
Using Jini and JavaSpaces

for Clustered 3D Rendering

Simon Kent - Brunel University

Nigel Warren - Zink Digital Ltd

Introduction

Rendering problem space

– Bandwidth heavy

– Computationally heavy

– Distributed

Aim

– Improve on current approaches

– Understanding capabilities of Jini and
JavaSpaces in this environment

Rendering Process

Scene Descriptor

(RIB File)
Rendered ImagesRenderer

Angel Renderer

• Developed by Dr Ian Stephenson at NCCA

• Pixar Renderman Interface Compatible

– RIBs and shaders

• Portable ‘C’ code (not open source)

– Windows, Mac OSX, Solaris, Linux, SGI

• Two pass rendering for Lighting calculations

– >1 RIB file, >1 image file

Batch Renderers

Rendering is extremely computationally
expensive so …

• Spread the work of rendering a number of frames
over a set of machines and/or over time.

• Long running - Overnight, to a number of days

• Normally implemented by scripts that generate
scripts that embed IP addresses etc.

• Makes rendering ‘feature length’ movies possible

Batch Renderers

Batch renderers can suffer from a mix of issues:

• Tight coupling of batch controller to workers

• No ‘dynamic’ changes (can run for days)

• Long running single point-of-failure for batch
controller

• Failure of render job due to worker failure

Designing Spray

Designing Spray

• Used Jini for service discovery and lookup

• Used Blitz JavaSpaces

• Configured for large entries - RIBs & Images

• We built Angel installs for each host platform

• RIBs are transported as JavaSpace Entries

• vNodes ‘exec()’ to Angel on the host machine

• Images are also sent back as Entries

Using exec()

• Use sys prop “file.separator”

• Use Runtime.getRuntime().exec(…) to make
a java.lang.Process

• Use threaded stream handlers for the
– Input Stream

– Error Stream

• Use java.lang.Process to control the exec’d
process.
– E.g. java.lang.Process.waitFor()

Test Platforms

• Windows - on AMD and Intel

– 1 & 2 processors

• Mac OSX - on G4, G5 and Intel

– 1, 2 & 4 processors

• Linux - on Intel and AMD

– 1 & 2 processors

• Solaris 10 - on Sparc 64

– Single processor blades

Production Systems

• Mac Quad G5

– 4 processors, 2.5 GB

• Class 2 Beowulf Cluster

– 24 Rack nodes of 2 P4 processors

– Centos 4.1

• The Gridlet (Grid ‘On Tour’)

 7 - Sun Netras and Sun V100s

Test Movies

Newell Teapot - “hello world” of rendering

- 360 HD Frames (120kB/frame)

- 1- 46 vNodes on Beowulf Cluster

- 100Mbps network

Run Time

Frame Rate

One vs Two processor

Conclusions

• Easy to combine

– Distribution and fault tolerance of Jini

platform

– High performance native platform code

• Transport files over JavaSpaces

• Scalable to realtime rendering possible

– Some realtime SD processing done

Future work

• Test assumptions regarding network

bandwidth.

– Optimistic about scalability

• Test with production quality RIB files

• Generalise infrastructure for other

distributed processing tasks

Thank you for Listening

