Abstracting Dynamic Routing with Workflows

Nigel Warren - Brunel University & Zink Digital Ewan Silver – Autonomic Systems Ltd

> Nige@zink-digital.com ewan@autonomicsystems.co.uk

Background

Spray - JCM10 Distributed Rendering Pipelining and Object Flow - JCM9 Virtual processing pipelines Cells and Shapes Master Worker Patterns Simple Distribution "Many Things" - Fault Tolerance Flocking and Swarming **Evolution and Genetics**

Motivation

Some patterns of use of Jini and JavaSpaces can be assumed into a platform.

At the university the

MultiMedia Processing

BioInformatics

teams are neutral about distributed infrastructures ...

... but they do care about processing vast amounts of complex information quickly.

Motivation

An interface that is 'insanely' simple to comprehend & use

To move platform innovations to ...

Deploy,
Dynamic Routing,
Fault tolerance,
Evolution,
other things ...

Motivation

Just don't want to write ...

txn = TxnMgr.getTxn()
space.take(template, txn)
do work (or work.do())
space.write(work, txn)
txn.commit()

... even in pseudo code.

Applies to Pipelines too.

Applicability

Distributed Worker (aka Master/Worker)

Rendering (Spray)

Monte Carlo Simulation (VAR)

Protein Folding

Pipelines

Image (signal) processing

Geometric transformations

Business "Workflows"

Distributed Worker patterns is a complete subset of the Pipeline pattern.

Distributed Worker as a Buffered Pipeline

Nodes are 'Java code' workers and buffers are JavaSpaces

Clifton Interface - Activities

Application writers implement 'Activities' (like 'main()')

Clifton Interface - Ambits

Application writers use Ambits to seed and gather objects.

```
public interface Inward {
      public void put(Serializable obj);
}

public interface Outward {
      public Serializable get();
}
```

In Clifton all object flow is buffered at each pipeline stage.

Clifton Implementation

Virtual Nodes (vNodes) are jini services and execute Activities on host hardware.

Buffering, pipelining, distribution is handled by simple channel model and Blitz JavaSpaces

- 'Lossy'
- Relatively low complexity
- Only Java based routing

Interface could be implemented without Jini?!

Connections

Routing Options:

Java Code

Routing Language

GUI - Local simulator

Cells and Shapes

Biological cells use 'shapes' on the outside of their nuclei to identify and interact with one-another.

Clifton uses shapes for routing

Clifton Stack

Autonomic Systems Stack

- Aimed at longer term pipelines business workflows
- Pipelines could last for weeks, months or years
- Speed not so critical
- Reliability of data flow
- Activities can often run in parallel
- Changing business conditions require ability to dynamically evolve pipelines whilst data in transit

Autonomic Systems - implementation

- PipelineCoordinator:
 - configures and orchestrates Activities
 - dynamically evolve pipeline
- Inward ambit creates unique pipeline per invocation
- Activities routed and invoked via "Shapes"
- Transactional under the hood
- Transactional ToolKit "over the hood"?
- Runs on Jini, Blitz (persistent) and Mahalo

Connections Parallel Activities Inward Activity Outward Create Pipeline Coordinator Autonomic Systems Runtime

Proof of Concept

Green field

L-System compiler to simulate Algae growth Pipelines and Distributed Worker

Spray Port

1 hour 25 Minutes
40% reduction in complexity
Class count - LOC count

Genetic Algorithms

Loops in the pipeline

Outlook

Aiming to make local simulator (threaded) available

- debugging class casts
- pipeline hinting

Routing Language - MediaToolKit

More applications from various domains

New platform implementations/upgrades

- Instrumentation
- Reliability

Thanks for Listening