QGIEAS -,rces Project Rio
Overview and Status

Dennis Reedy

History

=
= RFID

SolarWind

ore SR 5 . ©
BEal & Ocisa

Risk2Risk

1999 2000 2001 2002 2003 2004 2005 2006
3 o ‘(;TCH)ELCEJT%HQVQJWERSHY /‘&%\

CAP GEMINI

ERNST & YOUNG

FIPER

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Common Threads

e Complexity
e Automation
e Self healing
e Scalable

e Dynamic

e Policy Driven

e Declarative

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Rio
e Policy-Based infrastructure automating the deployment and
execution of distributed applications
- Measure Responses against Service Level Agreements

- Dynamic execution fabric

— Platform and application aware

e Providing ...
- Deployment & management capabilities
— POJO-based development approach
- Fault detection and recovery

Application Context

— Model to inject rules & policies Adaptlve Quality of Service
allowing greater automation,
scalability and controlled behavior Dynamic Dynamic
. . P
- Declarative service model rovisioning Container

— Ease of use ,avaw fini™

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Status

e Owners

Me
- Mark Hodapp g

e Moving to java.net
— Classdepandjar
- Rio
— Rio Utilities
- Rio Substrates
e Other related projects

— Ipanema

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Policy Centricities

e Platform Policies
— Whether a compute resource can support the requirements of
a service
e Installation, activation
e Behavioral Policies
— Whether a service is operating to specified objective(s)
e SLA Management, Service Associations, Dynamic system state
e Reachability Policies

— Heuristics determining whether a service is available on the
network

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Platform Selection Policies

e Compute resources have capabilities
- CPU, Disk, Connectivity, Operating Systems, Patch
Levels, Software Components, Required Versions ...
e Software components need to run on the most

appropriate compute resource based on definable
criteria

e A qualitative capability indicates a specific type of
mechanism or quality associated with a compute
resource

Q GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Platform Capability Policy Interactions

Compute
Resource

Produces multiple

Platform
Capability

Do you support

A

this requirement? -

Requirement

+ Supportability determined by PlatformCapability objects, not by

administrative configurations

+ Selection policy enabled through mobile code strategy, enabling
decentralized collection of platform capabilities

* Regular expression matching

* Allows for collection of compute resources with their platform
capabilities to grow organically

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Behavioral Policies: SLA

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Compute resources have capabilities
— CPU, Disk, Connectivity, Bandwidth, ...
Software components need to run on most

appropriate compute resource based on
definable criteria

Feedback mechanism to subscribe to
changes to quantitative QoS
mechanisms

Provide a resource cost
approach to measure compute Measure. Collect &

resource capabilities in a Respond to administrative
heterogeneous environment control & actions

Autonomic SLA

e Sensor-effector pattern

e Data is observed from applications, OS,
hardware, etc. and measured against declared
thresholds

e Policy enforcement can

Bean
happen locally, distributed g
| py

or hierarchically

Telemetry & SLA
e SLA Threshold Events are | (Bean Threshold Management
]] \ Managemen

fired to registered consumers

Policy] ;

Enforcement

A

g R M S 3

e FEach SLA is Autonomic

Operating System Resources and Capabilities

Physical Platform (network, storage, etc...)

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

SLA Artifacts

e XML Descriptor

e Can be imbedded in deployment descriptor

e Can be maintained and added at deployment time
e Can update an existing deployment

e Can be used as a basis when redeploying

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Example: Service Scalability

Cybernode

GigaSpace

@

Scalable
Policy Handler

register

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

* Allocate a GigaSpace

» Create Scalable Policy Handler
which registers to CPU
MeasurableCapability

* SLA has upper limit set to 80%

allocate

Example: Service Scalability

Cybernode

. Scalable m
GigaSpace Policy Handler

increment

notify

*CPU utilization exceeds 80%

*Scalable Policy Handler is
notified

*Provisioner allocates another
GigaSpaces instance to
appropriate Cybernode

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Reachability Policies : Fault Detection Handlers

e A Fault Detection Handler is loaded by the client entities
when a service is provisioned, has the service's proxy set,
and periodically tests to make sure the service is reachable

e Can implement custom fault detection algorithms and
protocols to determine service reachability

e Different heuristics for failure detection and recovery for
different failure types

e Specify as part of the Deployment Descriptor on what
heuristics to use (based on application objectives, system

policy, ...)

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Fault Detection Handlers

Manager Service
Fault
.| Detection
Creates Fault Detection Handler Determines reachability
Handler with Object based on embedded policy

that can be used to
communicate to the
service

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Fault Detection Handlers

Notifies listener if

service is unreachable
Manager |, Service
Fault
.| Detection
Creates Fault Detection szl Determines reachability
Handler with Object based on embedded policy

that can be used to
communicate to the
service

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Service Associations

e Provide the capability to declare a service usage model
e Associations can be either “uses” or “requires”
e IoC based

— Ease of use

— Infrastructure does the leg work, developers don’t need to

<association type="uses” name="The Space” property="theSpace” refid=“some.ref” />

<association type="uses” type=“net.jini.space.JavaSpace”
name="The Space" property="theSpace”/>

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Operational String

e An object graph composed of definitions that provide context on how to
provision, manage, monitor and instantiate services

e Reflexive, may include other Operational Strings

e Created from an XML document, although there can be other source
formats

. .)
Operational String

_f Service w
= (&AL
e ¢
\—¢

[Fault Detection Policy l

-
L_{ Service

.

LAss_oriarinns : l
Behaviorsl Pl

[Fault Detection Policy l

Application

A

.

= J

l0.*

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Application Deployment Semantics

e Deploy, Redeploy, Update, Undeploy
— CLI & UI based
— Public API specification

e Can be scheduled

— Declare when to deploy, how long the deployment should last,
how many times to repeat the deployment & the time to wait
between deployments

e Additional semantics:
— Relocate

— Increment & Decrement

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Deployment Models

« Centralized) Upload ——— "@ “l“
— Push to managed HTTP
/N

server (Code server)

] As needed download
Instances @ bean resources

— All code is dynamically

served and \
instantiated @ Deploy — » ~
activate
— Advantages ~a
\)

e Manage one code

. Monitors
repository

— Disadvantages
e Application code availability if HTTP \ J

server instances fail Cybernodes

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

Deployment Models

e Distributed

Provision code to all compute
resources

All code is loaded from the
compute resource
it is instantiated on

Opportunity to leverage
platform provisioning tools

Advantages
e Not rely on Code server
availability
Disadvantages
e \ersion management

e Integration

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

@ Upload — [Software Provisioning]

/o

@ Provision application

components

@ Deploy —» @ ~
activate
~a
\)

Monitors

Cybernodes

Service Development

e Dynamic services
— POJOs
— Spring supported deployment
— Service Bean development

e Simple component model defining lifecycle semantics of a
dynamic service (start, init, advertise, unadvertise, stop,
destroy)

e Infrastructure provide an easy to use programming model
whole maintaining access to lower level APIs

e Runtime provides
— Fault Detection
— Declarative SLAs
— Association based Dependency injection

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

External Services

e What about external things?

e Service Control Adapter objects provide assimilation

- _ 4 N
Assimilated Service Cybernode ,
instantiated within SerV'Cel Assimilated
Cybernode VM process Xé’;‘t;‘;r Service
address space P
S /
JVM
Assimilated Service
instantiated in it's own EPETIEEE Service Assimilated
process address space Control Service
Adapter
JVM

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

= —
g F &)
B 9

External Services

e Encapsulate the control and monitoring _
<> Service Control Adapter

of external services running within the < Rio Infrastructure
context of Rio < Native Application/Service

e Service Control Adapters represent
applications/services, adding network-wide visibility & control

e Attach monitoring, metering and SLA control to existing applications

6 GIGASPACES WRITE ONCE. SCALE ANYWHERE.

That’s Nice, Anything New?

e POJOs not just Service Beans
e Declarative Watches
o JMX

Whats Next?

e Release 3.3 4Q

o .7

6 GIGASPACES | WRITE ONCE. SCALE ANYWHERE.

e SRR
GIGASPALCES

