
The DynaSlave Plugin
Brian Moyles - Netflix
 @bmoyles

Sunday, September 30, 12

Hi!

Sunday, September 30, 12

Hi everyone, thanks for sticking around. I’m Brian Moyles and I work on the Netflix Engineering Tools team.

“...and here is your room,
Jenkins”

Sunday, September 30, 12

Last year, we decided it would be a good idea to move our build infrastructure to the cloud to better deal with
scalability problems.

QA

Release Engineering

DevOps

On-call, often 24/7

Physically take bits
from DVD with
tweezers, place into
fiber optics

At Netflix you are:

Sunday, September 30, 12

It’s important to note that at Netflix, teams generally handle all of their own QA, releng, devops, on-call duties,
actually streaming the movies... not really.

The real cloud...

Sunday, September 30, 12

We all know this is the real cloud...

Fixed fleet of slaves for
24/7 instant-build
coverage, scalable to
meet load

Resilient to the
ephemeral nature of
the cloud

As hands-free as
possible. Simple.

What We Needed

Sunday, September 30, 12

Of course, the cloud is ephemeral, and if you don’t think of it as such, the agents of chaos will help you out with
that. We needed a fixed fleet of always-on slaves for instant building (no lag waiting for a node to be provisioned),
we needed whatever we ended up with to deal with the ephemeral nature of the cloud (don’t page me if a build
node goes away, just replace it and leave me to my 20 minutes of sleep), and we needed it to be as close to
hands-free as possible (with slaves coming/going, teams having specialized needs, we don’t want to have to
micromanage the slaves).

Lets bend the Jenkins
slave setup a bit...

Slaves register
themselves...

Sunday, September 30, 12

We figured a good way to manage that would be to utilize some Amazon functionality we had spent the last few
years wrangling. Slaves go in Amazon autoscaling groups, which are basically clusters of redundant nodes
automatically managed by Amazon. Nodes disappear, they get replaced. Need more? Set a max, nodes
automatically launch. Want slaves to disappear on a schedule? Okay. We could even feed back some metrics into
Amazon to influence cluster size... But... now we have to give Jenkins some EC2 credentials, make it aware of EC2
itself, make it aware of our internal conventions... So why not make it simple and let the slaves register
themselves?

The DynaSlave Plugin

Sunday, September 30, 12

We started with the swarm plugin as a base and ended up with the DynaSlave plugin. Today, it merely exposes a
URL that slaves can poll to tell Jenkins they’re around and need some work. Jenkins creates its internal
representations of the slaves, uses a script to push out some bits that may have changed since their images were
baked, and starts up slave.jar. We can triple the size of our general fleet in 5-10 minutes depending on how much
we want or need to push to the slave once it’s alive.

Genpop
Slave
ASG

API
Slave
ASG

NCCP
Slave
ASG

Cassandra
Slave
ASG

Jenkins
Master

Hey, We’re Here!

Sweet! Get to
work!!

Label: cass, Name: ds-cass-d3adb33f
Label: cass, Name: ds-cass-b33fb3dd

Label: api, Name: ds-api-f33db33f
Label: api, Name: ds-api-f331b33f

Label: genpop, Name: ds-abbadaba

Slaves

Sunday, September 30, 12

No presentation is complete without some sort of diagram.
Pretend you see autoscaling groups configured to use a standard image we assemble for all slaves to use.
Autoscaling groups are given meaningful names, and we can use those group names as labels in Jenkins. Jobs
then tie to those labels.
Node dies? Amazon relaunches. We want to scale up for an event? Tell Amazon to grow. Or maybe have Jenkins
tell Amazon we’ve got a backlog of jobs and could use some more horsepower... When we’re quiet, we can tell
Amazon to kill off a few nodes (via our console, Asgard, available on our Github site :))

Old server running a
bunch of Windows

VMs under Virtualbox

Mars Rover
A

Raspberry
Pi

Four toasters that
can run JVMs, curl a
URL, and talk SSH

Jenkins
Master

Hey, We’re Here!

Sweet! Get to
work!!

Sunday, September 30, 12

In case it wasn’t obvious, one interesting by-product of this is the plugin actually doesn’t have to know about
Amazon (at least today). Or any cloud, for that matter... If you can hit a url, run a JVM, you likely can use the
Dynaslave to let those machines register themselves. You don’t have to update a plugin or do much at all in the
way of tweaking Jenkins itself if you have a new cloud provider, new OS, and so on.

The DynaSlave...Freed
github.com/netflix-skunkworks/dynaslave-plugin

Sunday, September 30, 12

It’s simple, and it’s been useful to us, so we’d like others to give it a spin and perhaps help us make it better.
We’re already looking at things like using the built-in cloud abstractions to handle grouping and automatically
scaling better (things we handle now with naming conventions and system groovy scripts), but there are likely
other great ideas we haven’t thought of.
You can take a peek today at the github url above, and we’ll be working with the Jenkins dev community to get it
under the Jenkinsci org soon.

Further Reading
http://jobs.netflix.com/
http://netflix.github.com/
http://techblog.netflix.com/
http://www.slideshare.net/netflix
https://github.com/netflix-skunkworks/dynaslave-plugin/
 @netflixoss - Netflix OSS
 @bmoyles - Brian Moyles
 @garethbowles - Gareth Bowles

Sunday, September 30, 12

Thanks again for listening, hopefully this sounded interesting. These links will lead to
happiness and prosperity and contain all you seek :)

http://jobs.netflix.com
http://jobs.netflix.com
http://netflix.github.com
http://netflix.github.com
http://techblog.netflix.com
http://techblog.netflix.com
http://www.slideshare.net/netflix
http://www.slideshare.net/netflix
https://github.com/netflix-skunkworks/jenkins-dynaslave-plugin/
https://github.com/netflix-skunkworks/jenkins-dynaslave-plugin/

Thank You To Our Sponsors

Sunday, September 30, 12

