engine

Tasks

Best Bad Practices – Rules Authoring

rule “1 – Teenagers and Elders get Discount”

when

 Person age is between 16 and 18 or Person age is greater or equal to 65

then

 Assign 25% ticket discount

end

rule “1 – Teenagers and Elders get Discount”

when

 Person age is between 16 and 18 or Person age is greater or equal to 65

then

 Assign 25% ticket discount

end

rule “2 – Elders can buy tickets in area A”

when

 Person age is greater or equal to 65

then

 Allow sales of area A tickets

end

rule “2 – Elders can buy tickets in area A”

when

 Person age is greater or equal to 65

then

 Allow sales of area A tickets

end

Rules are being overloaded with multiple concepts, increasing maintenance
and testing costs.

Best Practices – Rules Authoring

rule “0.a – Teenagers are 16-18”

when

 Person age is between 16 and 18

then

 Assert: the person is a Teenager

end

rule “0.a – Teenagers are 16-18”

when

 Person age is between 16 and 18

then

 Assert: the person is a Teenager

end

rule “0.b – Elders are older than 65”

when

 Person is older than 65

then

 Assert: the person is an Elder

end

rule “0.b – Elders are older than 65”

when

 Person is older than 65

then

 Assert: the person is an Elder

end

rule “1 – Teenagers and Elders get discount”

when

 Teenager or Elder

then

 Assign 25% ticket discount

end

rule “1 – Teenagers and Elders get discount”

when

 Teenager or Elder

then

 Assign 25% ticket discount

end

rule “2 – Elders can buy tickets in area A”

when

 Elder

then

 Allow sales of area A tickets

end

rule “2 – Elders can buy tickets in area A”

when

 Elder

then

 Allow sales of area A tickets

end

Best Practices – Rules Authoring

● One calculation (accumulate) per rule

● Accumulates have O(n) performance

● Sequences of accumulates have O(nm) performance

● n = number of matching facts
● m = number of accumulates

rule “Sum debits and credits”

when

 accumulate(Debit($d : amount),

 $debits: sum($d))

 accumulate(Credit($c : amount),

 $credits: sum($c))

then ...

rule “Sum debits and credits”

when

 accumulate(Debit($d : amount),

 $debits: sum($d))

 accumulate(Credit($c : amount),

 $credits: sum($c))

then ...

rule “Sum debits”

when

 accumulate(Debit($d : amount),

 $debits: sum($d))

then ...

rule “Sum debits”

when

 accumulate(Debit($d : amount),

 $debits: sum($d))

then ...

rule “Sum credits”

when

 accumulate(Credit($c : amount),

 $credits: sum($c))

then ...

rule “Sum credits”

when

 accumulate(Credit($c : amount),

 $credits: sum($c))

then ...

Best Practices – Rules Authoring

● Control facts should be used carefully if ever

● Breaks expressiveness and visibility goal
● Breaks “one scenario – one action” best practice
● Usually leads to micro-control and procedural code

rule “X”

when

 ControlFact(enabled == true)

 ...

rule “X”

when

 ControlFact(enabled == true)

 ...

Best Practices – Rules Authoring

● Rules vs Queries

Rules Queries

Control Invoked by the engine Invoked by the application

Parameters Don't support parameters Support parameters

Results Execute actions Return results

rule “Approve VIP customers”

when

 $c : Customer(type == “VIP”)

then

 insert(new Approved($c));

end

rule “Approve VIP customers”

when

 $c : Customer(type == “VIP”)

then

 insert(new Approved($c));

end

query “Get customers by type”($type)

when

 $c : Customer(type == $type)

end

query “Get customers by type”($type)

when

 $c : Customer(type == $type)

end

“Use the right tool for the right job!”

Best Practices – Rules Authoring

● Declared Types

● Facts used only by the rules
● Facts that change frequently with the rules

● POJOs

● Facts shared by both rules and application
● No data copy – very efficient

● Easier to integrate, easier to test
● When in doubt, use POJOs

“Use the right tool for the right job!”

Q&A

Yes, we also do
pair programming!

Edson Tirelli
etirelli@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

