

WRITE ONCE. **SCALE ANYWHERE**.

Project Rio Overview and Status

History

Common Threads

- Complexity
- Automation
- Self healing
- Scalable
- Dynamic
- Policy Driven
- Declarative

Rio

- Policy-Based infrastructure automating the deployment and execution of distributed applications
 - Measure Responses against Service Level Agreements
 - Dynamic execution fabric
 - Platform and application aware
- Providing ...
 - Deployment & management capabilities
 - POJO-based development approach
 - Fault detection and recovery
 - Model to inject rules & policies allowing greater automation, scalability and controlled behavior
 - Declarative service model
 - Ease of use

Status

- **Owners**
 - Me
 - Mark Hodapp

- Moving to java.net
 - Classdepandjar
 - Rio
 - Rio Utilities
 - Rio Substrates
- Other related projects
 - Ipanema

Policy Centricities

- Platform Policies
 - Whether a compute resource can support the requirements of a service
 - Installation, activation
- Behavioral Policies
 - Whether a service is operating to specified objective(s)
 - SLA Management, Service Associations, Dynamic system state
- Reachability Policies
 - Heuristics determining whether a service is available on the network

Platform Selection Policies

- Compute resources have capabilities
 - CPU, Disk, Connectivity, Operating Systems, Patch Levels, Software Components, Required Versions ...
- Software components need to run on the most appropriate compute resource based on definable criteria
- A qualitative capability indicates a specific type of mechanism or quality associated with a compute resource

Platform Capability Policy Interactions

- Supportability determined by PlatformCapability objects, not by administrative configurations
- Selection policy enabled through mobile code strategy, enabling decentralized collection of platform capabilities
- Regular expression matching
- Allows for collection of compute resources with their platform capabilities to grow organically

Behavioral Policies: SLA

- Compute resources have capabilities
 - CPU, Disk, Connectivity, Bandwidth, ...
- Software components need to run on most appropriate compute resource based on definable criteria
- Feedback mechanism to subscribe to changes to quantitative QoS mechanisms
- Provide a resource cost approach to measure compute resource capabilities in a heterogeneous environment

Measure, Collect & Respond to administrative control & actions

Autonomic SLA

- Sensor-effector pattern
- Data is observed from applications, OS, hardware, etc. and measured against declared thresholds
- Policy enforcement can happen locally, distributed or hierarchically
- SLA Threshold Events are fired to registered consumers
- Each SLA is Autonomic

SLA Artifacts

- XML Descriptor
- Can be imbedded in deployment descriptor
- Can be maintained and added at deployment time
- Can update an existing deployment
- Can be used as a basis when redeploying

Example: Service Scalability

Example: Service Scalability

Reachability Policies: Fault Detection Handlers

- A Fault Detection Handler is loaded by the client entities when a service is provisioned, has the service's proxy set, and periodically tests to make sure the service is reachable
- Can implement custom fault detection algorithms and protocols to determine service reachability
- Different heuristics for failure detection and recovery for different failure types
- Specify as part of the Deployment Descriptor on what heuristics to use (based on application objectives, system policy, ...)

Fault Detection Handlers

Fault Detection Handlers

Service Associations

- Provide the capability to declare a service usage model
- Associations can be either "uses" or "requires"
- IoC based
 - Ease of use
 - Infrastructure does the leg work, developers don't need to

```
<association type="uses" name="The Space" property="theSpace" refid="some.ref"/>
```

Operational String

- An object graph composed of definitions that provide context on how to provision, manage, monitor and instantiate services
- Reflexive, may include other Operational Strings
- Created from an XML document, although there can be other source formats

Application Deployment Semantics

- Deploy, Redeploy, Update, Undeploy
 - CLI & UI based
 - Public API specification
- Can be scheduled
 - Declare when to deploy, how long the deployment should last, how many times to repeat the deployment & the time to wait between deployments
- Additional semantics:
 - Relocate
 - Increment & Decrement

Deployment Models

Centralized

- Push to managed HTTP server (Code server) instances
- All code is dynamically served and instantiated
- Advantages
 - Manage one code repository
- Disadvantages
 - Application code availability if HTTP server instances fail

Deployment Models

Distributed

- Provision code to all compute resources
- All code is loaded from the compute resource it is instantiated on
- Opportunity to leverage platform provisioning tools
- Advantages
 - Not rely on Code server availability
- Disadvantages
 - Version management
 - Integration

Service Development

- Dynamic services
 - POJOs
 - Spring supported deployment
 - Service Bean development
 - Simple component model defining lifecycle semantics of a dynamic service (start, init, advertise, unadvertise, stop, destroy)
 - Infrastructure provide an easy to use programming model whole maintaining access to lower level APIs
- Runtime provides
 - Fault Detection
 - Declarative SLAs
 - Association based Dependency injection

External Services

- What about external things?
- Service Control Adapter objects provide assimilation

Assimilated Service instantiated within Cybernode VM process address space

Assimilated Service instantiated in it's own process address space

External Services

 Encapsulate the control and monitoring of external services running within the context of Rio

- Service Control Adapters represent applications/services, adding network-wide visibility & control
- Attach monitoring, metering and SLA control to existing applications

That's Nice, Anything New?

- POJOs not just Service Beans
- Declarative Watches
- JMX

Whats Next?

- Release 3.3 4Q
- ... ?

Quick Time and a BMP decompressor are needed to see this pictu

Q&A