
Continuous Integration for Robotics
Systems Development using Jenkins

Florian Lier, Johannes Wienke, Arne
Nordmann, Michael Götting, Sebastian Wrede

Bielefeld University
(CoR-Lab, CITEC)
www.cor-lab.de|www.cit-ec.de

Talk Overview

!   Robotics as an emerging research area
!   Research context

- Different applications and institutions
- General requirements and problems

!   What we are doing with Jenkins in
detail. How does it help?

!   Specific project examples:
HUMAVIPS and RoboCup using Jenkins

!   Conclusion and outlook

Robotics as a Research Area

A robot is a “re-programmable multi-functional
manipulator designed to move materials, parts,
tools, or specialized devices through variable
programmed motions for the performance of
a variety of tasks”. [Robotics Institute of America]

This is a very broad definition - what are some typical examples ?

Robotics as a Research Area

Typical Examples:
Industrial automation Assembly lines
Search and rescue robots Disaster scene
Entertainment robotics Pets/toys
Household robots Floor cleaning

iRobot Packbot
Sony AIBO

iRobot Roomba

KUKA Titan

Robotics as a Research Area

There are already a few commercial products, but...
…there are limitations:
Tele-operated, pre-programmed, limited autonomy,
constrained environments, lack of rich human-robot
interaction

!   Robots are often operated by domain experts.
!   To extend the robots functionality you need an

expert, or you need to become one.
!   “Learning” is mostly uncovered. What is learning?
!   Missing user friendly interaction/interfaces.

Robotics as a Research Area

Research Context

Based on these statements researchers at
CoR-Lab and CITEC pursue a mission:

!   Creating cognitive abilities in technical systems
from everyday devices to humanoid robots to
make them more useful, more friendly and easier
to interact with.

!   What are the basic building blocks of cognition
and learning? How can we endow robots with
some social competence, to make them acceptable
as assistants to humans?

!   Creating bridges between the cultures of
engineering and humanity to better shape
tomorrow's technology according to human needs.

Research Context

Cognitive Robotics @ Bielefeld University

Industrial robots
focus on function

Cognitive robots also
focus on the interaction
interface

Important for social
interaction

Determines flexibility
of!interaction

Research Context

Cognitive Robotics @ Bielefeld University
Flobi

Anthropomorphic
design

Flexible appearance
through changeable
parts e.g.: front mask,
eyebrows, hair, lips)

Capable of Intuitive
Human-Robot
Interaction through:

Facial expressions
Signaling of emotions
Speech recognition
and synthesis

Research Context

Research Context

Based on these statements researchers at
CoR-Lab and CITEC pursue a mission:

!   Creating cognitive abilities in technical systems
from everyday devices to humanoid robots to
make them more useful, more friendly and easier
to interact with.

!   What are the basic building blocks of cognition
and learning? How can we endow robots with
some social competence, to make them acceptable
as assistants to humans?

!   Creating bridges between the cultures of
engineering and humanity to better shape
tomorrow's technology according to human needs.

Research Context

Cognitive Robotics @ Bielefeld University

Questions robots could ask themselves:

!   Where am I? [localization]
!   Where do I want to be, and how do I get there?

[path planning, navigation]
!   How do I interpret my sensor feedback to determine

my current state and surroundings? [perception]
!   How do I make sense of noisy sensor readings?

[uncertainty management]
!   How do I fuse data from multiple sensors to improve

estimates of the current situation? [sensor fusion]
!   How do I know what to pay attention to? [focus-of-attention]
!   ….

Research Context University

Research Context

Based on these statements researchers at
CoR-Lab and CITEC pursue a mission:

!   Creating cognitive abilities in technical systems
from everyday devices to humanoid robots to
make them more useful, more friendly and easier
to interact with.

!   What are the basic building blocks of cognition
and learning? How can we endow robots with
some social competence, to make them acceptable
as assistants to humans?

!   Creating bridges between the cultures of
engineering and humanity to better shape
tomorrow's technology according to human needs.

Research Context

The mission can only be accomplished by interdisciplinarity!

Bringing together the ideas of researchers from computer science and robotics, from
linguistics, from biology and physics […] to develop systems with cognitive abilities.

Resulting (Technical) Challenges

!   Developers with different skills and focus areas
–  System setup time must be reduced
–  Quality requirements on components need to be

ensured
!   Diversity of programming languages (e.g. Java, Python, C+

+, Matlab, Common Lisp) in one system
!   Integration of legacy code outside of current research

topics
!   Difficulties in re-use of components (different use cases)
!   Prototype hardware and hw. development
!   Complex organization e.g.: scm and acm

Is Jenkins a useful tool to overcome these challenges ?

What are we doing in detail?

Outline:

!  C++ project setup:
–  Relocatable projects (with CMake)
–  Building on diverse nodes
–  Code analysis and metrics

!   Shared resources
!  Common CMake job template
!   Lessons learned with C++ and Jenkins
!  Off-site development

C++: Relocatable Projects with CMake

Problem statement:
!   Jenkins dependency tracking with

artifacts relocates built projects to a
different workspace path (through copy)

!  With C++, usually, several paths are
already fixed at configuration time, e.g. in
config files for downstream projects.

set(SHAREDDESKTOPONTOLOGIES_VERSION_MAJOR 0)!
set(SHAREDDESKTOPONTOLOGIES_VERSION_MINOR 3)!
set(SHAREDDESKTOPONTOLOGIES_VERSION 0.3)!

set(SHAREDDESKTOPONTOLOGIES_ROOT_DIR!
 /usr/share/ontology)!

An example from the
Shared Desktop
Ontologies

C++: Relocatable Projects with (CMake)

!   Further occurrences of absolute paths:
–  Library rpath
–  External tool locations
–  pkg-config files
–  Shell scripts

Solution:
Make paths relative to the location of
current file, e.g. the CMake config file

C++: Relocatable Projects with (CMake)

Exemplary CMake config file:
GET_FILENAME_COMPONENT(RSB_CONFIG_DIR!
 "${CMAKE_CURRENT_LIST_FILE}" PATH)!

SET(RSB_INCLUDE_DIRS "${RSB_CONFIG_DIR}/../../include")!
SET(RSB_RUNTIME_LIBRARY_DIRS "${RSB_CONFIG_DIR}/../../bin")!

INCLUDE("${RSB_CONFIG_DIR}/RSBDepends.cmake")!
SET(RSB_LIBRARIES rsbcore)!

Similar techniques exists:
!   pkg-config: provide definitions based on ${prefix},

command line tool offers
--define-variable=prefix=/relocated!

!   Avoid configuring source files with absolute
locations

Problem statement:
!   Software should be tested on different operating

systems and distributions
!   Build instructions vary for each different OSes
!   Locations of dependencies vary across

distributions
Solution:
!   Different jobs for Unix-like systems

and Windows (too many
differences for multi-configuration
projects between Win and Unix)

!   Location information in node-
specific environment variables

C++: Building on Diverse Nodes

C++: Code Analysis and Metrics

Integrated tools:
!   lcov and gcovr: Code coverage

–  HTML report
–  XML report tightly integrated with Jenkins

!   SLOCcount: lines of code
!   GTest and GMock: Unit Testing
!   Cppcheck: Static code analysis

!   Integration through CMake (easy
availability of analysis outside
Jenkins).

!   Integration macros publicly
available in RSC project: https://
code.cor-lab.de/projects/rsc

Shared Resources

Problem statement:
!   Some resources of the build environment

are intrinsically shared, e.g. ports for
testing

Solution:
!  Builds can be parameterized for these

resources
!   Jenkins build configuration dictates the

parameters to disambiguate jobs
E.g. in the job config:
cmake –DSPREAD_PORT=2324 ..!

Common CMake Job Template

Some common techniques emerged

!   Separated jobs:
–  Multi-conf projects for building and runtime-

analysis (unit tests and code coverage)
–  Free-style job for static code analysis, other

metrics and API documentation generation

Common CMake Job Template

!  Upstream projects:
–  One upstream folder for downloaded artifacts

–  Using downloaded artifacts

cleanup left-over artifacts!
rm –rf upstream!
mkdir upstream!

download artifacts to this folder!

extract!
cd upstream!
for name in *.tar.gz; do tar -xzf $name; done!

UPSTR_A=`find "${WORKSPACE}/upstream" -maxdepth 1 \!
 -type d -name “UPSTR_A*";`!
cmake –DUPSTR_A_DIR=“${UPSTR_A}/share/upa” –DFOO=...!

Lessons Learned with C++ and Jenkins

!   It works! But some things need to be done
!   Relocatable projects essential requirement
!   Generating fingerprints separately for every

header file + library breaks dependency
tracking:
–  Not all headers change with every build
–  Downstream projects suddenly depend on a lot of

upstream versions
–  Use a single archive (e.g. *.tar.gz) file instead

!   Conversion of analysis results to supported
formats:
–  Existing tools sometimes hard to find, e.g. gcovr

Off-Site Development

Problem statement:
!   Sometimes we do not only need to

relocate build jobs but the whole project
and infrastructure !
- Live demos outside the university
- Developer camps or courses

!  New development environment
- Diverse machines, e.g. private Laptops
 with possibly different system statuses
- Unexperienced developers

Off-Site Development

Lab setup:

Each machine is served with a system image via PXE/netboot, which ensures a
consistent system environment.
As soon as a system build becomes stable, the robot is synchronized
automatically, triggered via Jenkins.

dev dev

Off-Site Development

Off-site setup:

dev dev

Off-site, developers need to synchronize and maintain their systems
manually, possible risk of machine specific bugs caused by varying
system statuses.

Off-Site Development

!  After a successful system build Jenkins
automatically checks all developer
statuses.

!   This is realized with a post-build step
which triggers a shell script.

!   The script creates a MD5 sum of the
$prefix, connects to each developer
machine and derives another MD5 sum.

!   Finally it compares the sums and
determines the sync status.

Off-Site Development

dev dev

Lessons Learned from Off-Site
Development
!   Off-site development is critical when it comes

to manual system maintenance and
synchronization

!   Jenkins is a great tool to provide instant visual
feedback of system statuses, which is
extremely important when unexperienced
developers are involved

!   Easy realization with post-build shell scripts
!   Works for build slaves too

The check-sync script will soon be available at:
https://ci.clf.cit-ec.de/citools

HUMAVIPS

www.humavips.eu

!   “Humanoids with Auditory and Visual
Abilities in Populated Spaces”

!  Goal: Endow the humanoid robot NAO
with abilities to interact in groups

!  Collaborative research project with 4
universities + robot manufacturer
Aldebaran Robotics (ALD)

!  Besides (ALD) and us partners work on
algorithms, not integration

!  Developed software partially
used in other systems

HUMAVIPS

www.humavips.eu

HUMAVIPS: Challenges

!   Distributed development team
–  Increased communication overhead
–  Partially varying interest and requirements on the

developed methods and software

!   Each partner requires a replicated system
–  System setup needs to be as fast as

possible

!   NAO robot requires cross-
compilation
–  Increased complexity for develop-

ment

!   Different OSes and Linux Distros

www.humavips.eu

HUMAVIPS: Achievements with Jenkins

www.humavips.eu

!   Cross-compiled NAO-setup built by Jenkins:
–  Whole NAO SDK by ALD and HUMAVIPS extensions
–  Tutorial with build instructions for this setup spans

several pages
–  Installation of binary artifacts from Jenkins spans 10

lines description text

!   Remote setup:
–  Significantly reduced setup time by

binary artifacts
–  Communication for compilation issues

reduced

!   CI ensures compilation on OSes

RoboCup

!   The RoboCup world championship is the
most important competition for robots and
their programmers.

!   The @HOME League, in which we are
participating since 2009, involves
challenges for service robots with tasks
drawn from basic household activities.

!   Tasks: Who is who, Go get it, Follow me

RoboCup

@Home league arena

RoboCup

Who is Who

RoboCup

Go get it

RoboCup Challenges

!  Rotating team members (students)
!  Constantly evolving, distributed system

with complex dependencies
!  Compile time is critical (> 1h, 2 cores)
!  Domain experts for Speech recog.,

navigation, manipulation, …
!  Multiple build tools: ant, CMake and

various shell scripts
!  Agile programming at the actual event

RoboCup Achievements

!  Continuous deployment on the robot
saves time and ensures functionality.

!   System state overview for all developers,
visual feedback after the build process.

!  Comfortable build environment, just
commit your code, Jenkins does the rest.

!  5th place out of 25 teams in 2011- partly,
as we believe, because we used Jenkins

CI vs. Guidelines, Style Guides etc.

!  Diverse and interdisciplinary research
context with multiple overlapping
organizational units prevents common
guidelines, style guides etc.

!  Especially, quality assurance processes
are impossible to enforce

!   Sometimes, even if these processes or
guidelines are research topics

!  ! Continuous integration is the only
affordable QA technique

CI vs. Guidelines, Style Guides etc.

!   When it comes to agile programming,
especially with unexperienced developers,
Jenkins is a brilliant tool for instant visual
feedback not only for software builds

!   Developers can actually focus on their
code which makes development more
comfortable. We will conduct further
research on that topic in relation to the
RoboCup

!   The utilization of Jenkins drastically
decreased system setup time in our
research projects

Outlook/Discussion

CITEC software toolkit for cognitive systems,
based on Jenkins artifacts
https://toolkit.cit-ec.uni-bielefeld.de

Hardware in the loop, running Jenkins on a robot –
metrics for cognitive systems – worth a plug-in?

Thank You To Our Sponsors
Platinum
Sponsor

Gold
Sponsor

Silver
Sponsor

Bronze
Sponsors

Coming Soon: The CloudBees Newsletter for Jenkins

"  Please complete the Jenkins survey to help us better serve the community
 (bonus: a chance to win an Apple TV!)

