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The customer

SALES 
EMPLOYEES
R & D (of Sales)
BRANCHES  (n° 4)

45 million Euro
120
13.7 %
Corbetta (Milan)
Venaria Reale (Turin)
Nanterre (France)
Detroit (USA)

Magneti Marelli 
Holding 
Headquarters   
Corbetta (Milan) 
Italy 

Motorsport Department
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Functional requirements

● Realtime data flow distribution
● Publish & retrieve “environmental” information
● Provide facilities for management and 

monitoring
● Be accessible by generic Java apps
● Integrate with existing MM software with 

minimal impact



Non functional requirements

● Up to six data flows (3 cars, 2 flows per car)
● Up to 100 clients:

– Existing MM client applications
– Customer tools based on JRTTS API

● High availability
– Switch PBE in a about one second
– No interruption of service for publishing service
– Be quick: a car finishes a lap in about 1,5 minutes!



Non functional requirements

● Manageability
– Fast fault detection

● Robustness
– Faulty or disconnected cables
– Hubs erroneously powered off
– Laser link on the pitwall

● Portability
– Some teams use Windows, others use Linux



Technologies

● Jini
● Zero configuration required

● Rio
● Dynamic provisioning
● Centralized configuration

● JGroups
● Flexibility



Scalability by multicasting
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Not only multicast, indeed

● Plain, unreliable multicast
● Reliable Multicast (frozen)
● TCP/IP

– A few Critical clients on the pitwall laser link



Basic architecture
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The management tool (MoMa)



Challenges

● Zero configuration
– And I really mean zero: not even DNS
– Multiple NIC support

● Unreliable network (cable disconnections)
– TCP/IP often problematic

● High Availability



Challenges (RFCs, bugs)
● Again problems with the cables
● Work through a router / take control on the 

TTL



The cable problem

● The “Multicast Announcement” Interval
– 2 Minutes
– It was not designed for much shorter times

● Configurable, but setting it too low 
overloads the system

● We need a heartbeat, at high frequency,...
● ... and something that manages it



What kind of heartbeat?

● Rio provides support for TCP/IP heartbeat
– Just needs to be configured

● But TCP/IP is too slow in detecting 
disconnections
– Also because Java can't fully configure it 
– O.s. tuning not an option (zero config, remember?)



What kind of heartbeat?

● Multicast “Service Heartbeat”
– Means that a remote ServiceBean is reachable
– Each Cybernode fires it, with service ids of hosted beans

● Custom component added in each Cybernode 
by means of standard start-XXX.config

● Interval of 500ms



Service Discovery Extension

● RTTSServiceDiscovery, a façade hiding 
service discovery stuff

● Provides “disconnection” semantics:

public interface RTTSServiceDiscoveryListener 
  {
    void serviceAdded (ServiceItem serviceItem); 
    void serviceRemoved (ServiceItem serviceItem); 
    void serviceReachable (ServiceItem serviceItem);
    void serviceUnreachable (ServiceItem serviceItem);
  }



Fast Service Discovery

● What if:
– A client C1 is disconnected (e.g. cable unplugged);
– A new service C2 is published;
– C1 is connected again (e.g. cable plugged back)
– It's likely that C2 publishing event reaches C1 at the 

next Multicast Announcement, too late



Fast Service Discovery

● A inner FastServiceDiscovery fixes this
● Detects reconnection of nodes with a LUS
● Performs explicit LUS lookup and fires 

events
● RTTSServiceDiscovery filters out duplicate 

events



The Multi-NIC Issue
● Customers have (more than) two distinct 

subnets on clients
– Only one is the correct route to the server

● Jini binds server sockets to the “default” NIC
– Especially on Windows this is unpredictable
– If Jini chooses the wrong NIC, can't set up TCP/IP 

“callback” connections from the server!



The Multi-NIC Issue

● Conceptually simpler, but required some work
● Extensive configuration of everything such as:

import NetworkInterfaceSelector;
hostAddress = 
   NetworkInterfaceSelector.getSelectedHostAddress();
serverExporter = new BasicJeriExporter(
  TcpServerEndpoint.getInstance(hostAddress, 0), 
  new BasicILFactory(), false, true);



The Multi-NIC issue
● getSelectedHostAddress() blocks until it 

knows the right IP
– We should prevent Jini from booting if we don't know it
– Rather brutal, but the alternative was too complex
– In any case, clients are useless without a connection

● Naïve solutions failed
– A first try was based on the Multicast Announcement
– “Just recv from both NICs, only the good one recvs it”



Multicast stacks, and Windows
● Indeed you recv the MA from both NICs! :-(
● We were forced to explicitly send the info
● Another heartbeat: “Node heartbeat”

– Each Cybernode multicasts its IP and netmask
– Clients compare and match with IPs bound to local NICs



The Cable, again!
● Discovered a problem with event delivery
● Rio dispatches events serially
● If one of the receivers is disconnected...
● ... we experience TCP/IP timeout delays
● Again, TCP/IP is too slow for our needs



ParallelDispatchEventHandler
● Extends DispatchEventHandler, 100 lines

public void fire() {
        for (int i = 0; i < resources.length; i++) {
                final ServiceResource sr = resources[i];
                PoolableThread thread = 
                    (PoolableThread)threadPool.get();
                thread.execute(new Runnable() {
                    public void run() {
                        fire(event, sr);
                      }
                  });
          }
  }



“ContextService not avail”
● Occurred seldom
● But required restart of the involved clients
● Probably the most annoying bug
● Due to a bug in RTTSServiceDiscovery

– When the ServiceHeartbeat gets in before the Jini event
– Prevented serviceReachable() / serviceAdded() to fire

● Lesson learned: always think async, don't 
assume the simpler sequence of events



Routers and TTL
● RFC: work through a router
● Paranoid control of Time To Live for multicast

– Not only for the data flows (obvious)
– Also for the Jini Multicast Announcement / Discovery

● Solution: NetworkInterfaceSelector.getTTL()
● Configuration sent in the Node Heartbeat 



High availability

● Both for realtime data (easier: 
stateless) and context data 
(stateful)

● Implemented on the client
– Business Delegate idiom
– Multicast heartbeat to test “liveness”
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Lessons learned
● A good team is the key to success
● Use patterns (design by patterns!)
● Test as much as you can in the target 

production environment, i.e. in the “pit box”
● UP/Sun iterative and incremental, 

architecture-centric design methodology 
works



Summing up
● Cable disconnection and fast recovery were 

the source of 90% of the problems
● Very stressing scenario for Jini / Rio
● Addressed with customizations

– Jini and Rio are really customizable
– The less TCP/IP, the better

● A Sun Microsystems success story!
– Jini / Rio are WINNERS



Future work
● Work through a firewall
● Some RFC are not Jini related

– e.g. the “deferred data”
– Improvements in the circuit coverage (confidential!)

● Personally, I'd like
– To refactor the heartbeat stuff
– Try reliable multicast for delivering events

● Would simplify design in some parts
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