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Introduction

Rendering problem space
— Bandwidth heavy
— Computationally heavy
— Distributed
Aim
— Improve on current approaches

— Understanding capabilities of Jini and
JavaSpaces in this environment

Brunel

UNIVERSITY

WEST LONDON




Rendering Process

. ‘ .................. , .

Scene Descriptor Renderer Rendered Images
(RIB File)
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Angel Renderer

Developed by Dr lan Stephenson at NCCA

Pixar Renderman Interface Compatible

— RIBs and shaders

Portable ‘C’ code (not open source)
— Windows, Mac OSX, Solaris, Linux, SGI

Two pass rendering for Lighting calculations
— >1 RIB file, >1 image file
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Batch Renderers

Rendering is extremely computationally
expensive so ...

Spread the work of rendering a number of frames
over a set of machines and/or over time.

Long running - Overnight, to a number of days

Normally implemented by scripts that generate
scripts that embed |IP addresses etc.

Makes rendering ‘feature length’ movies possible
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Batch Renderers

Batch renderers can suffer from a mix of issues:

 Tight coupling of batch controller to workers
* No ‘dynamic’ changes (can run for days)

* Long running single point-of-failure for batch
controller

 Failure of render job due to worker failure
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Designing Spray

Submitter

Scene Descriptor
RIB File

Rendered Images Collector

vNodes




Designing Spray

Used Jini for service discovery and lookup

Used Blitz JavaSpaces

» Configured for large entries - RIBs & Images
We built Angel installs for each host platform
RIBs are transported as JavaSpace Entries
vNodes ‘exec()’ to Angel on the host machine

Images are also sent back as Entries
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Using exec()

Use sys prop “file.separator”

Use Runtime.getRuntime().exec( ... ) to make
a Java.lang.Process

Use threaded stream handlers for the

— Input Stream

— Error Stream

Use java.lang.Process to control the exec’d
Process.

— E.g. java.lang.Process.waitFor()
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Test Platforms

Windows - on AMD and Intel

— 1 & 2 processors

Mac OSX - on G4, G5 and Intel

— 1, 2 & 4 processors

Linux - on Intel and AMD

— 1 & 2 processors

Solaris 10 - on Sparc 64

— Single processor blades
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Production Systems

» Mac Quad G5
— 4 processors, 2.5 GB
» Class 2 Beowulf Cluster

— 24 Rack nodes of 2 P4 processors
— Centos 4.1

* The Gridlet (Grid ‘On Tour’)
7/ - Sun Netras and Sun V100s
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Test Movies

Newell Teapot - “hello world” of rendering
- 360 HD Frames (120kB/frame)
- 1- 46 vNodes on Beowulf Cluster
- 100Mbps network
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Run Time

CPU Count vs Elapsed Run time
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Frame Rate

CPU count vs Frame Rate
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One vs Two processor

vNode count vs Frame Rate
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Conclusions

* Easy to combine

— Distribution and fault tolerance of Jini
platform

— High performance native platform code
* Transport files over JavaSpaces

» Scalable to realtime rendering possible
— Some realtime SD processing done
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Future work

* Test assumptions regarding network
bandwidth.

— Optimistic about scalability
* Test with production quality RIB files

 Generalise infrastructure for other
distributed processing tasks
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Thank you for Listening
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