

Jenkins as a Scientific Data and Image Processing Platform

Ioannis K. Moutsatsos, Ph.D., M.SE. Novartis Institutes for Biomedical Research www.novartis.com

June 18, 2014

#jenkinsconf

Life Sciences are Computational Sciences

- Modern life sciences (biomedical research, systems biology) are heavily dependent on
 - Data Management
 - Computational Analysis
 - Computational Modeling
- Modern laboratory technologies and instrumentation generate data that are
 - Big
 - Heterogeneous
 - Complex

Computational Challenges & Opportunities

Scientists

- Face daily challenges by continuing increases in computational complexity
- Focused on the biology and not the compute problem
- Have varying and rapidly changing requirements

Life Sciences Research

- Benefits from computational systems that are
 - Easy to use
 - Fast to implement
 - Flexible
 - Support
 - Collaboration
 - Transparency
 - Automation
 - Reproducible Research
 - Open standards

Talk Outline

- A life sciences computational challenge
 - High Content Image Analysis
 - What is it?
- Jenkins-Cl as a scientific data/image processing platform
 - Functionality with standard plugins
 - How Jenkins-Cl provided a HP image analysis platform for lab scientists
- Jenkins as a data analytics platform
 - Domain specific analysis and visualization plugins
 - The Jenkins pros and cons
 - What are we missing?
- Where do we want to take Jenkins?

High Content Screening: HCS

High throughput automated fluorescent microscopy for drug discovery

- Wet Lab Workflow
 - Cells grown on high density arrays
 - Cells treated with large number of chemical or biological factors
 - Cells stained with fluorescent antibodies
- Data Acquisition
 - Stained cells are imaged in high throughput mode using a computerized microscope

- Computational Workflow
 - Cell images processed to extract phenotypic measurements
 - Measurements analyzed to understand factor effects

High Content Screening

- Novartis
 - High Throughput Biology (my group)
 - Data from 2010-2013
- Captured
 - 83 Terabytes of high content image data
 - 17.5 million wells
 - 27 million images
 - ~540 days of imaging time
 - ~1.5 years of computing time

HCS: Workflow and Data Stream

Raw Data

- Images
 - channels
 - fields
- Metadata
 - Acquisition
 - Experiment

Measurements

- Raw (>500 parameters)
 - Aggregated or cell by cell
 - filtered
- Metadata
 - Image Processing

Results

- Assay QC
- Hit Identification
- Multiparametric
 Statistics
- Correlations
- Machine Learning etc.

HCS-High Performance Image Analysis

Intial Focus: Remove Image Processing Bottleneck

HCS: Image Measurements and Analytics

Easily Accessible, High Performance Image Analytics

- Vision
 - Image and data analysis using high performance (HP) image processing tools
 - Accessible, scalable, affordable, flexible and well-supported
- Strategy
 - Evaluate and adopt open-source, community supported tools
 - CellProfiler, ImageJ, Jenkins-Cl
 - Utilize NIBR-IT systems and resources
 - Linux Compute Engine (cluster) / Network Attached Storage
 - Development expertise (UI, data management and web-services)
 - Increase usability of NIBR-IT systems and resources
 - Engage and provide timely and practical functionality to both expert and casual imaging platform users

Tactics

- Develop functional prototypes (Jenkins-CellProfiler, Test Mosaic, R-Analytics)
- Collaborate to develop new image/data analysis systems
- Explore imaging tools and data space. Define HP image processing requirements.
- Provide training, support and engage in community building

CellProfiler

- Open Source Image Processing
- Platform independent
- Desktop client for defining an arbitrarily complex image processing pipeline
- Pipeline can be used by the command line CellProfiler executable
 - Suitable for high throughput analysis
 - Suitable for deployment on a Linux grid engine
 - Can process large image sets (300K + images)

- Developed and supported by the Broad Institute and a sizable scientific user community
- Supports additional imaging tools (ImageJ)

CellProfiler – general anatomy

Nuclear Translocation Assay

Add/Subtract Modules

HCS Image/Data Processing

Programming and Prototyping Functional Requirements

- Scripting
 - Pros
 - Quick prototyping
 - Flexibility
 - Platform independence
 - Cons
 - Unsuitable for end users
 - Requires installation of scripting tools
 - Command Line Interface

- Scripting for end users
 - Requires a user interface
 - Most UI prototypes are either
 - » hard
 - » Pretty but not functional
 - » Or...

An extendable open source continuous integration server

- ...not very pretty
 - But quite functional

Why choose Jenkins-CI?

- Why Jenkins-CI?
 - Jenkins allows us to rapidly wrap any command line script or program in a web interface
 - Excellent support for <u>Groovy</u> a Java based, dynamic, modern scripting language
 - Straight forward integration with other languages, tools, OS, frameworks
 - Jenkins has broad community support that provides access to over 800 plugins
 - Plugins allow easy customization of Jenkins for a variety of tasks

- Jenkins provides basic workflow and web server functionality
 - Which works well in combination with CellProfiler
- Jenkins is used extensively by the NIBR-IT group to build all kinds of internal software
 - Many software developers know a lot about Jenkins
- Jenkins is now emerging as a useful Bioinformatics tool
 - The <u>BioUno</u> project

Jenkins-CellProfiler

HP Image Processing Workflow: Outline

Contribute Image Processing Pipeline

Assemble Images, Metadata

CellProfiler
HP Image
Processing

Upload your CellProfiler pipeline

Upload a CellProfiler image processing pipeline from y The pipeline will be available for use on the Jenkins-HC

Generate a CellProfiler image list

The source folder must contain one or more subfolders

Process images using CellProfiler

The CellProfiler pipeline and the image list are selected Processing can be **restricted** to a subset of the plates <u>Help Screencast</u>

Jenkins-HCS Workflow Engine High Level UI Components

Project CellProfiler_JClustSelect This build requires parameters: CELLPROFILER_VERSION [2.x.11364 v]		Project Launch Pad			
	Select the version of callProfiler to use. CellProfiler Welcome to CellProfiler on th	e Linux-Cluster!			
	1) Annotate your run:				
RUN_LABEL	CP_CLUSTER_RUN A unique label that can be used to identify this run. Use no spaces and try to keep it <32 characters.				
RUN_DESCRIPTION	Provide a brief description about this Cell Profiler run 2) Select a processing pipelin	me:			
PIPELINE	Contribute_Pipeline 2014_02_12_DRAQS Select a Call Profiler Contributed Pipeline. 3) Select an image list (or su	bset):			
GENERATED_IMAGE_LI	ST Lnx_Image_List 20140211_Cheng_DRAQ5_10x_Li A previously generated Lnx_Image_List	INUX ▼			
QUERY_KEY	A QUERY_KEY must adhere to the format Key1=Value1.K Groups are composed from any combination of the • Key names are case sensitive • The following comparison operators are supported	following Keys: Barcode, RowNumber, Column, FieldIndex =, >, <, >=, <= s are separated with 'Y (colon). In that case an OR is implied.			
MERGE_CSV		output from CellProfiler. After merging all intermediate output files are deleted automatica -check this option so you have more control over what should be merged at th			
Build					

Build Pipeline: CellProfiler Cluster Run Dynamic overview of CellProfiler image processing on the Linux Cluster Data Pipeline Visualizatio				Pipeline Visualization				
	CellProfiler_JCl	•	Monitor_JCPClu	•	Merge_CPS	Simpl	*	CU_CleanThum
Pipeline 2014_02_12_DRAQ5_10x	2014_02_12_DRAQ5_10x CellProfiler_JClustSelect _Feb 12, 2014 422033 PH	•	#17 Monitor_JCPClusterV2 Feb 12, 2014 4:20:56 PM 10 min	•	#11 Merge_CPS	F7 DW	*	JCP_2014-02-12_16-20-33 CU_CleanThumbnail_Folder ■ Feb 12, 2014 4/32/20 PH 0 1.1 sec

Typical Workflow

Step 1: Contribute a pipeline

- Project: Contribute_Pipeline
 - Upload and annotate a standard CellProfiler image analysis pipeline.
 Uploaded pipelines are usable in other projects
 - Assumptions
 - The pipeline has been designed and successfully tested on the CellProfiler desktop client
 - Outcome
 - The CellProfiler pipeline file will be uploaded and stored on Jenkins
 - Additional annotation will be extracted and attached to the pipeline

Build report from a contributed pipeline

Uses: Summary Display Plugin

- Contributed pipelines are annotated by a combination of user provided and autoextracted metadata
 - Presented as a tab panel
 - Pipeline can be downloaded and further modified

FILE tab to download or quickly browse the pipeline

Additional Usage

- CellProfiler pipelines on the Jenkins server can be used as follows:
 - For inspection
 - For re-use
 - On CellProfiler desktop client
 - On Jenkins-CellProfiler
 - For further experimentation
 - Load in desktop client and further customize

2) Select a processing pipeline: PTPFI TNF CellProfiler Pipeline GENERIC GRANULE PROTOCO CellProfiler Pipeline GENERIC CELL INTENSITY PROTOCO CellProfiler_Pipeline YAP Test CellProfiler_Pipeline pAKT Cell Panel CellProfiler Pipeline HUH-1 pS6 CellProfiler Pipeline HUH-1 P62 Endogenous CellProfiler_Pipeline KDM4_ImageStats **OUERY KEY** oups are composed from any combination of the following Keys: Barcode, RowNum

Jenkins-C

Typical Workflow

Step 3: Execute CellProfiler on the Linux Cluster

- Project:
 - CellProfiler_JClustSelect
 - Executes a series of image processing steps using the Jenkins-CI CellProfiler
 - Uses the <u>SSH Plugin</u>
 - Typical Assumptions
 - CellProfiler pipeline and a CP formatted image list are stored on the Jenkins server
 - Jenkins build artifacts
 - Outcome
 - Summary <u>report</u>
 - A file containing combined measurements from all the images processed.
 - Results file is in CSV format

Monitoring CellProfiler runs on the cluster

Uses: Build Pipeline Plugin

Users switch
to the
graphical
review of the
workflow!

Monitoring CellProfiler runs on the cluster

Uses: <u>Build Pipeline Plugin</u> and the Console

Run Report & Measurement Retrieval

Uses: <u>Associated Files</u> and <u>HTML Publisher</u> plugins

If all goes well final results are found in the merged measurements folder

CellProfiler col lange adapts actions				
CS_DRAQ5_384_10x_AB00085165_1				
CellProfiler-on Clusto	er Report: 2014-03-24_14-15-53 (build 124)			
Build Parameters	Review			
CellProfiler Pipeline	Review			
Total Source Images	384			
Mapped Image List Parameters	Review			
Measurements Folder	/labdata/incell/cluster_runs/CPJENKINS\JCP_2014-03-24_14-15-53			
Merged Data Folder	\\nibr.novartis.net\usca-dfs\LABDATA\LABS\\incell\cluster_runs\JOUTPUT\CELLPROFILER\2014-03-24_14-15-53\ALI			
Progress Monitor	Progress Monitor			

Jenkins -CI: CellProfiler Image Processing

Uses: <u>HTML Publisher</u> plugin

CellProfiler ordinage adulysis software

20130430

2 IC50

CellProfiler-on Cluster Report: 2013-04-30_11-58-03 (build 26)

Advanced/Experimental Functionality

Exploring the parameter space (a.k.a. Test Mosaic)

Count_Junko_Default -> 54

Count cord Default -> 13

Count_cord_Test_01:-> 11

Count Junko Test 01:-> 54

25/3

- Optimization of imaging module parameters
 - A typical pipeline development requirement
- Test Mosaic
 - Allows systematic and documented exploration of the parameter space
 - Evaluation is based on visual and quantitative interpretation of the results

Count_cord_Test_02:-> 3

Count Junko Test 02:-> 54

Count_cord_Test_03:-> 38

Count Junko_Test_03:-> 54

Count_cord_Test_04:-> 20

Count Junko Test 04:-> 54

HCS-Multi-Parametric Data Analysis

Current Focus: Prototype powerful and easy to use analytics

Statistics, Visualization, Reporting

My current Jenkins toolkit

- Jenkins R-Plugin
 - Supplies build step for executing R scripts
 - This plug-in was created by the <u>BioUno</u> project (sponsored by <u>TupiLabs</u>), and released to Jenkins as well.
- Image Gallery Plugin
 - This plug-in reads a job workspace and collects images to produce an image gallery
 - Useful for visualizing various statistical plots and graphs
 - This plug-in was created by the <u>BioUno</u> project (sponsored by <u>TupiLabs</u>), and released to Jenkins as well.
- Reporting Plugins
 - HTML Publisher, Summary Display

Jenkins for Interactive Analytics

Using R in a Jenkins pipeline interactively

- Opportunities
 - Quickly prototype functional analysis for multi-parametric data
 - Improve analysis requirements
 - Experiment with required data management and analysis workflows
 - Provide lab scientists with an easy to use, yet sophisticated, standardized and validated platform for MP data analysis tools

Jenkins for Interactive Analytics

Using R in a Jenkins pipeline interactively

- Challenges
 - Limitations of the Jenkins user interface
 - Limited interaction between UI controls
 - Large and varied HC measurement metadata
 - A challenge for creating HC data schemata as well
- Strategies
 - Open source collaboration with BioUno project
 - Uno-choice UI control greatly facilitates dynamic updating of the UI
 - Initial design supports flexible (but still controlled) data schema
 - Low tech, cumulative, shared key-value Java properties

Analytical Builds

A build may create a new transform of the data or simply add metadata

The Uno-Choice plugin

- Provides a list of dynamically generated options
 - Driven by a Groovy script
 - Single/Multi-select (Check Boxes, Radio Buttons)
 - References one or more other UI parameters
 - Dynamically refreshes when referenced UI parameters change

The Uno-Choice plugin

- Provides reference parameters
 - Dynamically rendered in the UI but not used in the build
 - Rendered as lists, 'free-form'
 HTML, or an image gallery

Introducing Jenkins to Life Sciences!

Let's start by explaining away 'artifacts'!

ar-ti-fact ◁) [ahr-tuh-fakt] ? Show IPA

- 1) any object made by human beings, especially with a view to subsequent use
- a handmade object, as a tool, or the remains of one, as a shard or pottery, characteristic of an earlier time or cultural stage, especially such an object found at an archaeological excavation.
- any mass-produced, usually inexpensive object reflecting contemporary society or popular <u>culture</u>: artifacts of the pop rock generation.
- a substance or structure not naturally present in the matter being observed but formed by artificial means, as during preparation of a microscope slide.
 - a spurious observation or result arising from preparatory or investigative procedures.

http://dictionary.reference.com/browse/artifact

Developer

Impedance Mismatch!

Scientist

Introducing Jenkins to Life Sciences

Let's improve the User Interface/Experience

- Let's start by improving the default Jenkins UI
 - Layout
 - Navigation
 - Refreshing
 - Interactivity
- This is an active
 Jenkins
 community
 discussion

Hyperlinks to Build Pipeline Views of 'Jenkins Helper' user

What We are Missing

Configuration Explorer

- Structured
- Graphical
- Dynamic

What We are Missing Bi-Directional Build Interaction

- Limited support by Run Type parameter
 - Missing flexible and dynamic filtering
- Build D modifies build/ publisher artifacts of Build C
 - Sometimes not do-able
 - Sometimes requires a reload

Build C produces an intermediate report that will get updated once Build D is finished successfully.

output of long

Build C

running job and updates report of

▼ cell image analysis software					
014_05_21_PGC1A_Set1Reimg					
CellProfiler-on	Cluster Report: 2014-05-23_13-31-11 (build 27)				
Build Parameters	Review				
CellProfiler Pipeline	Review				
Total Source Images	4608				
Image Source	D:DEVTOOLS\Jenkins\workspace\CellProfiler_MyImageList				
Measurements Folder	/Jabdata/incell/cluster_runs/CPJENKINS/JCP_2014-05-23_13-31-11				
Merged Data Folder	Unibr.novartis.nefusca-dfs\LABDATA\LABS\incell\cluster_runs\JOUTPUT\CELLPROFILER\2014-05-23_13-31-11\ALL				
Progress Monitor	Progress Monitor				
	Build D mor	nitors			

'Progress Monitor' Link and cell color are updated

Progress Monitor

What We are Missing

A good, deep search and metadata framework

- Supported
 - View Searches
 - Build Browsing
 - By timeline
 - By view
 - By user

- Missing
 - Build Searching
 - Parameter Search
 - Metadata Search
 - Metadata plugin (currently limited to adding metadata at project level)
 - Artifact Search
 - Tagging
 - Dynamic Metadata

What We are Missing

Life-Sciences Domain Plugins (Bio/Chem Informatic)

S	
S.	MrBayes Plug-in
	FigTree Plug-in
sis	
IS.	Structure Plug-in
ar	Structure Harvester Plug-in
ıs	CLUMPP Plug-in
	Distruct Plug-in
	Structure Harvester Plug-in CLUMPP Plug-in Distruct

- The BioUno project is filling the gap
- Interested in plugins that
 - Integrate bio-informatic, statistical and visualization tools
 - Connect to life-science data repositories
 - Generate artifacts and reports in LifeSci formats

	UI		
<u>Uno-</u> <u>Choice</u> <u>Plug-in</u>	A proposal for a new Jenkins UI plugin for selecting one or multiple parameters. Attempting to fill the gaps left by current plugin options.		
<u>lmage</u> Gallery Plug-in	This plug-in reads a job workspace and collects images to produce an image gallery using colorbox lightbox Javascript library.		
Misc			
R Plug-in	A simple plug-in to invoke R interpreter and execute an R script.		

In Summary

- We have demonstrated that Jenkins-CI can be used for life-science applications
 - Using standard functionality
 - Using domain specific plugins
 - In demanding environments of big data and high performance
- We have observed that scientist are able and willing to use the platform despite it's 'domain impedance mismatch'
- There is some fundamental interest in the larger Jenkins-CI community to expand the boundaries of the framework beyond continuous integration

Where do we want to take Jenkins-CI?

- Discussion
 - No changes?
 - Gradual improvements?
 - User interface
 - API
 - New life-science plugins
 - Fundamental changes?
 - Integration framework for orchestrating more granular pipelines?
 - CellProfiler
 - Galaxy
 - Knime
 - Others?

Acknowledgments

- Novartis
 - Fred Harbinski
 - Christian Parker
 - Stanley Lazic
 - Imtiaz Hossain
 - Josh Snyder
 - Erik Sassaman

- BioUno
 - Bruno Kinoshita
- The Jenkins Community

Thank You To Our Sponsors

