Using Jini and JavaSpaces
for Clustered 3D Rendering

Simon Kent - Brunel University
Nigel Warren - Zink Digital Ltd

Brunel

UNIVERSITY

WEST LONDON

Introduction

Rendering problem space
— Bandwidth heavy
— Computationally heavy
— Distributed
Aim
— Improve on current approaches

— Understanding capabilities of Jini and
JavaSpaces in this environment

Brunel

UNIVERSITY

WEST LONDON

Rendering Process

. ‘ , .

Scene Descriptor Renderer Rendered Images
(RIB File)

Brunel

UNIVERSITY

WEST LONDON

Angel Renderer

Developed by Dr lan Stephenson at NCCA

Pixar Renderman Interface Compatible

— RIBs and shaders

Portable ‘C’ code (not open source)
— Windows, Mac OSX, Solaris, Linux, SGI

Two pass rendering for Lighting calculations
— >1 RIB file, >1 image file

Brunel

UNIVERSITY

WEST LONDON

Batch Renderers

Rendering is extremely computationally
expensive so ...

Spread the work of rendering a number of frames
over a set of machines and/or over time.

Long running - Overnight, to a number of days

Normally implemented by scripts that generate
scripts that embed |IP addresses etc.

Makes rendering ‘feature length’ movies possible

Brunel

UNIVERSITY

WEST LONDON

Batch Renderers

Batch renderers can suffer from a mix of issues:

 Tight coupling of batch controller to workers
* No ‘dynamic’ changes (can run for days)

* Long running single point-of-failure for batch
controller

 Failure of render job due to worker failure

Brunel

UNIVERSITY

WEST LONDON

Designing Spray

Submitter

Scene Descriptor
RIB File

Rendered Images Collector

vNodes

Designing Spray

Used Jini for service discovery and lookup

Used Blitz JavaSpaces

» Configured for large entries - RIBs & Images
We built Angel installs for each host platform
RIBs are transported as JavaSpace Entries
vNodes ‘exec()’ to Angel on the host machine

Images are also sent back as Entries

Brunel

UNIVERSITY

WEST LONDON

Using exec()

Use sys prop “file.separator”

Use Runtime.getRuntime().exec(...) to make
a Java.lang.Process

Use threaded stream handlers for the

— Input Stream

— Error Stream

Use java.lang.Process to control the exec’d
Process.

— E.g. java.lang.Process.waitFor()

Brunel

UNIVERSITY

WEST LONDON

Test Platforms

Windows - on AMD and Intel

— 1 & 2 processors

Mac OSX - on G4, G5 and Intel

— 1, 2 & 4 processors

Linux - on Intel and AMD

— 1 & 2 processors

Solaris 10 - on Sparc 64

— Single processor blades

Brunel

UNIVERSITY

WEST LONDON

Production Systems

» Mac Quad G5
— 4 processors, 2.5 GB
» Class 2 Beowulf Cluster

— 24 Rack nodes of 2 P4 processors
— Centos 4.1

* The Gridlet (Grid ‘On Tour’)
7/ - Sun Netras and Sun V100s

Brunel

UNIVERSITY

WEST LONDON

Test Movies

Newell Teapot - “hello world” of rendering
- 360 HD Frames (120kB/frame)
- 1- 46 vNodes on Beowulf Cluster
- 100Mbps network

Brunel

UNIVERSITY

WEST LONDON

Run Time

CPU Count vs Elapsed Run time

Brunel

UNIVERSITY

WEST LONDON

Frame Rate

CPU count vs Frame Rate

g

(/)]
~
9 1.50
£
(9]
=

=
o
o

=
Ul
o

Brunel

UNIVERSITY

WEST LONDON

One vs Two processor

vNode count vs Frame Rate

S
g
o
S}

2 CPU per node
-l 1 CPU per node

|
Ul
o

~N
0]
)
£
o]
i
[t

|
o
o

Brunel

UNIVERSITY

WEST LONDON

Conclusions

* Easy to combine

— Distribution and fault tolerance of Jini
platform

— High performance native platform code
* Transport files over JavaSpaces

» Scalable to realtime rendering possible
— Some realtime SD processing done

Brunel

UNIVERSITY

WEST LONDON

Future work

* Test assumptions regarding network
bandwidth.

— Optimistic about scalability
* Test with production quality RIB files

 Generalise infrastructure for other
distributed processing tasks

Brunel

UNIVERSITY

WEST LONDON

Thank you for Listening

Brunel

UNIVERSITY

WEST LONDON

