Distributed Associative Networks

Kevin Hartig, Digital Reasoning Systems

Introduction

- Kevin Hartig
 - Digital Reasoning Systems
 - Director of Distributed Computing
 - Unstructured Data Analytics (UDA) solutions
 - Al and Distributed Computing
 - -Finding meaning in the information age

Associative Networks

- Represent abstract models of the brain
- Consists of numerous, highly interconnected computational units
- Pattern -> Classifiers, Associators
- Associative
 - Hetero (HA)
 - Auto (AA)

Hopfield Network

- John Hopfield 1982
- Auto Associative
- Outputs feedback into all Inputs but its own
- Weights calculated in advance

Hopfield Network Processing

$$a_i \leftarrow \left\{ \begin{smallmatrix} 1 & \text{if } \sum_j w_{ij} s_j \\ \text{otherwise} \end{smallmatrix} \right. > \left. \theta_i \right.$$

$$E = -1/2 \sum_{i>j} w_{ij} s_i s_j + \sum_i \theta_i s_i$$

$$[W] = \eta[X]^{t}[Y]$$
 $[Y] = [X][W]$

Hopfield Network Processing

$$[X] = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad [Y] = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
$$[W] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

[Y][W] = [Z] apply threshold -> [X]

Distributed Data Structures

- Structure that can be accessed simultaneously by multiple processes
- Represented by a collection of objects
- Independently accessed or modified
- Concurrency rules applied

Distributed Data Structures

Follows structure of java.util

AbstractCollection

Attributes

Operations

DDSAbstractCollection

Attributes

Operations

AbstractList

Attributes

Operations

DDSAbstractList

Attributes

Operations

ArrayList

Attributes

Operations

ArrayList

Attributes

Operations

Distributed Data Structures

```
String name = "test array";
DDSArrayList array = new DDSArrayList(name);
for (int i = 0; i < 10; i++) {
  array.add("test " + i);
System.out.println("Size of array is " + array.size());
for (int i = 0; i < array.size(); i++) {
  elem = (String) array.get(i);
  System.out.println("Elem " + i + " is " + elem);
array.set(5, "Set Test");
array.add(7, "Added element at index 7");
System.out.println("");
for (int i = 0; i < array.size(); i++) {
  elem = (String) array.get(i);
  System.out.println("Elem " + i + " is " + elem);
```

Workflow Architecture

Completion event SPACE Master Write -creates tasks **Tasks** -writes into Space DDS -awaits collection Take/Read DDS or results

Worker 1

- -collects tasks
- -executes
- -returns results to Space
- -sends remote events

Worker 1

- -collects tasks
- -executes
- -returns results to Space
- -sends remote events

Worker 1

- -collects tasks
- -executes
- -returns results to Space
- -sends remote events

Completion event

Distributed Design

Hopfield Network Pattern Recognition Example

Contact

- Kevin Hartig
- kevin.hartig@digitalreasoning.com
- kevin.hartig@gmail.com