
Abstracting Dynamic Routing

with Workflows

 Nigel Warren - Brunel University & Zink Digital

Ewan Silver – Autonomic Systems Ltd

Nige@zink-digital.com

ewan@autonomicsystems.co.uk

Background

Spray - JCM10

Distributed Rendering

Pipelining and Object Flow - JCM9

Virtual processing pipelines

Cells and Shapes

Master Worker Patterns

Simple Distribution

“Many Things” - Fault Tolerance

Flocking and Swarming

Evolution and Genetics

Motivation

Some patterns of use of Jini and JavaSpaces can be assumed

into a platform.

At the university the

MultiMedia Processing

BioInformatics

teams are neutral about distributed infrastructures …

… but they do care about processing vast amounts of

complex information quickly.

Motivation

An interface that is ‘insanely’ simple to comprehend & use

To move platform innovations to …

Deploy,

Dynamic Routing,

Fault tolerance,

Evolution,

other things …

Motivation

Just don’t want to write ...

txn = TxnMgr.getTxn()

space.take(template, txn)

do work (or work.do())

space.write(work, txn)

txn.commit()

... even in pseudo code.

Applies to Pipelines too.

Applicability

Distributed Worker (aka Master/Worker)

Rendering (Spray)

Monte Carlo Simulation (VAR)

Protein Folding

 Pipelines

Image (signal) processing

Geometric transformations

Business “Workflows”

Distributed Worker patterns is a complete subset of the

Pipeline pattern.

Distributed Worker as a Buffered Pipeline

Nodes are ‘Java code’ workers and buffers are

JavaSpaces

JavaSpace JavaSpace

vNodes (Jini Services)

Pipelines

User Interface

& Compositor

vNodes - Focus

Image Server
vNodes - 3D

Clifton Interface - Activities

Application writers implement ‘Activities’ (like ‘main()’)

package com.exocute.clifton;

import java.io.Serializable;

public interface Activity

{

 Serializable process(Serializable input,

ActivityToolKit atk);

}

Clifton Interface - Ambits

Application writers use Ambits to seed and gather

objects.

public interface Inward {

public void put(Serializable obj);

}

public interface Outward {

public Serializable get();

}

In Clifton all object flow is buffered at each pipeline

stage.

Clifton Implementation

Virtual Nodes (vNodes) are jini services and execute

Activities on host hardware.

Buffering, pipelining, distribution is handled by simple

channel model and Blitz JavaSpaces

- ‘Lossy’

- Relatively low complexity

- Only Java based routing

Interface could be implemented without Jini ?!

Connections

Inward Activity Outward

Routing Options :

Java Code

Routing Language

GUI - Local simulator

Activity

Cells and Shapes

Biological cells use ‘shapes’ on the outside of their

nuclei to identify and interact with one-another.

Clifton uses shapes for routing
T

T

T

T

T

T

T
T

T

T
T

T

T
T

T

T

T

T

T
T

T

T

T

T

T
T

T

T

T

T

Clifton Stack

Jini - Blitz JavaSpace

Media Kit

Channels

Buffers

Nodes

ActivityToolkit

vNode

Paths

Clifton View

Spray

L-systems

Routing Language

GUI

Local Simulator

Clifton

Interface

Autonomic Systems Stack

• Aimed at longer term pipelines – business
workflows

• Pipelines could last for weeks, months or years

• Speed not so critical

• Reliability of data flow

• Activities can often run in parallel

• Changing business conditions require ability to
dynamically evolve pipelines whilst data in
transit

Autonomic Systems - implementation

• PipelineCoordinator :

• configures and orchestrates Activities

• dynamically evolve pipeline

• Inward ambit creates unique pipeline per invocation

• Activities routed and invoked via “Shapes”

• Transactional under the hood

• Transactional ToolKit - “over the hood”?

• Runs on Jini, Blitz (persistent) and Mahalo

Connections

Inward

Parallel

Activities

Outward

Autonomic Systems Runtime

Activity

Create Pipeline

Coordinator

Proof of Concept

Green field

L-System compiler to simulate Algae growth

Pipelines and Distributed Worker

Spray Port

1 hour 25 Minutes

40% reduction in complexity

Class count - LOC count

Genetic Algorithms

Loops in the pipeline

Outlook

Aiming to make local simulator (threaded) available

- debugging class casts

- pipeline hinting

Routing Language - MediaToolKit

More applications from various domains

New platform implementations/upgrades

- Instrumentation

- Reliability

Thanks for Listening

