SUMIT

JBoss WORLD

PRESENTED BY RED HAT

LEARN. NETWORK. EXPERIENCE OPEN SOURCE.

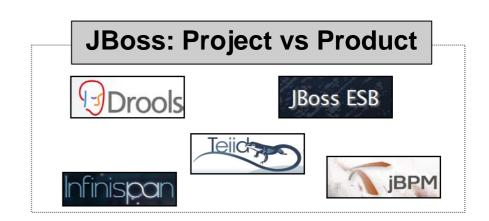
JBoss Enterprise Middleware & Big Data

Justin Hayes Senior Architect, Red Hat Consulting 06.28.12

OVERVIEW – context

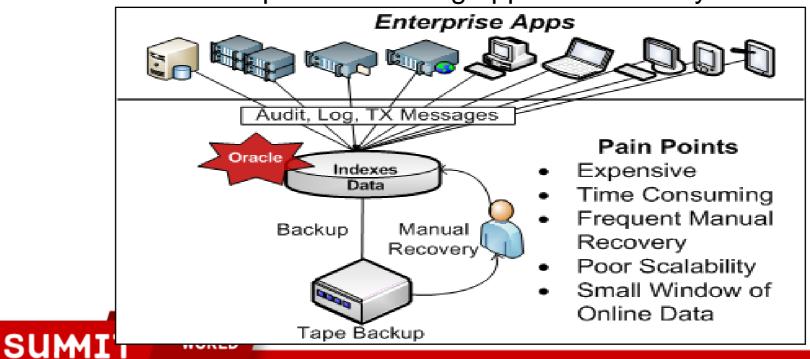
- Premise: Big Data Technologies Becoming Commoditized
 - But not what people are doing with the technologies
 - How you integrate, adopt, and build solutions is key
 - Leverage middleware
- Goal: Explore Intersection Between JBoss Enterprise Middleware and Big Data
 - Extensible/customizable reference architecture
 - Solution; not a product
 - Platform to build-your-own solution; not off-the-shelf
 - Avenue to improve JBoss projects

OVERVIEW – context

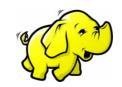

- Some Middleware-Like Tools in Big Data Ecosystem
 - Oozie workflows for Hadoop jobs; incubator
 - JBoss equivalent: Java Business Process Manager (jBPM)
 - Sqoop data transfer between Hadoop and structured data sources
 - JBoss equivalent : Service Oriented Architecture Platform (SOA-P)
 - NoSQL key-value, document-oriented DB; not relational; scalable
 - JBoss equivalent : JBoss Data Grid (JDG)
 - PIG can be used for data intake, ETL
 - JBoss equivalent: SOA-P for intake pipeline, with transformation
- JBoss More Extensive, Mature, and Standards-Based

OVERVIEW – summary

- JBoss Middleware: Integrate Technologies and Build Solutions
 - Big Data Just Another Thing to Integrate
 - Standards & Openness Important
- What is Tusk?
 - JBoss Reference Architecture Suitable for Addressing Big Data Integration Use Cases
- What this Means to You:
 - Reference Implementation
 - Fodder for Brainstorming
 - Steal Code



USE CASE – pain points


- POC for Large Health Insurance Company
 - Enterprise apps log TB of data to Oracle
 - Need to swap out Oracle and expensive/laborious process with more scalable, cost effective one
 - Minimal impact on existing apps technically or semantically

USE CASE – requirements

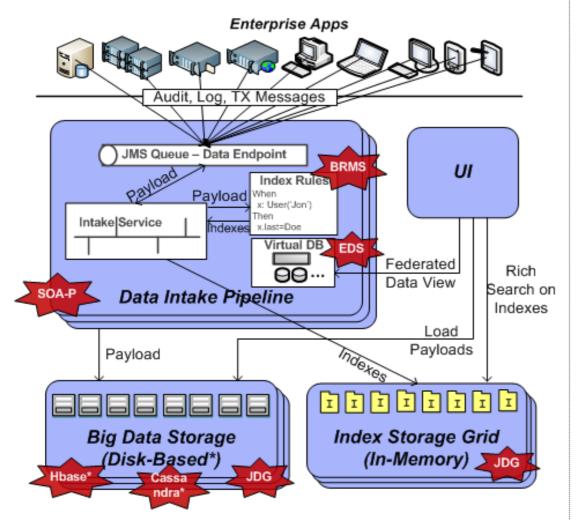
- Primarily Storage/Search/Retrieval
 - Interested in Hadoop and Cassandra

- Analytics in Future
- Did Not Need a Big Data Product
 - Needed a solution
- Represents Canonical Use Case
 - RH created a solution POC for this...
 - ... and is turning it into a reference architecture (Tusk)
 - Useful for other use cases as well
 - Customizable, extensible, standards-based, open
 - Platform to build Big Data solutions

USE CASE – business value

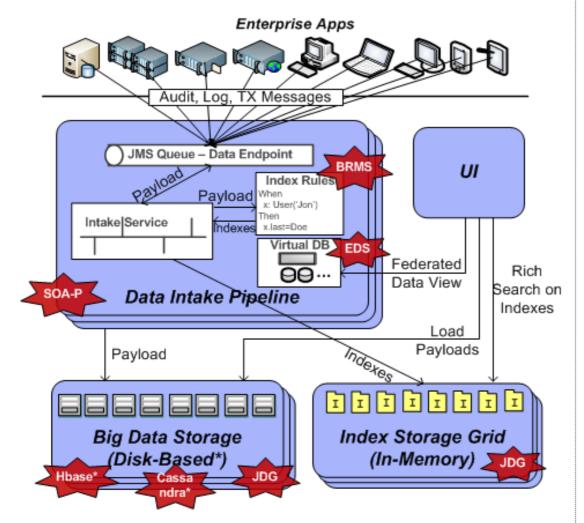
Cost Savings

- More cost effective infrastructure for managing data
- Reduced operating costs fewer manual processes


Greater Data Visibility

- Larger window of online data
- Enables More Effective Decisions
- Enables big data analytics
- Expose big data to the rest of the enterprise architecture

ARCHITECTURE

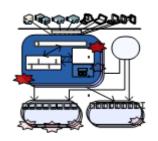

JBoss

- Service Oriented Architecture Platform (SOA-P)
 - Service Orchestration
 - Enterprise Integration Patterns
 - Many Listeners (JMS, FTP, SOAP, ...)
 - Service Repository
- Business Rules Management System (BRMS)
 - Guided Rule Editor
 - Rule Repository
 - Complex Event Processing
- JBoss Data Grid (JDG)
 - Memory-Based NoSQL Data Grid
 - Scalable, Redundant, Fault Tolerant
 - Rich Querying
- Enterprise Data Services (EDS)
 - Data Federation
 - Virtual Databases

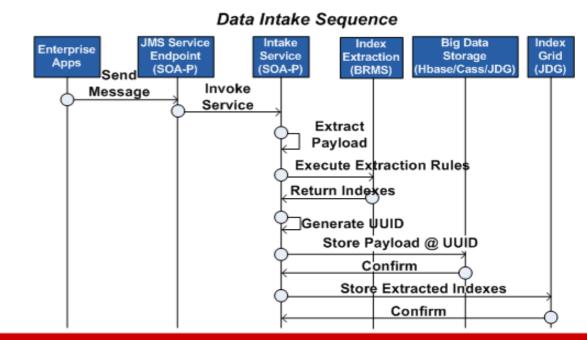
ARCHITECTURE

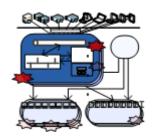
Big Data

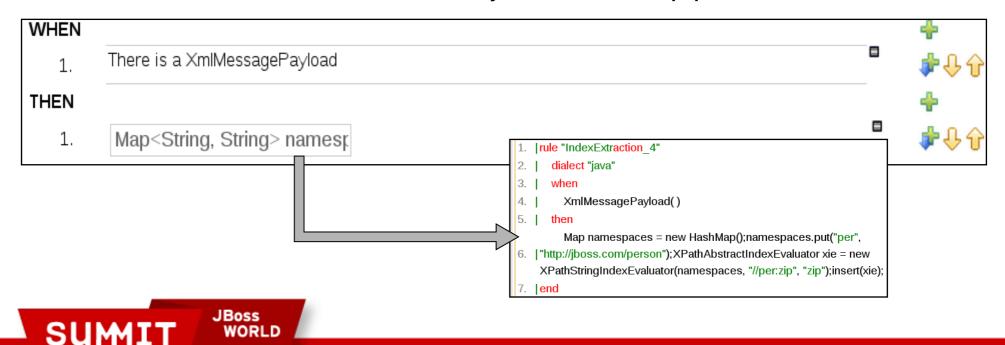
Apache HBase


- Hadoop Database
- Random, Real-Time, Read/Write Access to Big Data
- Distributed, Versioned, Column-Oriented Store
- Modeled after Google's BigTable

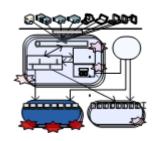
Apache Cassandra


- Scalable, Highly Available, Fault Tolerant Database
- Replication Across Data Centers
- Column Family Data Model for Column Indexes
- Performance of Log-Structured Updates
- Support for Materialized Views
- JBoss Data Grid (JDG)
 - Can be used for data storage layer too
 - Disk-based cache store

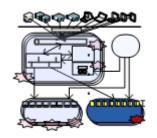

- Data Intake Pipeline via SOA-P
 - JMS Endpoint
 - Could be SOAP, FTP, file system, socket, custom via API
 - ESB Intake Service Drives Intake Pipeline
 - Extensible Can Plug in Other Steps
 - Transformation
 - Audit wiretap
 - Made for Integrating



JBoss WORLD



- Custom Index Extraction via BRMS
 - Extract Indexes from XML Data Payload
 - Uses Xpath
 - On-the-Fly Rule Editing to Change Index Rules
 - If need to reindex, already have intake pipeline



- Payload Storage via Big Data Technology
 - Uses Big Data Technologies' APIs
 - HBase Custom façade written on top of HBase API
 - Table: messages; Column Family: data; Field: value
 - Cassandra Hector API
 - Keyspace: TuskData; Column Family: Messages; Columns: body, timestamp
 - JDG Infinispan API
 - java.util.Map → put/get
 - Arbitrary schema (NoSQL)
- Hibernate Object/Grid Mapper (OGM)
- Which data store to use?

JBoss WORLD

- Index Storage via JDG
 - Scales with Big Data Storage
 - Backed by the same data store
 - Store Indexes for Querying
 - Generic Index POJO: StringIndex

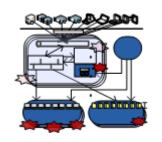
Example StringIndex

Key: zip

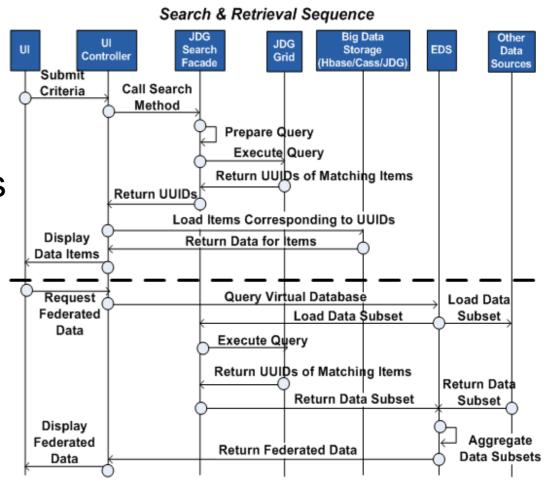
Value: 20009

Docld: 9483-2BA2-AE17...

```
@Indexed @ProvidedId
public class StringIndex extends BigDataIndex<String>{
    private static final long serialVersionUID = 254191608570966

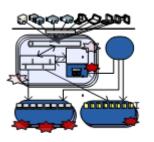

    public StringIndex(String key, String value, String docId) {
        super(key, value, docId);
}
```

SUMMIT


WORLD

ARCHITECTURE – search and retrieval

- Spring MVC WebApp
- Search Fields Match Index Extraction Rules
- Search Returns UUID of Matching Payloads
- Load Payloads w/ UUIDs
- Uses EDS for Combined View of Big Data Assets and Conventional Data Sources

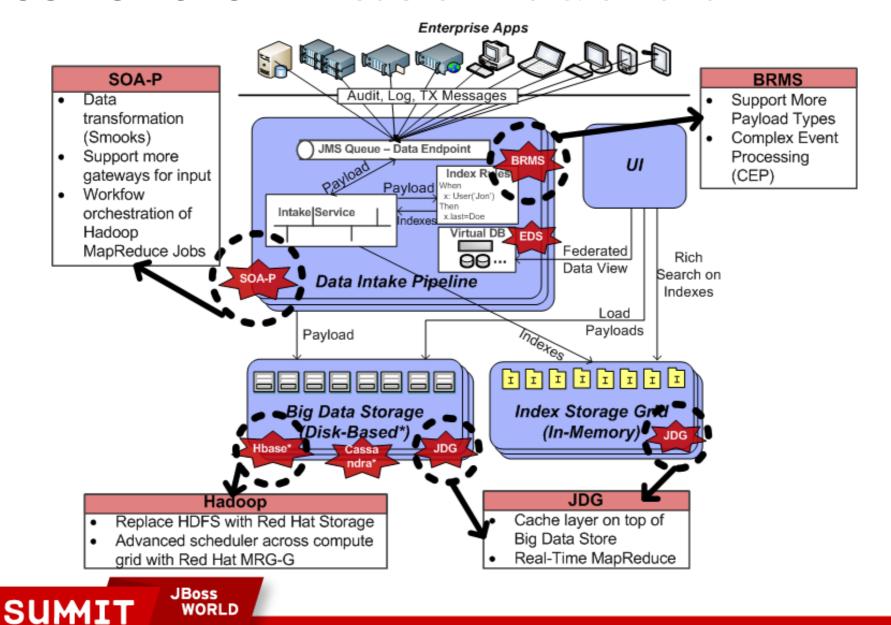


ARCHITECTURE – search and retrieval

- Infinispan includes Scalable, Distributed Apache Lucene Directory Implementation
 - Fast in-memory search < slow disk-based MapReduce
 - Stores indexes in cluster-wide shared memory
- Hibernate Search with Criteria Style Queries
 - Each criterion → BooleanJunction
 - Key (index field name)
 - Value (target value)

Query Example

((**key**=zip and **value**=20009*) and


(**key**=name and **value**=just*))

- 'AND' all criteria junctions together to get main query
- Caveats not cluster friendly yet; still performance testing this feature; not in initial JDG release (Infinispan only)

TUSK'S FUTURE - customize & extend

And be Sure to Check These Out...

- NoSQL & Big Data at Red Hat
 - Thu @ 4:50, Room 207
- Large Scale / Big Data Federation & Virtualization:
 A Case Study
 - Fri @ 11:00, Room 208

REFERENCE

Tusk Lead

Justin Hayes – jhayes@redhat.com

Tusk Code

https://github.com/jboss-tusk/tusk

JBoss Products

- http://www.redhat.com/products/jbossenterprisemiddleware/soa
- http://www.redhat.com/products/jbossenterprisemiddleware/business-rules
- http://www.redhat.com/promo/dg6beta
- http://www.jboss.org/infinispan.html
- http://www.redhat.com/products/jbossenterprisemiddleware/data-services

- QUESTIONS -

PRESENTED BY RED HAT

LIKE US ON FACEBOOK

www.facebook.com/redhatinc

FOLLOW US ON TWITTER

www.twitter.com/redhatsummit

TWEET ABOUT IT

#redhat

READ THE BLOG

summitblog.redhat.com

GIVE US FEEDBACK

www.redhat.com/summit/survey

