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Talk Overview 

!   Robotics as an emerging research area 
!   Research context  

- Different applications and institutions 
- General requirements and problems  

!   What we are doing with Jenkins in  
detail. How does it help? 

!   Specific project examples:  
HUMAVIPS and RoboCup using Jenkins 

!   Conclusion and outlook 



Robotics as a Research Area 

A robot is a “re-programmable multi-functional  
manipulator designed to move materials, parts,  
tools, or specialized devices through variable  
programmed motions for the performance of  
a variety of tasks”. [Robotics Institute of America] 

This is a very broad definition - what are some typical examples ? 



Robotics as a Research Area 

Typical Examples: 
Industrial automation         Assembly lines  
Search and rescue robots         Disaster scene 
Entertainment robotics         Pets/toys 
Household robots         Floor cleaning  

iRobot Packbot 
Sony AIBO 

iRobot Roomba 

KUKA Titan 



Robotics as a Research Area 

There are already a few commercial products, but...  
…there are limitations: 
Tele-operated, pre-programmed, limited autonomy, 
constrained environments, lack of rich human-robot  
interaction  

!   Robots are often operated by domain experts. 
!   To extend the robots functionality you need an 

expert, or you need to become one. 
!   “Learning” is mostly uncovered. What is learning?  
!   Missing user friendly interaction/interfaces. 



Robotics as a Research Area 



Research Context 

Based on these statements researchers at 
CoR-Lab and CITEC pursue a mission:  

!   Creating cognitive abilities in technical systems  
from everyday devices to humanoid robots to  
make them more useful, more friendly and easier 
to interact with. 

!   What are the basic building blocks of cognition  
and learning? How can we endow robots with  
some social competence, to make them acceptable  
as assistants to humans?  

!   Creating bridges between the cultures of  
engineering and humanity to better shape  
tomorrow's technology according to human needs. 



Research Context 

Cognitive Robotics @ Bielefeld University 

Industrial robots 
focus on function 

Cognitive robots also  
focus on the interaction 
interface 

Important for social 
interaction 

Determines flexibility 
of!interaction 



Research Context 

Cognitive Robotics @ Bielefeld University 
Flobi 

Anthropomorphic 
design 

Flexible appearance 
through changeable 
parts e.g.: front mask, 
eyebrows, hair, lips) 

Capable of Intuitive 
Human-Robot 
Interaction through: 

Facial expressions 
Signaling of emotions 
Speech recognition 
and synthesis 
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Research Context 

Cognitive Robotics @ Bielefeld University 

Questions robots could ask themselves: 

!   Where am I? [localization] 
!   Where do I want to be, and how do I get there? 

[path planning, navigation] 
!   How do I interpret my sensor feedback to determine  

my current state and surroundings? [perception] 
!   How do I make sense of noisy sensor readings?  

[uncertainty management] 
!   How do I fuse data from multiple sensors to improve  

estimates of the current situation? [sensor fusion] 
!   How do I know what to pay attention to? [focus-of-attention] 
!   …. 



Research Context University 
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Research Context 

The mission can only be accomplished by interdisciplinarity! 

Bringing together the ideas of researchers from computer science and robotics, from 
linguistics, from biology and physics […] to develop systems with cognitive abilities. 



Resulting (Technical) Challenges 

!   Developers with different skills and focus areas 
–  System setup time must be reduced 
–  Quality requirements on components need to be 

ensured 
!   Diversity of programming languages (e.g. Java, Python, C+

+, Matlab, Common Lisp) in one system 
!   Integration of legacy code outside of current research 

topics 
!   Difficulties in re-use of components (different use cases)  
!   Prototype hardware and hw. development  
!   Complex organization e.g.: scm and acm 

Is Jenkins a useful tool to overcome these challenges ? 



What are we doing in detail?  

Outline: 

!  C++ project setup: 
–  Relocatable projects (with CMake) 
–  Building on diverse nodes 
–  Code analysis and metrics 

!   Shared resources 
!  Common CMake job template 
!   Lessons learned with C++ and Jenkins 
!  Off-site development 



C++: Relocatable Projects with CMake 

Problem statement: 
!   Jenkins dependency tracking with 

artifacts relocates built projects to a 
different workspace path (through copy) 

!  With C++, usually, several paths are 
already fixed at configuration time, e.g. in 
config files for downstream projects. 

set(SHAREDDESKTOPONTOLOGIES_VERSION_MAJOR 0)!
set(SHAREDDESKTOPONTOLOGIES_VERSION_MINOR 3)!
set(SHAREDDESKTOPONTOLOGIES_VERSION 0.3)!

set(SHAREDDESKTOPONTOLOGIES_ROOT_DIR!
    /usr/share/ontology)!

An example from the 
Shared Desktop 
Ontologies 



C++: Relocatable Projects with (CMake) 

!   Further occurrences of absolute paths: 
–  Library rpath 
–  External tool locations 
–  pkg-config files 
–  Shell scripts 

Solution: 
Make paths relative to the location of 
current file, e.g. the CMake config file 



C++: Relocatable Projects with (CMake) 

Exemplary CMake config file: 
GET_FILENAME_COMPONENT(RSB_CONFIG_DIR!
                       "${CMAKE_CURRENT_LIST_FILE}" PATH)!

SET(RSB_INCLUDE_DIRS "${RSB_CONFIG_DIR}/../../include")!
SET(RSB_RUNTIME_LIBRARY_DIRS "${RSB_CONFIG_DIR}/../../bin")!

INCLUDE("${RSB_CONFIG_DIR}/RSBDepends.cmake")!
SET(RSB_LIBRARIES rsbcore)!

Similar techniques exists: 
!   pkg-config: provide definitions based on ${prefix}, 

command line tool offers 
--define-variable=prefix=/relocated!

!   Avoid configuring source files with absolute 
locations 



Problem statement: 
!   Software should be tested on different operating 

systems and distributions 
!   Build instructions vary for each different OSes 
!   Locations of dependencies vary across 

distributions 
Solution: 
!   Different jobs for Unix-like systems 

and Windows (too many 
differences for multi-configuration 
projects between Win and Unix) 

!   Location information in node- 
specific environment variables 

C++: Building on Diverse Nodes 



C++: Code Analysis and Metrics 

Integrated tools: 
!   lcov and gcovr: Code coverage 

–  HTML report 
–  XML report tightly integrated with Jenkins 

!   SLOCcount: lines of code 
!   GTest and GMock: Unit Testing 
!   Cppcheck: Static code analysis 

!   Integration through CMake (easy 
availability of analysis outside 
Jenkins). 

!   Integration macros publicly 
available in RSC project: https://
code.cor-lab.de/projects/rsc 



Shared Resources 

Problem statement: 
!   Some resources of the build environment 

are intrinsically shared, e.g. ports for 
testing 

Solution: 
!  Builds can be parameterized for these 

resources 
!   Jenkins build configuration dictates the 

parameters to disambiguate jobs 
E.g. in the job config: 
cmake –DSPREAD_PORT=2324 ..!



Common CMake Job Template 

Some common techniques emerged 

!   Separated jobs: 
–  Multi-conf projects for building and runtime-

analysis (unit tests and code coverage) 
–  Free-style job for static code analysis, other 

metrics and API documentation generation 



Common CMake Job Template 

!  Upstream projects: 
–  One upstream folder for downloaded artifacts 

–  Using downloaded artifacts 

# cleanup left-over artifacts!
rm –rf upstream!
mkdir upstream!

# download artifacts to this folder!

# extract!
cd upstream!
for name in *.tar.gz; do tar -xzf $name; done!

UPSTR_A=`find "${WORKSPACE}/upstream" -maxdepth 1 \!
     -type d -name “UPSTR_A*";`!
cmake –DUPSTR_A_DIR=“${UPSTR_A}/share/upa” –DFOO=...!



Lessons Learned with C++ and Jenkins 

!   It works! But some things need to be done 
!   Relocatable projects essential requirement 
!   Generating fingerprints separately for every 

header file + library breaks dependency 
tracking: 
–  Not all headers change with every build 
–  Downstream projects suddenly depend on a lot of 

upstream versions 
–  Use a single archive (e.g. *.tar.gz) file instead 

!   Conversion of analysis results to supported 
formats: 
–  Existing tools sometimes hard to find, e.g. gcovr 



Off-Site Development 

Problem statement: 
!   Sometimes we do not only need to 

relocate build jobs but the whole project  
and infrastructure ! 
- Live demos outside the university 
- Developer camps or courses 

!  New development environment  
- Diverse machines, e.g. private Laptops 
  with possibly different system statuses 
- Unexperienced developers 



Off-Site Development 

Lab setup: 

Each machine is served with a system image via PXE/netboot, which ensures a 
consistent system environment. 
As soon as a system build becomes stable, the robot is synchronized 
automatically, triggered via Jenkins. 

dev dev 



Off-Site Development 

Off-site setup: 

dev dev 

Off-site, developers need to synchronize and maintain their systems  
manually, possible risk of machine specific bugs caused by varying  
system statuses. 



Off-Site Development 

!  After a successful system build Jenkins 
automatically checks all developer 
statuses. 

!   This is realized with a post-build step 
which triggers a shell script. 

!   The script creates a MD5 sum of the 
$prefix, connects to each developer 
machine and derives another MD5 sum. 

!   Finally it compares the sums and 
determines the sync status.     



Off-Site Development 

dev dev 



Lessons Learned from Off-Site 
Development 
!   Off-site development is critical when it comes 

to manual system maintenance and 
synchronization 

!   Jenkins is a great tool to provide instant visual 
feedback of system statuses, which is 
extremely important when unexperienced 
developers are involved 

!   Easy realization with post-build shell scripts 
!   Works for build slaves too 

The check-sync script will soon be available at: 
https://ci.clf.cit-ec.de/citools 



HUMAVIPS 

www.humavips.eu 

!   “Humanoids with Auditory and Visual 
Abilities in Populated Spaces” 

!  Goal: Endow the humanoid robot NAO 
with abilities to interact in groups 

!  Collaborative research project with 4 
universities + robot manufacturer 
Aldebaran Robotics (ALD) 

!  Besides (ALD) and us partners work on  
algorithms, not integration 

!  Developed software partially 
used in other systems 



HUMAVIPS 

www.humavips.eu 



HUMAVIPS: Challenges 

!   Distributed development team 
–  Increased communication overhead 
–  Partially varying interest and requirements on the 

developed methods and software 

!   Each partner requires a replicated system 
–  System setup needs to be as fast as 

possible 

!   NAO robot requires cross- 
compilation 
–  Increased complexity for develop- 

ment 

!   Different OSes and Linux Distros 

www.humavips.eu 



HUMAVIPS: Achievements with Jenkins 

www.humavips.eu 

!   Cross-compiled NAO-setup built by Jenkins: 
–  Whole NAO SDK by ALD and HUMAVIPS extensions 
–  Tutorial with build instructions for this setup spans 

several pages 
–  Installation of binary artifacts from Jenkins spans 10 

lines description text 

!   Remote setup: 
–  Significantly reduced setup time by 

binary artifacts 
–  Communication for compilation issues 

reduced 

!   CI ensures compilation on OSes 



RoboCup  

!   The RoboCup world championship is the 
most important competition for robots and 
their programmers.  

!   The @HOME League, in which we are 
participating since 2009, involves 
challenges for service robots with tasks 
drawn from basic household activities. 

!   Tasks: Who is who, Go get it, Follow me 



RoboCup  

@Home league arena  



RoboCup  

Who is Who 



RoboCup  

Go get it 



RoboCup Challenges 

!  Rotating team members (students) 
!  Constantly evolving, distributed system 

with complex dependencies 
!  Compile time is critical ( > 1h,  2 cores) 
!  Domain experts for Speech recog., 

navigation, manipulation, … 
!  Multiple build tools: ant, CMake and 

various shell scripts  
!  Agile programming at the actual event 



RoboCup Achievements 

!  Continuous deployment on the robot 
saves time and ensures functionality. 

!   System state overview for all developers, 
visual feedback after the build process. 

!  Comfortable build environment, just 
commit your code, Jenkins does the rest. 

!  5th place out of 25 teams in 2011- partly, 
as we believe, because we used Jenkins 



CI vs. Guidelines, Style Guides etc. 

!  Diverse and interdisciplinary research 
context with multiple overlapping 
organizational units prevents common 
guidelines, style guides etc. 

!  Especially, quality assurance processes 
are impossible to enforce 

!   Sometimes, even if these processes or 
guidelines are research topics 

!  ! Continuous integration is the only 
affordable QA technique 



CI vs. Guidelines, Style Guides etc. 

!   When it comes to agile programming, 
especially with unexperienced developers, 
Jenkins is a brilliant tool for instant visual 
feedback not only for software builds 

!   Developers can actually focus on their 
code which makes development more 
comfortable. We will conduct further 
research on that topic in relation to the  
RoboCup 

!   The utilization of Jenkins drastically 
decreased system setup time in our 
research projects 



Outlook/Discussion 

CITEC software toolkit for cognitive systems, 
based on Jenkins artifacts 
https://toolkit.cit-ec.uni-bielefeld.de 

Hardware in the loop, running Jenkins on a robot – 
metrics for cognitive systems – worth a plug-in? 



Thank You To Our Sponsors 
Platinum 
Sponsor 
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Sponsor 
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Sponsors 

Coming Soon:  The CloudBees Newsletter for Jenkins 

"  Please complete the Jenkins survey to help us better serve the community 
 (bonus: a chance to win an Apple TV!) 


