JSpider
User Manual

version 0-5-0-dev
http://j-spider.sourceforge.net

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 2/121

JSpider 0-5-0-dev User Manual

OVERVIEW ... i 9
I. INTRODUCTION ...ttt e e e et ae e e e e e e eaeeaeeaeeaenaennann 11
A. What iS JSPIAEr? ... ee e 11
B. Definition Of termMS ... 11
C. [T S = 11
D. What can | dO? 12
1. USING JSPITEN ...ttt 12

2. GIvingfeedback....... ..o 12

3. Posting on Mailing lSES.......coiviiiiiiieiie e 12

N 0] 10 0 PP 12

5. REPOIING DUGS. ...t e e 12

6. Submitting fEaIUre reqQUESES.........eoiviiiieiie et 13

7. SUDMItLING PAICNES.......ccueiieieiieeie e 13

1. L8 @][0 = = 1 14
A. JSpider global designcooiiiii s 14
1. MaiN COMPONENES.coiueiieieiiesieerire et esieesieeseeebeeste e e e ssne e e eeereenreens 14

2. JSPIEN ENQINE COME.....eeuieiiiaiieeieesiee et ettt see b sseesee e 15

3. SPI COMPONENLS.......ooiiiiiiiieiiee e 15
RUIES ... e 15
PLUGINS. ...ttt 16

EVENE FITEIS ... 16

4. APl COMPONENES......uureeeiirieeesirieee e e e e s e s e snre e e s nnes 16
OBJECE MOE ... e 17

EVENE SYSLEIM...ceei e 17

B. JSpider applicationscoiiiiiii e 18
1. JSpider @pPliCALION.coiiiiiieie et 18

2. JISPIAEN-TO0L........eeiieeeeieee e 18

C. EVENT SYSteIM ... 20
1. TYPESOf BVENES.....oiiiiiieiiieeee ettt 20

2. EVent DiSPaChiNg.......ccieeiiiiieeii ettt 20

3o EVENE IS e 22

D Object model ... 22
S | (=SSP RT PRSPPI 23

2. RESOUICES.......ciiii ittt 24

E. SPIdEering PrOCESS ...t aaee e 26
INSTALLATION ... e e 27
Il PREREQUISITES . utiiiiitii it et e e et e et e e e eeeeeaaeaennns 29
V. BINARY INSTALLATION ..ttt i e e e aeaeaeeaaeaeeaenans 30
A. DOWNIOAAING .. e 30
B. UNPACKING ... 30
C. Basic configuration............ccooiiiiiiii e 30
D. B =253 41 Lo [31
V. BUILDING FROM CV S ..t 33
A. Setting the CVSROOT ... 33
B. ChecKing OUT. ... e 34

http://j-spider.sourceforge.net 3/121

JSpider 0-5-0-dev User Manual

C. Basic configuration (optional)c.ooooiiiiiiiiiiiiiia.. 34
D. Building from SOUICe ..o 34
E. Running the test SUitecooiiiiiiii i 36
F. USING JSPIAEN ... e 37
VI. FOLDER OVERVIEW ...ttt ee e ee e ee e eeeeeeeeaeaenn 38
US AGE .o 41
VII. STARTING JSPIDER. . .ttt a e aaa e eenas 43
A WINOOWS . . ettt aneens 43

B 6] 7 N 43
C. CoNfIQUIratIONS 44
VIII. SCENARIO: CHECKING A SITEFORERRORScvivvivivnennn. 45
A. G0al . s 45
B. CoNfIQUIratioN ..o 45

1. Global configurationc.ccooiiiiiieiieiie e 46
ProxXy CONFIQUIELIONccueeiieiiiiiie et et 46

(@107 SRR URPOPRORN 46

2. Per-Site CONfIQUIaLioNc.coiuieiiiieieie e 47

Site Configuration “‘DASE’cooiiiieriiieee e 47

Site Configuration “default’ ..o 48

3. Plugin ConfigUuration............coceeieereeiie et 49
CONS0IE PIUGIN.....e ettt eneene e 50
FHEWIITEr PIUGIN ... 50
StatusBasedF1EWTer PIUGINcooeoiieiiieeeesee e 51

C. EXaMPIE .. 51
1. CONSOIE OULPUL......cc.eieeieieeitie sttt 52

2. BDAOUL. ...t 55

3. EITOr-rgPOrt.OUL........cooiiieiee e 55

IX. SCENARIO: DOWNLOADING A SITE TO LOCAL DISK 56
A. G0al . s 56
B. CoNfIQUIratioNoo e 56

1. Global configurationccccooiuieiieeiieiie e 56

2. Site-SPeCifiC CONfIQUIALIONS.......ccueirrieieesiee et 57

Site configuration ‘DaSE’c.cooiiiiiiiiei 57

Site CONfIQUIALION “SKIP’couieiieiieeieeiee sttt ee e 57

C. EXaMPIE .. 58
D. Sample OULPUL. ... e 58
X. SCENARIO: PLAYING AROUND WITH JSPIDERccvvvvvnnennn. 59
A. The default configurationccoiiiiiiiiiiiiiiieans 59
1. CONFIQUIBLION.eiieiieiieiie ettt 59

2. SHAITING ettt n e 59

G T O 1 11 o | ST PPRUPRRPPIN 59

B. Forgetting about robots. Xtooiieiiiiiiiiiiieee 61
C. (€To] 1o ol aTo] Bl foTo N0 [=T=T o J 62
XI. USING JSPIDER-TOOL . utitieeieta e e e e e e e e e eaaaaeaaeaennans 65
A. L0 L7 T [65

B TOO0IS e 66

L. NEAOEIS.....oo e 66

http://j-spider.sourceforge.net 4/121

JSpider 0-5-0-dev User Manual

P2 1 1 {0 USSR OPR PR 66

B T BICN e 67

4. AOWNIOBc.eieiieiiee ettt 67

5. FINAINKS. ... e 68

6. BMAIl ... e 68
CONFIGURATION ...t iee 69
XII. ENVIRONMENT ..ttt it e et ie e e e e e e eaeaenaann 71
A. Java 1.3: XML parser Configuration...............ccoeiiieeannns 72
B. JSPIDER_HOME env. variablecooooiiiiiiiiiiiiia, 73
XIHI. CONFIGURATION OVERVIEWt i e e eeeeeeaenes 74
A Common configurationccooiiiiiiiiiiii e 74
B. General configuration ..ot 74
C. Per-site configurationccooiiiiiiiiiii e 74
X1V COMMON CONFIGURATION . ¢t itte e et e e e aeaeaeaeeaannns 76
A Logging subsystem ... 77
1. LOQOEA ITEIMS ...ttt 77

2. CONFIQUIALTON. .. .eiieiiee ettt 77

3. USING LOGA] ..ottt 78
Adapting the |0g4] configUIation............coocuieieereenee e 78
Configuration change example............ocoiiiiiiieieene e 78

4. USING IDK 1.4 10QGING. .-+t euveereerirearianieenieeaeesreenseessesseesseesseesseesseesans 80
XV. GENERAL CONFIGURATION ...uiitie i e eia e e ie e eaeaaeaannns 81
A. The Wefault”configuration............ccoiiiiiiiiiiiiiii s 81
B. Other configurationscoooiiiiiiiii i 82
C. Configuration Fileso e 84
D. JSPIEr.PropPerties ..o 85

1. PrOXY SEHINGS -.ooveeeieiee ettt snne e 85

2. TRrEAING. ... i 86

3o USEE AQENL ... 86

A, RUIES.....ooeeee e 87

TS (0] =0 L= OO RPPPRPRRRPRRPRIN 91
XVI PER-SITE CONFIGURATIONS ...ttt i i ieeeeeeeeeeaenn 93
A ST LI o] o] o1=T o N TS P 94
B. Site-specific configuration files ...l 95
1. SiteNANAIINGcoiiiiieieee e 95

2. ROBOLSIXE ..t 95

3o TRIOING. ..coeeeeeee e 96

N (04 PR 98

O, USEr AQEN .. e 98

B. COOKIES... .ottt ettt en e 98

T RUIBS.....c et 99
XVII. PLUGIN CONFIGURATION . ..ttt e it ie e eieeeeie e eaaeeaeen 101
A. Plugin.properties ... e 101
1. Global event filteringcocooiieieiriieee e 101

2. Plugin definitioncocooiieiieniie e 102

B. Plugin configuration files......... ... 103
1. Pluginimplementation Class..........cccooiiieiieiiciiieeee e 103

http://j-spider.sourceforge.net 5/121

JSpider 0-5-0-dev User Manual

2. Local event filtering........cooeeiieiieie e 103

3. PlUgin ParamMELErSccueiiieeiiieiie ettt eee e 103

C. Default plugins ... 104
1. CoNSOIE PIUGIN......oiiiiiieiie e 105
CONFIQUIBLION. ...t 105
EXAMPIE ... 105
SAMPIE OULPUL. ...ttt 107

2. VEOCILY PIUGIN ... 109
EXAMPIE ... e 109
CONFIQUIBLION. ...t 110
Creating teMPlELeSooeieieeee e 110
Template eXamPle.........coiiiiiiee e 111

3. FIEWIITEr PlUGIN ..o 112
CONFIQUIBLION. ...ttt 112

4. Status-Based FileWriter plugincooceiiieiienienieeeeesee e 112

5. DISKWIILEN PIUGIN ..ot 113
APPENDICES. ... 115
XVIII. PROJECT INFO . tiiei et e e e ee e eeee e eeeaaeaaenns 117
XIX. VERSIONING ...ttt i et e e e e e et iaeee e eaeaeaaenaanns 118
A. Release builds ... 118
B. Release candidatesccoiiiiiiiiiiiii e 118
C. Development buildso 118
D. CVS VEISIONS ..t e 119
XX HISTORY ettt 120

http://j-spider.sourceforge.net 6/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 7/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 8/121

JSpider 0-5-0-dev User Manual

Part

http://j-spider.sourceforge.net 9/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 10/121

JSpider 0-5-0-dev User Manual

1. Introduction

This section will introduce JSpider and give some general
information about the project.

A. What is JSpider?

JSpider is an open source project, written entirely in Java. (J2SE).
It is an implementation of a highly flexible, configurable web robot
engine.

B. Definition of terms

This is a list of terms used throughout the document with their
definition:

Base Site
The base site is the site that functions as the starting point of
the spidering process. When you start JSpider, the URL given
to start the spidering from will determine the base site.
The base site is the site of which the base URL is part of.

Base URL
The base URL is the URL given to JSpider to start the
spidering process from (at startup time).

Parsing
Used as a term for examining the content of a web page to
find links to other resources in it.

Spidering
Spidering is the process of fetching resource from a web
server, reading the content and looking for references to
other resources to fetch.
This way, the whole site (and other sites) can be tiscovered”~

C. License

JSpider is distributed under the LGPL license.

More information can be found at http://www.opensource.org.

The license itself comes with the JSpider distributions and is also
accessible at http://www.opensource.org/licenses/Igpl-license.php.

http://j-spider.sourceforge.net 11/121

JSpider 0-5-0-dev User Manual

D. What can | do?

JSpider is a piece of software that3 evolving constantly. Well,
great, but what can | do to make it even better?

1. Using JSpider

Well, as this is a free piece of software, you could simply start by
using it. We hope that the countless hours of thinking, designing,
implementing, testing and refactoring JSpider will pay off.

We really hope that this project will be of use to many of you out
there.

2. Giving feedback

We cant create a top product without feedback from the user base.
If you have any comments, ideas, success or failure stories
regarding JSpider, please post them on our mailing lists or the
forums. Of course, any questions you might have are welcome and
will be answered as soon as possible by the people who know the
ins and outs of the software.

3. Posting on mailing lists

A great way of communicating is mail. JSpider has different mailing
lists to discuss its working, ask questions about the usage,
configuration and workings, and another subject you can think of.
The procedure to subscribe and post to the mailing lists, as well as
the information on how to browse the archives can be found in the
reference section.

4. Forums

The sourceforge project site also contains forums that can be used
to ask questions and discuss the future of the project.

The URL of the JSpider forums can be found in the reference section
at the end of this manual.

5. Reporting bugs

If you face bugs in JSpider while using it, or find that it behaves
another way than it should be, you can fill out a bug report on the
sourceforge project site.
This makes sure that your issue will attract the attention of the
developers and will be handled appropriately.

http://j-spider.sourceforge.net 12/121

JSpider 0-5-0-dev User Manual

Bug reporting URLs can be found at the end of this manual

6. Submitting feature requests

You 1l probably encounter situations where you find that JSpider is
lacking functionality, or doesnt support something out-of-the-box
that would be beneficial to many people.

If you think of any feature, any idea related to JSpider, please
submit it to the project site on sourceforge as a feature request.
Even if you doubt how and if your idea is implementable, it doesnt
cost anything to voice it to the world.

The location at which you can find the bug tracking is given at the
end of this document, in the reference section

7. Submitting patches

If you are a developer, you might want to dive into the JSpider code
right away.

If you implement some new functionality, or fix a bug, you can
contribute this to the project.

Instructions on how to do this can be found in the developer3
manual.

http://j-spider.sourceforge.net 13/121

JSpider 0-5-0-dev User Manual

11. Concepts

This section will introduce you in the concepts of JSpider. When you
understand the different components and their interaction, you 1l be
able to configure JSpider to adapt it to your needs in any situation.

A. JSpider global design

JSpider is an engine, not an application. Although an out-of-the box
installation is very useful already, it is designed to be easily
extended and configured.

This means that the engine (the core) of JSpider is the most
important part. Actual functionality will be added afterwards, and
will be invoked by the engine.

1. Main components
The main parts that can be distinguished are:
?? the engine core
?? a model, describing all spidered resources, sites, etc...

?? an event model notifying of what3 going on
?? components implementing a SPI (Service Provider Interface)

JSpider overview

Rules Event Filters Plugins

SPI
API

CORE

http://j-spider.sourceforge.net 14/121

JSpider 0-5-0-dev User Manual

2. JSpider engine core

The main part of JSpider is the engine core, that implements the
most basic functionality delivered by JSpider.

3. SPI components

The real application functionality that will be of use to you will be
implemented by the components that adhere to certain SPI
interfaces.

JSpider comes with a number of implementations of these
components, and you can also implement your own.

There are actually used to extend and add functionality to JSpider.

There are several types of components that can be used by JSpider.
The most important ones are:

?7? Rules
?? Plugins
?7? Event Filters

Rules

Rules decide which resources should be fetched and/or processed
by JSpider. By construction a set of rules on a global or per-website
basis, you can define JSpider 3 behaviour and scope.

There are a lot of rule implementations that come with JSpider, and
you can also develop your own.

Rules are executed one after another, until a decision is made.
The decision types that can be taken are:

?? dont care
The rule states it doesn t apply to the situation and doesn t
interfere with the decision

?? accept
The rule checked the situation and decides that the URL
should be accepted for spidering or parsing (depending on the
situation in which it was used)
Other rules can override this decision, however.

?? ignore
The rule checked the situation and decided that the resource
should be skipped for processing (fetching or parsing,
depending on the situation presented). This decision is not

http://j-spider.sourceforge.net 15/121

JSpider 0-5-0-dev User Manual

vetoable anymore by another rule and ends the decision
chain.

?? forbidden
The rule checked the situation and decided that the
processing of the resource (fetching or parsing, depending on
the situation) is forbidden. This is a stronger version of
ignore, and also ends the decision chain.

With every resource, the results of the spidering and parsing
decision chain is saved, so you can always trace what rule caused a
certain resource (not) to be fetched or parsed.

Plugins

Plugins are components that have access to the data structures
exposed by JSpider, and are notified of certain events happening.
They can then take appropriate actions.

These actions can be anything you can think of:

?? Writing a report file

?? Displaying a message on the console
?? Writing a fetched resource to disk

?? Sending a mail to someone

?? Etc...

By implementing your own plugin, you can add functionality to
JSpider. You could, for instance, construct a configuration in which
JSpider tests a certain site for 404 errors (link errors), and send an
e-mail with all error links to the webmaster.

Another usage would be to mirror a website on your local disk: for
this purpose, you would enable a plugin that writes every fetched
resource into a file on your harddisk.

Event Filters

Event Filters can select the events that have to be handled by the
system as a whole or a particular plugin.

4. API components

The JSpider API consists out of the following type of objects

?? an object model
?? an event system

http://j-spider.sourceforge.net 16/121

JSpider 0-5-0-dev User Manual

Object model

The model is an object model that represents everything that
JSpider encounters while spidering:

?? Sites

?? Resources (URLS)

?? Content

?? References between resources

?? Cookies

?? Etc...

This model can be accessed from within the components in order to

look up data, write a report, calculate statistics, etc...
The model is backed by the storage component.

Event system
The event system is a group of event classes that will be used to
notify all interested plugins of certain events happening during the
spidering progress.

There are three types of events in JSpider:

?? engine events
spidering started, stopped, configuration chosen,

?? spidering events
site discovered, resource spidered, fetch error,

?? monitoring events
give information about the spidering progress and the thread
pool occupation.

http://j-spider.sourceforge.net 17/121

JSpider 0-5-0-dev User Manual

B. JSpider applications

JSpider is useable in two forms:

?? A standalone application (JSpider itself)
?? A set of useful tools (JSpider-tool)

1. JSpider application

The main JSpider application is a web robot that1l spider (fetch)
web resources, parse the result content, search for new links, and
fetch those also.

This whole process is configurable, and only resources that apply to
certain rules are spidered and/or parsed.

You can easily limit the spidering process to:

a certain web site

a certain group of websites

a certain part of a web site

resources with a certain content type

resources that are referenced from a certain other site
etc...

NN IIIN

The possibilities are virtually unlimited.

During and after this process, reports can be written to disk,
fetched resources can be downloaded to a local folder, errors can be
reported, etc...

2. JSpider-tool

The JSpider-tool is a tool that can do several things for you, all
based on JSpider. Instead of spidering everything that3 within the
boundaries of the configured rules, it is aiming towards a single web
resource (URL).

Tools exist to:

?? Download a file

?? Show the contents of a web resource

?? Show all info about a web resource

?? Show all HTTP Headers given by the server
?7? Etc...

http://j-spider.sourceforge.net 18/121

JSpider 0-5-0-dev User Manual

While this functionality is implemented in a way that it depends on
the JSpider core, it can be used separately from the main
application.

More information on how to use these applications can be found in
the section on the usage of JSpider.

http://j-spider.sourceforge.net 19/121

JSpider 0-5-0-dev User Manual

C. Event system

The JSpider event model is a group of java event classes that
represent events that can occur while spidering websites.

These events include:

An event telling that a new site was found

An event telling a certain web page was fetched

? An event telling the robots.txt file for a certain site was
interpreted

?? An event telling that a web page wasnt found on the server

?? An event telling a resource is skipped for processing because

access to it wasn 1 allowed by some rule
»

I3

These events will be generated in the JSpider core, and the
JSpider event dispatcher will dispatch them towards the
plugins.

Each plugin can then take appropriate action for each event. A
plugin that is interested in finding 404 errors, for example might
use the notification of a webpage-not-found-event to write the URL
of the page in a file, along with the page that referred to it.

1. Types of events

Different types of events can be distinguished, along different
criteria:

?? Whether the event is a Engine-related, spidering-related, or
a monitoring event.

?7? Whether an event is filterable or will be dispatched no
matter what

?? Whether the event expresses an error situation or not.

These differences can be used to filter, select and interpret events.
They can be used inside plugins to determine the appropriate action
to take.

2. Event Dispatching

It3 important to understand what happens between the raising of
an event during spidering by the JSpider core, and the moment it
eventually arrives in a plugin.

http://j-spider.sourceforge.net 20/121

JSpider 0-5-0-dev User Manual

The process of dispatching is done as follows:

Event dispatching

Local event filtering

Monitoring events
Event Filter

Engine events P|Ug|n A

Event Filter
Global event filtering -

— Spidering events
Monitoring events Event Filter

Ewvent Filter

Engine events

Ewvent Filter Mo local event filtering
Spidering events — Plugin B
Ewent Filter

As you can see, the event dispatching starts at the dispatcher. This
component will throw the events to be dispatched through the
dispatching chain.

The first component met is the Global event filtering. This is a
group of filters (one for each type of event — engine, spidering,
monitoring), that will let or let not pass a certain event.

If an event is filtered out at this point, it will never arrive at any

plugin.

The second component exists per plugin: it is the local event
filtering, which functions in the same way as the global event
filtering, except that is put right in front of a particular plugin, so
events that are filtered out will not reach that particular plugin, but
may be let through to another one.

It is also possible to disable the global event filtering as a whole, or
the local event filtering for a certain plugin. (As plugin B in the
example picture).

This results in all events being passed through.

By customizing the event filtering chain, you can configure
JSpider to focus on the aspect of the spidering process you are

http://j-spider.sourceforge.net 21/121

JSpider 0-5-0-dev User Manual

interested in. If you te using JSpider to genere error reports for a
website, youte probably only interested in error events.
If youte automating the JSpider process, youte probably not
interested in monitoring events telling how much load there is upon
the thread pools, etc...

3. Event list

In order to get a better insight of the JSpider event system, here is
an (incomplete) overview of all event classes: (Note that all
events are in packages under net.javacoding.jspider.api.event):

The engine-related events:
engi ne. Spi deri ngSt art edEvent
engi ne. Spi der i ngSt oppedEvent
engi ne. Spi der i ngSunmar yEvent

The monitoring events:
noni t or . Moni t or Event

noni t or . Schedul er Moni t or Event
noni t or. Thr eadPool Moni t or Event

And finally the spidering-related events:
f ol der. Fol der Di scover edEvent

resour ce. EMhi | Addr essDi scover edEvent

r esour ce. EMai | Addr essRef er enceDi scover edEvent
r esour ce. Mal f or redBaseURLFoundEvent

r esour ce. Mal f or redURLFoundEvent

r esour ce. Resour ceD scover edEvent

r esour ce. Resour ceFet chedEvent

r esour ce. Resour ceFet chEr r or Event

r esour ce. Reso ur ceFor bi ddenEvent

r esour ce. Resour cel gnor edFor Fet chi ngEvent
resour ce. Resour cel gnor edFor Par si ngEvent

r esour ce. Resour cePar sedEvent

r esour ce. Resour ceRef er enceD scover edEvent

si t e. Robot sTXTFet chedEvent

si t e. Robot sTXTFet chEr r or Event
si t e. Robot sTXTM ssi ngEvent

si t e. Robot sTXTSki ppedEvent
site. SiteD scover edEvent

si t e. User Agent CbheyedEvent

D. Object model

The second part of the public APl of JSpider consists out of an
object model. This object model represents all entities found during
the spidering process.

http://j-spider.sourceforge.net 22/121

JSpider 0-5-0-dev User Manual

Object Model

The entities presented here are:

Site

Resource

Folder

Cookie

Resource Reference

Email Address

Email address reference

Decision (one for the spidering, one for the parsing decision)
Decision Step

N YIIIIIIN

The public model interfaces and classes are found under the
package net.javacoding.jspider.api.model.

1. Sites

The site is a type of object in JSpider that aggregates all data about
resources that make up a web site. The unique combination of a
hostname/port makes up a site.

The status of a site is dependent on the stage of processing it is in:

?7? STATE_DISCOVERED
?7? STATE_ROBOTSTXT_HANDLED

http://j-spider.sourceforge.net 23/121

JSpider 0-5-0-dev User Manual

?7? STATE_ROBOTSTXT_ERROR
?7? STATE_ROBOTSTXT_UNEXISTING
?7? STATE_ROBOTSTXT_SKIPPED

As you can see, the state of a Site is highly dependent on the
processing of the robots.txt file.

2. Resources

The most important object type in JSpider is a Resource.
It is the representation of a web page, a URL.

An important concept you should know about is the status a
resource can have. JSpider knows different statuses for resources:

?? Discovered
Means that the resource is found in a web page that links to
it, but no processing has been done yet

?? Fetch_lIgnored
Specifies that some rule decided that the resource should be
skipped for fetching (it will not be retrieved from the
webserver, so we wont know whether it actually exists).

?? Fetch_Error
Used when we tried to fetch the resource, but this resulted in
an error situation.

?? Fetch_Forbidden
Used when our rules (custom, robots.txt) tell the resource
may not be fetched. Mostly used for robots.txt disallow rules.

?? Fetched
Used when the resource has been retrieved, but no
intepretation has been done yet.

?? Parse_lgnored
Used when rules decided that the resource that was fetched
from the server shouldnt be inspected to find links to other
web pages.
This will be the final stage for images and binary files, for
example, since it3 no use parsing them to find other links.

?? Parse_Error
Specifies that we tried to parse the resource, but this resulted
in a severe error (rare).

http://j-spider.sourceforge.net 24/121

JSpider 0-5-0-dev User Manual

?7? Parsed
Specifies that the web page was parsed (inspected to find
other links in it). This is the final stage for web pages.

During the parsing process, all resources will loop their lifecycles.
According to rules, and encountered errors, they can end up in
some specific state.

http://j-spider.sourceforge.net 25/121

JSpider 0-5-0-dev User Manual

E. Spidering process

While this topic is strictly about JSpider internals, it might help to
explain these concepts a bit.

The design of JSpider is based upon a principle of micro-tasks.
Every piece of work that should be carried out by JSpider is made a
task.

For instance:

?? The task of fetching a web page

?? The task of parsing a web page an finding links in it

?? The task of deciding whether a certain resource needs to be
fetched (according to rules, robots.txt, etc...)

?? The task of deciding whether a certain resource needs to be
parsed (according to rules)

?? The task of interpreting a robots.txt file
»

All these tasks can produce new tasks:

?? The parsing of a web page can find new URLs, which should

be decided upon whether to fetch them or not

These tasks are scheduled in two different groups, according to
their type: we distinguish Thinker tasks and Spider tasks.

Spider tasks are tasks that go out on the network/internet and
fetch some data (web page, robots.txt).

Thinker tasks are tasks like parsing a web page, deciding whether
a resource should be fetched or parsed, interpreting a fetched
robots.txt file, etc...

This distinction will become important, as these two types of tasks
are carried out by two different thread pools. (see later in the
configuration section).

http://j-spider.sourceforge.net 26/121

JSpider 0-5-0-dev User Manual

Part

http://j-spider.sourceforge.net 27/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 28/121

JSpider 0-5-0-dev User Manual

111. Prerequisites

JSpider has some prerequisites to run:

?? J2SE 1.3+ Runtime
?? XMLParser (Xerces, ...) installed (comes with JDK1.4)

If you Te planning to build from CVS installation, you 1l also need:
?? a CVS client

?? Ant 1.5.2 (http://ant.apache.orq)
?? JDK 1.3+

http://j-spider.sourceforge.net 29/121

JSpider 0-5-0-dev User Manual

1VV. Binary Installation

The easiest way to install JSpider, is to download a binary JSpider
distribution. These distributions are released from time to time
when the codebase is considered stable enough, and a considerable
amount of new functionality or bug fixes has been implemented
since the previous release.

A. Downloading

The first step to do when installing a binary distribution is
downloading the installation.

Our download page can be found at:
http://sourceforge.net/project/showfiles.php?group_id=65617
It is always recommended to use the latest (stable) release.

We offer our downloads in several flavours: simple binary
downloads, or packages with the source included.
You can download them as a zip (jar) archive or a tar.gz file.

The filenames given are just examples.

Since the distribution file contains the JSpider version, you
should follow the examples using the filename of the actual
file you downloaded.

B. Unpacking

The process of unpacking is dependent on the type of file you
downloaded. For a zip (remember to use the appropriate name):

jar —xvf jspider -0-5-0-dev.zip

Will unzip the archive to it3 current location. Of course you can
also use WinZip, or any other program you te comfortable with.

For a tar.gz file:

gunzi p j spider -0-5-0-dev.tar. gz
tar —xvf jspider -0-5-0-dev.tar

C. Basic configuration

http://j-spider.sourceforge.net 30/121

JSpider 0-5-0-dev User Manual

Before you can test your JSpider installation, you should set your
proxy server in the jspider.properties file (only have to do this if you
want to access a resource on the internet and when you te behind a
proxy server).

Edit the conf/default/jspider.properties file and look for these lines:

j spi der. pr oxy. use=f al se

j spi der. proxy. host =

j spi der. proxy. port=

j spi der. proxy. aut henti cat e=f al se
j spi der. proxy. user =

j spi der. pr oxy. passwor d=

Adapt them as needed (see section on configuration for more
information about this)

If you te going to test JSpider only on your local network (or even a
webserver on your own machine), you can simply skip this step for
now.

IMPORTANT NOTE: If you have a Java version lower then 1.4
(JDK1.3, ...), youTl have to add an XML Parser to your system
in order for JSpider to work!

See the section about “Environment Configuration””’for more
details on this.

This is all that is needed to start off with JSpider. Once you get a
good understanding of how the system works, you will be able to
fine-tune every aspect of it.

D. Testing

Now you Ve got your JSpider instance, CD into the bin *folder.

Start JSpider and spider the site of your choice (in the example, the
webserver on the localmachine).

Since we don t specify anything more, the tefault >configuration will
be used (all the settings in the files under the conf/default folder):

On Windows:
Jspider http://| ocal host

On unix:
./jspider.sh http://] ocal host

http://j-spider.sourceforge.net 31/121

JSpider 0-5-0-dev User Manual

JSpider should start spitting out many lines in your console. After
the spidering has stopped, you 1l find many reports in the dutput”
folder.

It3 a good idea to play around with JSpider on a small site at
first, so you can really understand what3 happening, and
which configuration changes cause which differences.

If you spider large sites, also be prepared for longer spider
sessions!

http://j-spider.sourceforge.net 32/121

JSpider 0-5-0-dev User Manual

V. Building from CVS

The JSpider project has regular releases, both of stable (production)
releases, as well as Wevelopment~ releases which introduce new
features and bug fixes between two major releases.

If you want the very latest changes, you can build your own JSpider
from CVS source.

This section explains how to get the source from the CVS system,
build a JSpider distribution, and test it.

The CVS HEAD version of JSpider may be unstable, and new
features may be undocumented. If youtTe not going to
develop on it, or dont have a very good reason to use the
latest CVS version, you te probably better off with the latest
release download.

Anyway, if you decide to build from CVS, here 3 how to do so:

This explanation assumes a CVS console client being installed on
the system and put on the PATH environment variable. If you use a
CVS GUI client, you should be able to extract the necessary
information from the explanation.
(Also see the appendices section).

A. Setting the CVSROOT

The CVSROOT for the JSpider project must be set first.
On Unix:

export CVSROOT=

: pserver: anonynous@vs.j -spider.sourceforge.net:/cvsroot/j -spider
On Windows:
set CVSROOT=

: pserver: anonynous@vs.j -spider.sourceforge.net:/cvsroot/j -spider

after that, you can use tvs login~(with empty password) to verify
you didnt make a typo in the CVSROOT, and the CVS server is
accessible:

cvs login
(give empty password)

http://j-spider.sourceforge.net 33/121

JSpider 0-5-0-dev User Manual

Normally, this should return without an error.

B. Checking out

You now can checkout the JSpider sources.

There are two ways to do this:
?? a CVS checkout
?? a CVS export

A checkout keeps the reference to the CVS repository. Use this if
you te thinking of making modifications to the sources. This way,
you can create a diff file to have your changes patched.

If you te only interested in building the actual sources, and you te
not going to change them, you can use the export function to get
the sources without any CVS administrative files.

To do a checkout, use:
cvs checkout —P jspider -main

To do an export, use:
cvs export —r HEAD j spi der - mai n

You can also checkout or export an older version of jspider like this:
cvs checkout —P —r jspider -0-1-0-dev jspider -nmain

or
cvs export -—r jspider-0-1-0-dev jspider -nain

You should see a listing of all files being copied to your hard drive

now under a folder jspider-main? CD into this folder and you te
ready to continue...

C. Basic configuration (optional)

If you copy the file base.user.properties”to Uuser.properties”
and fill in the right values for your proxy server, your JSpider
instance will be built with these settings already in each and every
configuration.

While you can skip this step, it3 quite handy to do so, otherwise
you 1l have to edit the jspider.properties file in every configuration
after the build is done.

D. Building from source

You te now ready to build JSpider. We have an Ant script to do so,
which can be queried for it3 targets using:

http://j-spider.sourceforge.net 34/121

JSpider 0-5-0-dev User Manual

ant —proj ecthel p

This will return something like this:
Bui l dfile: build. xm
Mai n targets:

bui | dConpl et e bui | dSi npl e + docunent ati on

bui Il dD stro bui | dConpl ete + functional Tests + packagi ng

bui | dSi npl e buil ds a runnabl e and testable distribution with
technical tests

test Ful | runs the JUnit technical and functional tests

t est Functi o nal runs the JUnit functional tests

testinteractive runs the JUnit tests interactively (sw ng ui)

t est Techni cal runs the JUnit technical tests

Default target: buil dSinple
The ant targets for building JSpider are:

?? buildSimple (default)
This one compiles JSpider, runs a basic testsuite and prepares
a distribution in dist/prepared”

?? buildComplete
This one does the same as buildSimple, but adds
documentation (javadoc, todo list, junit test report, ...)

?? buildDistro
This one does the same as buildComplete, but runs a
complete online test suite also
(tests JSpider in a real-life, functional way against resource on
http://j-spider.sourceforge.net)
It also creates distributable packages (zip, tar.gz — both bin
and src) in dist/packaged ~

For now, we only need a simple build, so we e going to:
ant

You 1l see the code compile, and the technical (simple class-level)
junit tests to be carried out.

After this process has finished, youll find a complete JSpider
instance in a subfolder dist/prepared

If you have skipped the previous step of configuring your proxy
server before building, now is the time to edit the jspider.properties
file in every subfolder of Wist/prepared/conf~to do so...

http://j-spider.sourceforge.net 35/121

JSpider 0-5-0-dev User Manual

E. Running the test suite

Each time you build JSpider, the most basic test suite, the
technical tests, will be run.

There is, however, a more thorough test suite, the functional
tests, which test JSpider as a whole by letting it spider well-known
resources on http://j-spider.sourceforge.net, and verify the results
with the expectations.

The ant targets used to test JSpider are:

?? TestTechnical
Runs the most basic test suite, simply testing JSpider classes.

?? testFunctional
Runs a set of functional tests, for which JSpider needs to be
configured (proxy server), and an internet connection needs
to be available.

?7? testFull
Runs both the technical and the functional tests

?7? testlnteractive
Which starts the JUnit GUI interface for some interactive
testing.

After testing the JSpider instance with:
ant testFull

We will generate the JUnit test reports with:
ant generat eJUni t Docs

You 1l now find the results of the tests in Stage/doc/junit’ as funit-
noframes.html”or fndex.html”(framed version).

IMPORTANT NOTE: The functional tests are dependent
on a bunch of server-side scripts and web pages to test
upon. Since these change with the JSpider sources itself,
only the testcase files for the latest JSpider version (CVS
HEAD) are online. This will cause functional tests of older
versions to fail, while the tests succeeded at the moment of
release in the past.

If you checkout the jspider-site module for the correct
version and install the scripts locally, you can test against an
older version.

http://j-spider.sourceforge.net 36/121

JSpider 0-5-0-dev User Manual

F. Using JSpider

When your freshly built JSpider instance passed it3 tests, you can
start using it: CD into the dist/prepared/bin *folder and launch it:

Windows:

j spi der http://I|ocal host
Unix:

./jspider.sh http://I ocal host

http://j-spider.sourceforge.net 37/121

JSpider 0-5-0-dev User Manual

V1. Folder Overview

Once you have your JSpider installed, you 1l find a folder structure
on your hard drive that looks like the picture:

bin
[Z] jspider-tool.bat
[£] jspider-tool.sh
[£] jspider.bat
[£] jspider.sh
[£] velocity.log
COMMTIon
= conf
=1 1 logging
E| commons-logging. properties
2 logd .l
E| logging. properties
[= conf

[+ checkErrars
=] default
phugins
[+ velocity

[

[+ smidump
_"] console, properties
% diskwriter, properties
g] statusbasedfilewriter, properties
|Z] velocity, properties
j xrnldump. properties
= sites
E] default. properties
g j-spider. sourceforge. net. properties
E] skip. properties
|E] jspider.properties
3 plugin. properties
g sites.properties
download

u’.ﬂ.

[#

You can use this picture as a reference for the rest of this
document, as all files and folders well be talking about are

presented here.

Most of the files are needed for configuration purposes, so well
explain how they can be used to customize JSpider in the following

sections.

For now, this is an overview of the folders found in your JSpider
instance:

http://j-spider.sourceforge.net 38/121

JSpider 0-5-0-dev User Manual

?? bin
folder containing all the JSpider startup scripts, for JSpider
and JSpider-tool, both for windows and unix environments.

?? common
Files that are shared over all configurations

o Conf
Configuration files that are common to all configuration
sets.

?? conf
Folder with all configuration sets

0 default
Default configuration set which will be used when none
is specified

o checkErrors
Out-of-the-box configuration that spiders a site looking
for errors (404, 500, ...)

o download
Out-of-the-box configuration that spiders a site and
downloads it to the local disk.

0 Unittest
Configuration that3 used when testing JSpider. Not to
be used manually.

?? lib
Folder containing all needed libraries (jar files)

?? output
Folder in which all output files will be written by default
(reports, downloads, ...)

?? src (only if you downloaded the source distribution)
While this list is not exhaustive, it should give you a good overview

of what files and folders are part of JSpider. We 1l talk about all
important files in the configuration section.

http://j-spider.sourceforge.net 39/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 40/121

JSpider 0-5-0-dev User Manual

Part

http://j-spider.sourceforge.net 41/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 42/121

JSpider 0-5-0-dev User Manual

VI1Il. Starting JSpider

JSpider is started from the command prompt via a startup script.
This script makes sure that the needed properties are set, that the
right classpath is used (with all additional libraries on it), and that
the JSPIDER_HOME variable is propagated to the main class.

These startup scripts can be found in the {JSPIDER_HOME}/bin
folder.

If the JSPIDER_HOME environment variable is not set, it will be set

to <.7 since JSpider assumes to be started from within the bin
directory then.

A. Windows

On windows, the syntax to start JSpider is like this:
jspider url [configuration]

This will execute the jspider.bat batch file.

Examples:

j spider http://Iocal host
Will start JSpider spidering the web server on the local machine with
the default configuration (since none is specified).

jspider http://local host checkErrors
Will start JSpider spidering the web server on the local machine with
the configuration found under the folder tonf/checkErrors?

B. Unix

On unix, the syntax to start JSpider is like this:
./jspider.sh url [configuration]

This will execute the jspider.sh shell script.

Examples:

./jspider.sh http://] ocal host
Will start JSpider spidering the web server on the local machine with
the default configuration (since none is specified).

./jspider.sh http://local host checkErrors

http://j-spider.sourceforge.net 43/121

JSpider 0-5-0-dev User Manual

Will start JSpider spidering the web server on the local machine with
the configuration found under the folder tonf/checkErrors?

C. Configurations

The concept of multiple configurations allows you to create a
separate configuration per environment or purpose for which you
use JSpider.

Some out-of-the-box configurations come with JSpider:

?7? default
?? checkErrors
?? download

You can simply create your own by adding an extra folder for your
custom configuration to the 7conf~folder and putting the necessary
files in it.

(It3 a good idea to start with a copy from another working
configuration and customize that one).

In the new sections in this manual, well be looking into some
scenarios in which you can use JSpider, and explain the
configuration set up for those purposes.

http://j-spider.sourceforge.net 44/121

JSpider 0-5-0-dev User Manual

VI1Il. Scenario: Checking a
site for errors

In this section, we 1l dive into a real-life usage of JSpider. We1l be
using it to check a site of errors.

You might want to keep an eye on the Configuration part of this
manual while reading this information.

A. Goal

It3 a hard task to keep a web site up-to-date. All the time, new
content is added, outdated content is removed, etc...

Another fact which adds to the complexity of maintaining a website,
is that a site doesnt stand on it3 own. You probably have a bunch
of links to related sites.

Keeping track of changes in these sites (removed content, ...) is
important as well, as it may outdate links on your site.

Without a decent tool, it is fairly impossible and surely time-
consuming to keep a site of any decent size clean and error-free.

JSpider can help you in this process, as it can automatically traverse
your site, checking each link found on it, also to external sites.

It can generate reports that pinpoint the exact problems (which
resources linked to an unexisting resource, which web pages
resulted in an internal server error, etc...)

In minutes, JSpider can check your whole site for errors, and
generate these reports for you. This dumb and repetitive checking
task would cost you hours or days otherwise, and isnt as thorough
when done by a human.

What we want to do with JSpider is:
?? Check all links in our site
?? Check all references to resources on other sites

?? Write a report of all errors found
?? Write reports of each error type encountered

B. Configuration

http://j-spider.sourceforge.net 45/121

JSpider 0-5-0-dev User Manual

There is an out-of-the-box JSpider configuration that helps you with
exactly this problematic: theckErrors?

You can start JSpider using this configuration by typing:

j spi der [host] checkErrors

In this section, we 1l discuss this configuration, in order for you to
understand how it is constructed to aid you in the process of finding
errors on sites.

You might want to make small changes to adapt it to your specific
situation.

1. Global configuration

We 1l start of with the global configuration. Have a look in your
tonf/checkErrors” folder. The files involved in the global
configuration are:

Youll find the file jspider.properties? which contains the global
configuration for this setup.
Open it with your favorite text editor, and have a look through it
while we explain each part:

Proxy configuration

Well, this is something you should fill in. If you need a proxy server
to connect to the internet, you should make sure that these
properties are filled in with the correct values for your situation:

j spi der. proxy. use=f al se

j spi der. proxy. host =

j spi der. proxy. port=

j spi der. proxy. aut henti cat e=f al se
j spi der. proxy. user =

j spi der. pr oxy. passwor d=

See the configuration section for more information on these
properties.

Other
The rest of the configuration can be kept as-is, as it is completely
parallel to the default configuration.

This means:

?? Threading: 5 spiders, 1 thinker
?? Logging via commons-logging

http://j-spider.sourceforge.net 46/121

JSpider 0-5-0-dev User Manual

?? User Agent left default
?? Spider rule: only spidering HTTP urls
?? Parser rule: only parsing text/html mime type web pages

2. Per-site configuration

Open the tonf/checkErrors/sites.properties file.
It should look like this:

j spi der.site.config. base=base
j spi der.site.config.defaul t=default

This configuration is quite simple. We only make the difference
between the site we are testing for errors (the base site) and any
other site that might be referenced by ours.

According to this configuration file,our base site will have it3
configuration in conf/checkErrors/sites/base.properties.

The configuration for all the other sites is described in the file
conf/checkErrors/sites/default.properties.

TIP: If you have several sites that are interlinked, you can add
these with the base “configuration, so they will be treated just like
the base site.
All other sites (not yours) will still be handled via the Wefault”site
configuration.

We 1l discuss those two site configurations in-depth (the most
important part of the configuration will be the rules each time):

Site Configuration base”

This configuration will be assigned to the site(s) wete actually
testing. This means wete going to spider them completely,
checking each and every link.

The rules found in this file (near the bottom):

site.rul es. spi der. count =0

site.rul es. parser. count =0

Well, isnt this simple? No extra rules for the base site (the global
rules still apply).

So, a web page will be spidered if it3 part of a site assigned the
base "configuration, and has a URL with the *http ”protocol (global
rule).

http://j-spider.sourceforge.net 47/121

JSpider 0-5-0-dev User Manual

It will be parsed afterwards if it has a content type of “text/html”’
(global rule).

If you want to restrict access of JSpider to some parts of your site
(that shouldn t be checked for errors), this is your place to do so.

For example, changing to this:
site.rul es. spi der. count =1

site.rul es. spider. 1. cl ass=
net . j avacodi ng. j spi der. nod. r ul e. For bi ddenPat hRul e
site.rul es. spi der. 1. confi g. pat h=/ api docs

Will prevent JSpider from spidering your @apidocs?” folder on your
website.

Other things that you might want to change in this file are:

?? The throttling, to speed up the spidering process

?? The proxy usage, if your site is on the LAN

?? Robots.txt handling, to ignore your robots.txt file

?? The User Agent, to access your site with another user agent

Site Configuration default~”

Every other site (not the one(s) we te testing for errors) will be
assigned the Wefault “configuration.

At first, youl have the feeling that you would simply have to put
the Site.handle "property to false.

However, this leads to a problem: if a link to any other site is found
on your site, the linked resource will be skipped, and you Tl never
know whether your site links to a valid resource, or whether your
link is dead.

Have a look in the conf/checkErrors/sites/default.properties site
configuration file.
You 1l find these rules:

site.rul es. spi der. count =1
site.rul es. spider. 1. cl ass=
net . j avacodi ng. j spi der. nod. rul e. Ext er nal | yRef er encedOnl yRul e

site.rul es. parser. count =1

site.rul es. parser. 1. cl ass=
net.j avacodi ng. j spi der. nod. rul e. Rej ect Al | Rul e

Now this is a bit more interesting. What does this mean?

http://j-spider.sourceforge.net 48/121

JSpider 0-5-0-dev User Manual

A web page of another site (not the base site) will only be spidered
if:

?? Its URL begins with the http protocol (global rule in
jspider.properties)

?? It is referenced from an external site. Only if the link to

the resource is found on another site, we will spider the
resource.
This prevents in-site spidering on the site.
Hey, we te not going to check someone else 3 site for errors,
they should download their own copy of JSpider and do it
theirselves!

A web page on another site (not the base site we te checking for
errors) will NEVER be parsed :

The RejectAllRule tells that none of the resources in this type of site
should be parsed.

This way, we prevent spidering someone else 3 site!

Please note that this way, we only spider web pages on external
sites that we link to in direct: this way, we can make sure we have
no dead links on our site.

3. Plugin Configuration

OK, now we taught JSpider to spider our own site completely, and
only checking web pages on external sites if we link to these in
direct.

But now we want JSpider to report it3 findings during the spidering
process: lets configure some plugins!

In the conf/checkErrors/plugin.properties, you 1l find:

jspider.filter.enabl ed=true
jspider.filter.engine=

net . j avacodi ng. j spi der. nod. eventfilter. All owAl | EventFilter
jspider.filter.nonitoring=

net . j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter
jspider.filter.spider=

net . j avacodi ng. j spi der. nod. event filter.ErrorsOnl yEventFilter

j spi der. pl ugi n. count =3

j spi der. pl ugi n. 1. confi g=consol e

j spider.plugin.2 config=filewiter

j spi der. pl ugi n. 3. confi g=st at usbasedfil ewiter

As you can see in the event filtering configuration, we let pass all
engine events, all monitoring events (we want to see on the console
how JSpider is doing), but only spider events that report errors.

http://j-spider.sourceforge.net 49/121

JSpider 0-5-0-dev User Manual

We also assign 3 plugins to be used:

?? Console, which we 1l use to see the JSpider progression

?? FileWriter, which will write down all our errors in a file report

?? StatusBasedFileWriter, which will generate nice reports on
each problem encountered (list with 404 errors, list with 500
errors, ...)

Let3 have a look at the configuration of the plugins in detail:
Console plugin

The console plugin is the easiest. Open the file
conf/checkErrors/plugins/console.properties, and you Tl find:

pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n. consol e. Consol ePl ugi n
plugi n. filter.enabl ed=fal se

pl ugi n. confi g. prefix=[Pl ugi n]
pl ugi n. confi g. addspace=t r ue

Nothing suprising... we Tl just print out every event that passes,
prefixed by [Plugin].

If you want JSpider not to be so verbose, simply turn on the event
filtering and only let pass the events you are interested in!

Filewriter plugin

Remember that in the global event filtering (plugin.properties),
we Ve filtered all spidering events so that only error events passed.

We Te now going to write these errors down in a file report:

pl ugi n. filter.enabl ed=true

plugin.filter.engi ne=

net . j avacodi ng. j spi der. nod. even tfilter. Al owNoneEventFilter
plugin.filter.nonitoring=

net . j avacodi ng. j spi der. nod. eventfilter. All ow NoneEventFilter
plugin.filter.spider=

net . j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter

pl ugi n. cl ass=
net.j avacodi ng. j spider.nod. plugin.filew riter.FileWiterPlugin

pl ugi n. config.fil ename=./error -report. out

http://j-spider.sourceforge.net 50/121

JSpider 0-5-0-dev User Manual

The notion of JSpider progression is not wanted in our report, and
neither are the events about the engine. So, we filtered out these
in the filewriter 3 plugin local event filtering (see bold text)

The spidering events (those that passed the global event filtering —
the error ones) are not filtered any further, all of them are used.

The filewriter plugin has one parameter, the filename. After the
spidering process, you 1l find this file in your JSpider 3 output folder.

StatusBasedFileWriter Plugin

Finally, we te configuring the StatusBasedFileWriter: open the file
conf/checkErrors/plugins/statusbasedfilewriter.properties and youTl
find:

pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n . statusbasedfilewiter.
St at usBasedFi | eWiterPl ugin

plugin.filter.enabl ed=fal se
Which is very simple...

This plugin will create a file per http status encountered in the
output folder:

?? 404 .out for all Not Found “errors

?? 500.out for all 1nternal Server Errors~
?? etc...

C. Example

OK! We have a complete JSpider configuration (checkErrors). Now
let3 use it and find some errors on a site!

For this particular purpose, we Ve set up a very small site for you to
test JSpider upon.

You can find it at http://j-spider.sourceforge.net/samplesite.

Go have a look there with your favorite browser, you 1l simply find a
few interlinked web pages, one with an e-mail address on it, and
one with a dead link.

This little playground can be used to test various JSpider
configurations and to see the impact of configuration changes.

So, well start off spidering this site with the checkErrors
configuration:

http://j-spider.sourceforge.net 51/121

JSpider 0-5-0-dev User Manual

On windows:

jspider http://j-spider.sourceforge.net/samplesite checkErrors

On uniw:

/Jjspider.sh http://j-spider.sourceforge.net/samplesite checkErrors

1. Console output

This should give output on your console similar to this:

JSpi der startup script

JSPI DER_HOVE=.

JSpider v0.4.1 DEV (http://]j -spider.sourceforge. net)
Bui | d: 20030429

Started from.

[Engi ne] | spi der. home=. .

[Engi ne] default output folder=.. \output

[Engi ne] starting with configuration 'checkErrors

This is the welcome message of our polite spider, echoing some
information.

Next is the initialisation procedure for the plugins. YouTl find the

three plugins configured in the checkErrors configuration:

INFO [core.inpl.PluginFactory] Loading 3 pl ugins.

INFO [core.inpl.PluginFactory] Loading plugin configuration
‘consol e' ..

I NFO [nod. pl ugi n. consol e. Consol ePlugin] Prefix s et to '[Pl ugin]
INFO [core.inpl.PluginFactory] Plugin not configured for |ocal event
filtering

INFO [core.inpl.PluginFactory] Plugin Nane : Console witer

JSpi der nodul e

INFO [core.inpl.PluginFactory] Plugin Version : v1.0

INFO [core.inpl.PluginFa ctory] Plugin Vendor

htt p: // ww. j avacodi ng. net

INFO [core.inpl.PluginFactory] Loading plugin configuration
"filewiter'...

INFO [nod.plugin.filewiter.FileWiterPlugin] Witing to file
.lerror -report. out

INFO [core.inpl.PluginFactory] Plugin uses lo cal event filtering
INFO [core.inpl.PluginFactory] Plugin Nane : File witer JSpider
pl ugi n

INFO [core.inpl.PluginFactory] Plugin Version : v1.0

INFO [core.inpl.PluginFactory] Plugin Vendor

htt p: // ww. j avacodi ng. net

INFO [core.inpl.PluginFactory] Loading plugin configuration
'statusbasedfilewiter'...

I NFO [nod. pl ugi n. statusbasedfilewiter. StatusBasedFileWiterPl ugin]
initialized.

INFO [core.inpl.PluginFactory] Plugin not configured for |ocal event
filtering

INFO [core.inpl.PluginFactory] Plugi n Nane . Status based
Filewiter JSpider plugin

INFO [core.inpl.PluginFactory] Plugin Version : v1.0

http://j-spider.sourceforge.net 52/121

JSpider 0-5-0-dev User Manual

INFO [core.inpl.PluginFactory] Plugin Vendor
htt p: // ww. j avacodi ng. net
INFO [core.inpl.PluginFactory] Loaded 3 pl ugins.

Then, the storage subsystemn is started:
I NFO [core.storage. StorageFactory] Storage provider class is 'class
net.j avacodi ng. j spi der. core. st orage. nenory. | nMenor ySt o

The context takes care of user agent usage, proxy settings, etc...

I NFO [core. SpiderContext] default user Agent is 'JSpider vO.4.1-dev
(http://j -spider.sourceforge. net)'

| NFO [core.task. Schedul er Factory] TaskSchedul er provider class is
'class net.javacodi ng. j spi der.core.task.inpl.DefaultSche

The worker threads are created:
INFO [core.Spider] Spider born - threads: spiders: 5 thinkers: 1
[Plugin] Module : Console witer JSpi der nodul e
[Plugin] Version: v1.0
[Plugi n] Vendor : http://ww.javacodi ng. net
[Plugi n] Spidering Started,
baseURL = http://j -spider.sourceforge. net/sanpleSite
I NFO [core. SpiderContext] using use rAgent 'JSpider v0.4.1 -dev
(http://j -spider.sourceforge.net)' for site 'http://local hos

Now, the spidering begins:

I NFO [core. SpiderContext] Using proxy for http://j -

spi der . sour cef or ge. net

INFO [core.throttle.ThrottleFactory] Throttle provider class is
'class net.javacoding.jspider.core.throttle.inpl.D stribut

[Plugin] Job nonitor: 66% (2/3) [S:50% (1/2) | T:100% (1/1)]

[bl ocked: 0] [assigned: 1]

[Pl ugi n] ThreadPool Spiders occupation:20%[idle: 80% bl ocked: 20%
busy: 0%, size: 5

[Plugi n] ThreadPool Th inkers occupation: 0% /[idle: 100% bl ocked: 0%
busy: 0%, size: 1

[Plugin] Job nonitor: 85% (6/7) [S:66%(2/3) | T:100% (4/4)]

[bl ocked: 0] [assigned: 1]

[Pl ugi n] ThreadPool Spiders occupation:20%[idle: 80% bl ocked: 20%
busy: 0%, size: 5

[Plugi n] Thread Pool Thi nkers occupati on: 0% [idle: 100% bl ocked: 0%
busy: 0%, size: 1

[Plugin] Job nonitor: 84% (11/13) [S:60% (3/5) | T:100% (8/8)]

[bl ocked: 0] [assi gned: 2]

[Plugi n] ThreadPool Spiders occupation:40%/[idle: 60% blocked: 40%
busy: 0%, size: 5

[Plugi n] ThreadPool Thi nkers occupation:0%/[idle: 100% bl ocked: 0%
busy: 0%, size: 1

[Plugin] Job nonitor: 84% (16/19) [S:57% (4/7) | T:100% (12/12)]

[bl ocked: 0] [assi gned: 3]

[Pl ugi n] ThreadPool Spiders occupation:60%/[idle: 40% blocked: 60%
busy: 0%, size: 5

[Plugi n] ThreadPool Thi nkers occupation: 0% [idle: 100% bl ocked: 0%
busy: 0%, size: 1

JSpider finds our deliberately created dead link:
[Plugin] 404 - ERROR !!!http://]j -
spi der . sour cef or ge. net/ sanpl eSi t e/ unexi sti ng. ht m

http://j-spider.sourceforge.net 53/121

JSpider 0-5-0-dev User Manual

I NFO [nod. pl ugi n. statusbased filewiter. StatusBasedFil eWiterPl ugin]
creating file for status '404

[Plugin] Job nonitor: 89% (17/19) [S:71% (5/7) | T:100% (12/12)]

[bl ocked: 0] [assi gned: 2]

[Pl ugi n] ThreadPool Spiders occupation:40%/[idle: 60% blocked: 40%
busy: 0%, size: 5

[Pl ugi n] ThreadPool Thi nkers occupation: 0% /[idle: 100% bl ocked: 0%
busy: 0%, size: 1

[Plugin] Job nonitor: 95% (20/21) [S:85% (6/7) | T:100% (14/14)]

[bl ocked: 0] [assigned: 1]

[Pl ugi n] ThreadPool Spiders occupation:20%[idle: 80% bl ocked: 20%
busy: 0%, size: 5

[Plugi n] ThreadPool Thi nkers occupation: 0% [idle: 100% bl ocked: 0%
busy: 0%, size: 1

[Plugin] Job nonitor: 96% (24/25) [S:87% (7/8) | T:100% (17/17)]

[bl ocked: 0] [assigned: 1]

[Pl ugi n] ThreadPool Spiders occupation:20%[idle: 80% bl ocked: 20%
busy: 0%, size: 5

[Plugi n] ThreadPool Thi nkers occupation: 0% [idle: 100% bl ocked: 0%
busy: 0%, size: 1

I NFO [core. Spider] Stopped spider workers..

I NFO [core. Spider] Stopped thinker workers..

When the process is finished, a summary is displayed:
[Pl ugi n]

SPI DERI NG SUMVARY :

known urls : 8

visited urls 7
parsed urls 6
parse ignored urls 1
parse error urls : 0

not visited urls 1
fetching ignored urls ..
forbidden urls
fetch error urls

o o

not yet visited urls .. : O
[Pl ugi n] Spidering Stopped
I NFO [core. Spider] Spidering done!
INFO [core. Spider] Elapsed tine : 7490

You see that we encountered 1 fetch error, and one resource that3
not parsed to find new URLs in it (this will be the robots.txt file)

Now, this was only the logging part and the console plugin. These
were configured to follow the progress while spidering.

More interesting is the contents of the output folder by now. Youll
find the following files:

?7? 404 .out —contains all URLs of resources that resulted in a 404
?? Our error report

http://j-spider.sourceforge.net 54/121

JSpider 0-5-0-dev User Manual

Remember that all resources that didnt result in an error are not
known, as the global event filtering only passed events telling about
errors.

The contents of these files:

2. 404.out

http://j - spi der. sour cef orge. net/ sanpl eSi t e/ unexi sti ng. ht m
REFERED BY:
http://j - spi der. sour cef orge. net/sanpl eSi t e/

Bingo! We ¥/e got our error. Now it3 up to us to determine whether
the referenced URL is wrong, or the resource is missing...

We also get the URL of the page that contains the dead link, to
make it even easier to track down the problem ...

3. Error-report.out

[Tue Apr 29 20:24:05 CEST 2003] Mddule : File witer JSpider plugin
[Tue Apr 29 20:24:05 CEST 2003] Version: v1.0
[Tue Apr 29 20:24:05 CEST 2003] Vendor : http://ww.javacodi ng. net
[Tue Apr 29 20:24:05 CEST 2003] Spidering Started,

baseURL = http://j -spider.sourceforge. net/sanpleSite
[Tue Apr 29 20: 24: 09 CEST 2003] 404 - ERROR !!!

http://j - spi der. sour cef or ge. net/ sanpl eSi t e/ unexi sti ng. ht m

[Tue Apr 29 20:24:13 CEST 2003] Spi dering Stopped

This file is a simple report of all errors reported by JSpider during
the spidering process.

And indeed, if you browse to the page with your web browser, you Tl
easily find the dead link.

Now, this example was really trivial, but if you Te responsible for a
web site that contains a few thousand pages, you U be very happy
seeing JSpider creating new error reports for you in minutes!

http://j-spider.sourceforge.net 55/121

JSpider 0-5-0-dev User Manual

1X. Scenario: Downloading
a site to local disk

In this section, we 1l use JSpider to download a website to the local
file system. This usage is supported by the out-of-the-box
configuration townload ~

A. Goal

We 1l use JSpider to spider a complete site (without hopping~to
other sites), and download each and every web page, image,
stylesheet, binary file, etc... to local disk, so we can view it off-line.

This task is preconfigured in JSpider, the configuration for this can
be found under the folder conf/download.

You might want to make small changes to this configuration, to
adapt it to your own situation.

While reading the explanation, it3 maybe a good idea to refer to the
part about JSpider configuration from time to time.

B. Configuration

Have a look in the conf/download folder in your JSpider installation
folder to see what configuration files are involved.

1. Global configuration
We 1l start off with the global configuration: jspider.properties:

Make sure you have the proxy settings put to the right values for
your situation. See the configuration section for more information
on this.

The most interesting part of the global configuration is the part with
the rules:

j spi der. rul es. spi der. count =1
j spi der. rul es. spi der. 1. cl ass=
net.j avacodi ng. j spi der. nod. rul e. Onl yHt t pProt ocol Rul e

j spi der. rul es. parser. count =1
j spi der. rul es. parser. 1. cl ass=
net . j avacodi ng. j spi der. nod. rul e. Text H Ml M neTypeOnl yRul e

http://j-spider.sourceforge.net 56/121

JSpider 0-5-0-dev User Manual

Well... nothing special here... we te only fetching HTTP resources,
and only parsing text/html web pages.

2. Site-specific configurations

Well distinguish two types of sites, as shows from the
sites.properties file:

j spi der.site.config. base=base
j spi der.site.config.defaul t=skip

This allows us to scope the spidering process to the base site only,
and we 1l ignore any other site that might be referenced from the
base site.
After all, we want to download/mirror a site — not the whole
Internet!

This also means we 1l find a base.properties and skip.properties file
in the conf/download/sites subfolder:

Site configuration base~

This site configuration was assigned to the base site, and has
nothing special in it.
The only important property is:

si t e. handl e=f al se

Which tells JSpider the site should be handled.

Another change you Tl want to make, is to decrease the throttle
interval, to speed up the site downloading progress. See the Site
Configuration section for more information about this topic.

Site configuration Skip~

Any other site is assigned the skip configuration, which is quite
simple:

si te. handl e=f al se
This disables the handling of the site altogether, even the robots.txt

will not be fetched. Any resource in this site will simply be ignored.
This is because we only want to download a single site!

http://j-spider.sourceforge.net 57/121

JSpider 0-5-0-dev User Manual

C. Example

Now, let3 download our little sample site:

jspider http://j -spider.sourceforge. net/sanpl esite downl oad

This will give you similar output on the console as the checkErrors
example in the last chapter.

D. Sample output

After the spidering process is complete, you can find in your output
folder for the downloaded site:

- j -spi der. sour cef or ge. net

- robots. txt
- sanplesite
- index. htm
- sone
- fol der
- test.htm

Which is the structure of the sample site. Or at least, the part that
is not forbidden by the robots.txt file, but we 7l look into that later.

While the downloaded version of some sites (dynamic
content, absolute URLs in web pages, etc..) may not be
perfect, the quality of the downloads will be improved in
the future, with the diskwriter plugin rewriting the links to
other resources intelligently on-the-fly, and converting any
special extensions (.jsp, .php, .asp, ...) to .html.

This example should put you in the right direction to create your
own custom download configurations for JSpider.

http://j-spider.sourceforge.net 58/121

JSpider 0-5-0-dev User Manual

X. Scenario: Playing around
with JSpider

Well, this JSpider usage scenario doesn serve a particular purpose
besides giving you an idea on how the configuration of JSpider can
be applied to influence the spidering process.

We 1l start of with the default configuration on our little sample test

site, make some modifications, and analyse the differences in the
results.

A. The default configuration

As said, we Tl simply start by spidering our little test site with the
Yefault *JSpider configuration.

1. Configuration
This will result in output delivered by the following plugins:
?? Console
?? Velocity (both trace and dump)
?? XMLDump (altered velocity plugin for XML reporting
?? StatusbasedFilewriter (shows fetched URLs per HTTP status)

(see plugin.properties —they te configured there, and
plugins/*.properties — the per-plugin config files).

You can start the spidering process on the sample site like this:

2. Starting

On windows:
jspider http://j -spider.sourceforge. net/sanplesite

On Unix:
./jspider.sh http://j -spider.sourceforge. net/sanplesite

We 1l not show the resulting output on your screen here, since this
would be far too long and not very interesting (just look at yours).

3. Output

http://j-spider.sourceforge.net 59/121

JSpider 0-5-0-dev

User Manual

Maybe the most interesting file to have a look at after the spidering
process finishes is velocity-dump.out, which gives an overview of
all known resources, with their status. This are some snippets from
the file. (Just have a look at the one generated by your JSpider for
the rest of the information):

These are the URLs inside the site found during spidering:

[Site: http:// j-spider.sourceforge. net - ROBOTSTXT_HANDLED *]

http:// http:
http:// http:
http:// http:
http:// http:
http:// http:
http:// http:
http:// http:

/1] -spider.
/1] -spider.
/1] -spider.
/] j-spider.
/1] -spider.
/1] -spider.
/1] -spider.

sf. net/sanpl esi t e/ f or bi dden/ resour ce. ht m

sf. net/sanpl esi t e/ unexi sti ng. ht m

sf. net/sanpl esi te/i ndex. ht m
sf. net/robots. t xt

sf. net/sanpl esite/ sone/ fol der/test. htm
sf. net/sanpl esi t e/
sf.net/sanplesite

We see that there is a resource in the site that has been forbidden

by the robots.txt rule:
http://j - spi der. sour cef orge. net/ sanpl esi t e/ f or bi dden/ r esour ce. ht m
STATUS : FETCH_FORBI DDEN

SPI DER DEC Sl ON :

[Deci si onSt ep] GENERAL rul e
net . j avacodi ng. j spi der. nod. rul e. Onl yH t pPr ot ocol Rul e

(no comnent gi ven)

[Deci si onSt ep] GENERAL rul e Rul eset

ACCEPT -

ACCEPT -

r ul

eset final

[Deci sionStep] SITE rul e
net.j avacodi ng. j spi der. nod. rul e. I nt ernal | yRef erencedOnl yRule —

ACCEPT -

ur |

is within sane site

[Deci sionStep] SITE rule
net.j avacodi ng. j spi der. nod. rul e. For bi ddenPat hRul e —
(no comrent given)
[DecisionStep] SITE rule
net . j avacodi ng. j spider.core.rule.inpl. RobotsTXTRule -
FORBI DDEN - access forbi dden
[DecisionStep] SITE rule Rule set —
FORBI DDEN -

DON T CARE

rul eset final

PARSE DECI SI ON :
[Not yet taken]

deci si on

- accepted

deci si on

There is also a resource that is not there (a dead link, 404 error):
http://j - spi der. sour cef or ge. net/ sanpl esi t e/ unexi sti ng. ht m
STATUS : FETCH ERRCR

SPI DER DEC SI ON :

[Deci si onStep] GENERAL rul e
net . j avacodi ng. j spi der. nod. rul e. Onl yH t pPr ot ocol Rul e

(no commrent given)

[Deci si onSt ep] GENERAL rul e Rul eset

ACCEPT -

ACCEPT -

r ul

eset final

[DecisionStep] SITE rule
net.javacodi ng.jspider.nod. rul e. I nternall yRef erencedOnl yRule —

ACCEPT -

ur |

is within sane site

[Deci sionStep] SITE rule

deci si on

- accepted

http://j-spider.sourceforge.net

60/121

JSpider 0-5-0-dev User Manual

net . j avacodi ng. j spi der. nod. rul e. For bi ddenPat hRul e —
DON T CARE - (no comment given)

[DecisionStep] SITE rule
net. j avacodi ng. j spi der.core.rul e.i npl . Robot sTXTRule —
DON T CARE - (no comment given)

[DecisionStep] SITE rule Rul eset -
ACCEPT - ruleset final decision

PARSE DECI SI ON :
[Not yet taken]

HTTP Status: 404

REFERERS: 2
http://j -spider. sour ceforge. net/sanpl esite/index. ht n
http://j -spider. sourcef orge. net/sanpl esite/

You can also see that this resource is linked from the home page of
our little testing site.

And this part describes the robots.txt file we fetched:
http://j - spi der. sourceforge. net/robots. t xt
STATUS : PARSE | GNORED

SPI DER DEC SI ON :
[Not yet taken]

PARSE DECI SI ON :
[Not yet taken]

You see this type of file fetched, but never parsed.

B. Forgetting about robots.txt

Now, since this test site belongs to use, we feel we can do what we
want (and allow you to do so also).

Since there was one resource forbidden by the robots.txt file, we Tl
be not obeying the robots.txt file in order to get this resource
spidered as well.

Change in the conf/default/sites/default.properties the following
line:
si t e. robot st xt. obey=t r ue

to
si t e. robot st xt. obey=f al se

It3 as simple as that! This will still fetch the robots.txt file, but not
obey it anymore.

Restart JSpider the same way as you did before and look at the
results in velocity-dump.out:

The forbidden resource seems to have a link to a resource we didnt
know yet, since there shows up a new one in the list:

[Site: http://] -spider.sourceforge. net - ROBOTISTXT_HANDLED *]
http://j -spider.sf.net/sanpl esite/forbi dden/resour ce. htm

http://j-spider.sourceforge.net 61/121

JSpider 0-5-0-dev User Manual

http:// j -spider.sf.net /sanplesite/unexisting. htm
http:// j -spider.sf.net /sanplesite/index.htnl
http:// | -spider.sf.net /sanplesite/another/index.htm

]
J
J
http:// | -spider.sf.net /robots.txt
]
]
J

http:// | -spider.sf.net /sanplesite/so ne/folder/test. htni
http:// j -spider.sf.net /sanplesite/
http:// | -spider.sf.net /sanplesite

And if we look at the forbidden ”resource in the detailed section
now, we find:

http://j - spi der. sour cef orge. net/ sanpl esi t e/ f or bi dden/ r esour ce. ht ni
STATUS : PARSED

SPI DER DEC SI ON :

[Deci si onSt ep] GENERAL rul e
net.j avacodi ng. j spi der. nod. rul e. Onl yHt t pProt ocol Rule —
ACCEPT - (no conment given)

[Deci si onSt ep] GENERAL rul e Rul eset —
ACCEPT - ruleset final decision

[Deci sionStep] SITE rule
net.j avacodi ng. j spi der. nod. rul e. I nternal | yRef erencedOnl yRule —
ACCEPT - url is within sane site - accepted

[DecisionStep] SITE rule
net . j avacodi ng. j spi der. nod. rul e. For bi ddenPat hRul e —
DON T CARE - (no comment given)

[Deci sionStep] SITE rul e
net.j avacodi ng. j spi der.core. rul e.inpl. Robot sTXTRule -
DON T CARE - (no comment given)

[DecisionStep] SITE rule Rul eset -
ACCEPT - ruleset final decision

PARSE DECI SI ON :
[Deci si onStep] GENERAL rul e
net.j avacodi ng. j spi der. nod. rul e. Text HH M M neTypeOnl yRule —
ACCEPT - minetype is '"text/htm' - resource accepted
[Deci si onSt ep] GENERAL rul e Rul eset —
ACCEPT - ruleset final decision
[Deci sionStep] SITE rul e
net.j avacodi ng. j spi der. nod. rul e. BaseSiteOnl yR ule —
ACCEPT - url accepted
[DecisionStep] SITE rule Rul eset -
ACCEPT - ruleset final decision
HTTP Status: 200, Content size: 422,
M ne Type: text/htm, Fetch tinme: 20

REFERERS: 1
http://j -spi der. sourceforge. net/sanpl esite/sone/fol der/test.htm
REFERENCES: 1
http://j -spi der. sourcef orge. net/ sanpl esi t e/ anot her/ i ndex. ht m
E- MAI L ADDRESSES: 0
Here, out expectations are confirmed: this resource has a link to a

previous unknown resource!

C. Going not too deep

http://j-spider.sourceforge.net 62/121

JSpider 0-5-0-dev

User Manual

Now, suppose we Te not interested in resources that are deeper
then 2 levels in the site.

Let3 configure a rule for that!
We te going to do this one the site level, although we also could
have configured it on the global level (jspider.properties), then it
would be applied on all sites.

Since we only spider one site, this doesnt matter for now.

Open the conf/default/sites/default.properties, and add a rule to the

end:

site. rul es. spider.count= 3

site.rul es. spider. 1. cl ass=

net.j avacodi ng. j spi der.

site.rul es. spi der. 2. cl ass=

net.j avacodi ng. j spi der.
site.rul es. spi der. 2. config.

site.rul es. spi der. 3. cl ass=

net.j avacodi ng. j spi der.
site.rul es. spider. 3. config.depth. mn=0

site.rul es. spi der. 3. confi g. dept h. max=2

nod. r ul e. For bi ddenPat hRul e
pat h=/ cont ent / j avadoc

nod. r ul e. BoundedDept hRul e

nod. rul e. Internal | yRef erenc edOnl yRul e

This will cause any resource in a third-level folder or deeper to be

ignored!

Now, spider again, and see that these resources are found:

[Site: http://] -spider.sourceforge. net

http://j-spider.
http://j -spider.
http://j -spider.
http://j -spider.
http://j -spider.

sf
sf

sf .
sf .
sf.

Now, let3 look at the

?? http://j-spider.sf.net/samplesite/unexisting.html
0 FETCH_ERROR, same as before

?? http://j-spider.sf.net/robots.txt
0 PARSE_IGNORED, same as before

?? http://j-spider.sf.net/samplesite/some/folder/test.html
o FETCH_IGNORED, because of our rule:

net / sanpl esi t e/
net/sanpl esite

statuses:

ROBOTSTXT _HANDLED *]
. net/sanpl esi t e/ unexi sti ng. ht m

.net/robots.txt
net / sanpl esi t e/ sone/ f ol der/test. ht m

http://j - spi der. sour ceforge. net/sanpl esite/sone/fol der/test. htm
STATUS : FETCH_| GNORED

SPI DER DECI SI ON :

[Deci si onStep] GENERAL rul e

net . j avacodi ng. j spi der. nod. rul e. Onl yHt t pPr ot ocol Rul e

ACCEPT - (no conment given)
[Deci si onSt ep] GENERAL rul e Rul eset
ACCEPT - ruleset final decision
[Deci sionStep] SITE rul e

http://j-spider.sourceforge.net

63/121

JSpider 0-5-0-dev User Manual

net.j avacodi ng. j spi der. nod. rul e. I nternal | yRef erencedOnl yRule —
ACCEPT - url is within sane site - accepted
[DecisionStep] SITE rule
net.j avacodi ng. j spi der. nod. rul e. For bi ddenPa thRule —
DON T CARE - (no comment given)
[DecisionStep] SITE rule
net . j avacodi ng. j spi der. nod. rul e. BoundedDept hRul e —
I GNORE - depth is 3, higher than nmaxi num 2
[DecisionStep] SITE rule Rul eset -
| GNORE - rul eset final decision

PARSE DECI SI ON :
[Not yet taken]

?? http://j-spider.sf.net/samplesite/
o FETCHED, same as before

?? http://j-spider.sf.net/samplesite
o FETCHED, same as before

These resources are missing this time, because they were only
referenced from resources that are now ignored because of our new
rule, or by other resources that are not found anymore:

?? http://j-spider.sf.net/samplesite/forbidden/resource.html
?? http:// j-spider.sf.net /samplesite/index.html
?? http:// j-spider.sf.net /samplesite/another/index.html

This should have given you a good idea on how to tune your JSpider
configurations for a particular use.

http://j-spider.sourceforge.net 64/121

JSpider 0-5-0-dev User Manual

X1. Using JSpider-tool

JSpider-tool is a set of utilities built on top of the JSpider
application. It has it3 own set of configuration files, found under
the folder tonf/tool~

JSpider-tool is meant to be a small and simple-to-use test- and
diagnostic tool.

While JSpider on its own is used to spider complete sites, the usage
of jspider-tool limits itself to one web resource only.

The things you can do with JSpider-tool are:

Print out the headers sent by a web server

Display information about a web resource

Show the content of a web resource

Download a certain file from a web server to a local file
Find all links to other resources in a certain page

Find all e-mail addresses mentioned in a web page

N3NNI NIIIASN

We 1l cover these usages one by one

A. Usage

jspider-tool can be started from the same location as the JSpider
application (/bin), and also from anywhere if JSPIDER_HOME is set:

windows:
j spi der -tool (tool Name) http://|o cal host

unix:
./jspider -tool.sh (tool Nane) http://I ocal host

Please remark that since jspider-tool is built on top of JSpider, you
must adapt the jspider.properties file in tonf/tool ”to include your
proxy settings.

Be careful when editing the configuration files for
jspider-tool (found in /conf/tool).

Since jspider-tool is built on top of JSpider, changing things
in the configuration files may break jspider-tool.

In a typical usage scenario, the only things you should adapt
are your proxy settings.

http://j-spider.sourceforge.net 65/121

JSpider 0-5-0-dev User Manual

B. Tools

There are several tools implemented in JSpider-tool.

1. headers

This utility prints out the headers sent by a web server, which can
be very useful in order to understand what3 being sent to web
clients.

Some examples:
j spi der -tool headers http: //I| ocal host

Results in something like this:

nul [: HTTP/ 1.1 200 K

Dat e: Thu, 24 Apr 2003 13:34: 11 GVI

Server: Apache/ 1. 3. 27 (Wn32) PHP/4.3.2 -RCL
Last - Modi fi ed: Thu, 10 Apr 2003 13: 15:45 GVII
ETag: "0- 165- 3e956e81"

Accept - Ranges: byt es

Cont ent - Lengt h: 357

Keep- Al i ve: ti meout =15, max=100

Connecti on: Keep - Al i ve

Cont ent - Type: text/ htm

If there is a redirect on the resource, you 7l see something like this:
nul | : HTTP/ 1.1 302 Found

Dat e: Thu, 24 Apr 2003 13:37:35 GVI

Server: Apache/ 1. 3. 27 (Wn32) PHP/4.3.2 -RCL

X- Power ed- By: PHP/ 4. 3. 2- RC1

Location: http://local host/target. htm

Keep- Al i ve: ti neout =15, nax=100

Connecti on: Keep - Al i ve

Tr ansf er - Encodi ng: chunked

Cont ent - Type: text/ htm

And if the server gave us a cookie to set, youll also find that

information in the output:

nul | : HTTP/ 1.1 200 X

Dat e: Thu, 24 Apr 2003 13:42:01 GVI

Server: Apache/ 1. 3. 27 (Wn32) PHP/4.3.2 -RCL
X- Power ed- By: PHP/ 4. 3. 2 - RC1

Set - Cooki e: t est Cooki e=soneVal ue

Keep- Al i ve: ti neout =15, nax=100

Connecti on: Keep - Al i ve

Tr ansf er - Encodi ng: chunked

Cont ent - Type: text/ htm

As you see, inspecting the headers sent back by the web server can
be quite informative!

2. info

http://j-spider.sourceforge.net 66/121

JSpider 0-5-0-dev User Manual

The info utility is very similar to the headers utility, but gives a bit
more information:

jspider-tool info http://1 ocal host

URL : http://1 ocal host
HTTP Headers :
nul [: HTTP/ 1.1 200 &K
Dat e: Thu, 24 Apr 2003 13:44:13 GV
Server: Apache/ 1. 3. 27 (Wn32) PHP/4.3.2 -RCL
Last - Modi fi ed: Thu, 10 Apr 2003 13: 15: 45 GVI
ETag: "0- 165- 3e956e81"
Accept - Ranges: byt es
Cont ent - Lengt h: 357
Keep- Al i ve: ti meout =15, max=100
Connect i on: Keep - Al i ve
Cont ent - Type: text/ htm

M me Type : text/htm
Si ze : 357
Time (ns) : 60

It returns the URL fetched, the mime type, size of the content and
the time it took to fetch the resource.

3. fetch

The fetch ~utility does a real simple job: it fetches the requested
resource and displays it3 content.

jspider-tool fetch http://j -spider.sourceforge. net/robots. txt

results in the robots.txt file being printed out:

User - agent : JSpi der Uni t Test

Di sal | ow. /testcases/specific/ robotstxt/disall onedFol der2

Di sal | ow. /testcases/specific/robotstxt/disall owedResour ce2. ht m
User - agent : JSpi der

Di sal | ow. /testcases/specific/robotstxt/disall owedFol der 1

Di sal | ow. /testcases/specific/robotstxt/disall onedResour cel. ht m

4. download

The download utility downloads the requested resource and saves it
in a file on the local filesystem.

j spi der -tool downl oad http://j -spider.sourceforge. net/robots.txt
| ocal _robots. txt

result:

Downl oaded resource to 'local _robots.txt' (304 bytes)

http://j-spider.sourceforge.net 67/121

JSpider 0-5-0-dev

User Manual

You 1l find a file called focal_robots.txt *on your filesystem now.

5.

findlinks

The findlinks utility fetches, parses and lists all links found in a
certain resource.

j spi der -t ool

findlinks http://j -spider.sourceforge. net

results in a list of all resources linked to by our project3 main page:

ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:
ht t p:

/1] -spider.
/1] -spider.
/1] - spider.

sour cef or ge.
sour cef or ge.
sour cef or ge.

/ [ww. j avacodi ng. net

/1] -spider.
/1] -spider.
/1] -spider.

sour cef or ge.
sour cef or ge.
sour cef or ge.

/ [ww. j avacodi ng. net
/ [ww. sour cef or ge. net

/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] - spider.
/1] -spider.
/1] -spider.
/1] -spider.
/'l -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.
/1] -spider.

sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
sour cef or ge.
//jakart a. apache. or g/ t ur bi ne/ maven/ devel opnent

net/styl e/ns4_only.css
net/styl e/ maven_ns4_only. css
net/styl e/print.css

net/images/ja karta-| ogo-bl ue. gif
net
net /i mages/ bl ue -1 ogo. gi f

net /i ndex. ht m

net / docs/ manual / i ndex. ht m

net/docs/ manual /i nstal | /i ndex. ht m

net / docs/ manual /i nstal | / bi nari es. ht m
net/docs/ manual /i nstal | / cvs. ht m

net /docs/ manual /i nstal | /ant. ht m
net/docs/ manual /instal | /testing. htm
net / docs/ manual / usage/ i ndex. ht m

net / docs/ manual / confi g/ i ndex. ht m

net / docs/ manual / confi g/ proxy. ht m

net / docs/ manual / confi g/ t hr eadi ng. ht m
net / docs/ manual / confi g/ sites. ht m

net / docs/ manual / config/site -props. htni
net /i ndex. ht m

n et/ project -info. htm

net/ maven -reports. htni

net / api docs/ i ndex. ht m

net/ xref/i ndex. ht m

- process. htni

Resources that are linked several times are printed out each time.

6.

email

The email tool works the same way as the findlinks tool, but reports
all e-mail addresses found in the web resource:

j spi der enmi |

http://]j -spider.sourceforge. net

Issuing this statement will print out all e-mail addresses found in
this web page.

http://j-spider.sourceforge.net

68/121

JSpider 0-5-0-dev User Manual

Part

http://j-spider.sourceforge.net 69/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 70/121

JSpider 0-5-0-dev User Manual

XIl. Environment

This section explains some environmental configurations that
can/should be made in order to use JSpider.

You can skip this chapter at first, and come back later when you are
more familiar with JSpider.

The only thing you Tl need to do in order to be able to use JSpider, is
to configure an XML parser if you Te using JDK1.3.

Otherwise, no configuration issues explained here are absolutely
necessary to do.

http://j-spider.sourceforge.net 71/121

JSpider 0-5-0-dev User Manual

A. Java 1.3: XML parser Configuration

JSpider needs an XML Parser in order to read some configuration
files that are specified in XML.
As of Java 1.4 (J2SE1.4), the needed XML API3 and an
implementation are already delivered by the platform.

For Java 1.3, youTl need to add the XML parser to the classpath in
order to use JSpider.

If you dont do this, you Tl see an exception like this when starting
JSpider or JSpider-tool:

Exception in thread "mai n" java.l ang. Nod assDef FoundErr or :
javax/ xm / par ser s / Fact or yConf i gur ati onErr or
(...StackTrace..)

You can download a free, open source XML parser from Apache,
Xerces. You can find it at:

http://xm . apache. org/ di st/ xerces -j/

The CLASSPATH is a Java related environment variable that tells
where the system can find needed classes.

The easiest thing to do is to add the xmlApis.jar and parserimpl.jar
files to the {JSPIDER_INSTALLATION_DIR}/lib folder.
After that, add these libraries to the classpath:

Windows:
set CLASSPATH=%CLASSPATHY . ./l i b/ xm Apis.jar
set CLASSPATH=%LASSPATHY% ../l i b/ parserlnpl.jar

Unix:
export CLASSPATH=$CLASSPATH ../l ib/xm Api s.j ar
export CLASSPATH=$CLASSPATH:. ../l ib/parserlnpl.jar

When this is done, you can simply start JSpider from the bin ~folder
and the xml libraries should be found.

http://j-spider.sourceforge.net 72/121

JSpider 0-5-0-dev User Manual

B. JSPIDER_HOME env. variable

In the section about the usage of JSpider, you Ve learned that you
can start it by launching the jspider.bat or jspider.sh startup script.
Without any extra configuration, this script assumes that your
current working directory is {JSPIDER_INSTALL_DIR}/bin.

This can be problematic if you want to launch JSpider from another
location.

When JSpider is started, it will look for an environment variable
called JSPIDER_HOME. If this is present, that folder is taken as
reference for the JSpider installation.
If this environment variable is not found, the value <.”is assumed,
changing the current directory from the /bin folder to the

{JSPIDER_INSTALLATION_DIR} if started from /bin.
Setting JSPIDER_HOME is very easy:

On unix:
export JSPI DER_ HOVE=/ opt/ j spi der

On windows:
set JSPI DER_ HOVE=c: \| spi der

make sure you use the path to which you installed JSpider.

http://j-spider.sourceforge.net 73/121

JSpider 0-5-0-dev User Manual

XI111.Configuration overview

This section will explain how you can configure JSpider to adapt it to
your needs. Most of the explanation will be related to the
configuration of add-on components (plugins and other). While
many standard components come with JSpider, it is possible to
create your own, as described in the developer 3 guide.

JSpider configuration consists out of different levels:
?? Common Configuration

?? General configuration
?? Site-specific configuration

A. Common configuration

The common configuration (which is currently limited to logging
configuration), is the place for all system-wide configurations.

B. General configuration

The general configuration exists in several versions. Under the
/conf folder in your JSpider distribution, youTl find several
configurations. This way, you can create different configurations
from which you can pick one when starting JSpider. This way, it is
easy to keep different configurations for different purposes or
environments.

C. Per-site configuration

Site-specific configurations are part of the general configuration,
but are duplicated for one or more sites.
This way, you can use different settings of certain aspects of
JSpider for different websites.

An example of this would be to use the proxy server to connect to a
website on the internet, while using a direct connection for a site on
the local LAN.

The locations where you can find these are shown in the picture
below (the default” configuration is assumed — a similar file
structure exists under fownload and theckErrors ~as well):

http://j-spider.sourceforge.net 74/121

JSpider 0-5-0-dev

User Manual

=

| bin

E] jspider-tool.bat
E] jspider-tool.sh
E] jspider.bat

[£] jspider.sh

[£] velocity.log

cornmman

=]

Cormmon Configuration
conf

| logging
@ commons-logging, properties
2 log4.xml
@ logging. properties

&'I

| conf

checkErrars

m

default

| plugins

General Configuration

[+ velocity
[+ smidump
E’] console, properties
@ diskwriter, properties
@ statusbasedfilewriter . properties
@ velocity . properties
@ xrnldump. properties

sites Fer-site configuration
@ default. properties
E j-spider. sourceforge. net. properties

@ skip. properties

[£] jspider.properties
@ plugin. properties
[£] sites.properties

[+

dovnload

This information may still seem a bit abstract for now, but youTl
understand better as we discuss each configuration topic in-depth.

http://j-spider.sourceforge.net

75/121

JSpider 0-5-0-dev User Manual

X1V. Common configuration

The common configuration defines all JSpider behaviour that is
common to all specifically created configuration sets.
For the moment, the only thing defined here is the logging system.

Under your JSpider distribution directory, youll find a
tommon/conf~ folder, which is the folder in which all common
configurations reside:

= bin
'i_'] jspider-tool.bat
'i_'] jspider-tool.sh
;_'] jspider.bat
;_'] jspider.sh
'i_'] velocity.log
= COMan

= conf
= logaing
E| comrmons-logging, properties
A logd. el
[Z] logging. properties

= confb
[+ checkErrars

= default
=] plugins

]

:__.

velocity

I
L

wrldump

= sites
E] default. properties
[Z] j-spider.sourceforge. net.propertiss
[£] skip.properties
5 jspider. properties

|E] plugin. properties
g sites.properties
download

[#

http://j-spider.sourceforge.net 76/121

JSpider 0-5-0-dev User Manual

A. Logging subsystem

Logging in JSpider is done via Jakarta Commons-Logging, an open
source wrapper implementation for logging systems. It implements
a very basic logging service itself, but has an interface that can
front any Logging framework.

When JSpider is installed, youte using the open source Jakarta
Log4j logging framework (http://jakarta.apache.org/log4j) as the
default logging system.

Another logging system that3 supported out-of-the box by JSpider
is JDK1.4 logging (javax.util.logging)

1. Logged items

Be aware that logging is only used for information about JSpider.
It3 startup procedure, eventual configuration or environmental
errors, etc... are the things that are logged.

Spidering events and progression is not logged. These type of
things are dispatched via the event system.

Plugins can then choose to write these things events down in a file
or on the console.

It3 very important to keep the distinction between what output is
produced by plugins (although plugins can also log via the logging
system), and what output is produced by the JSpider logging
subsystem.

Try this by disabling the logging system. Change this line in your
jspider.properties file:

j spi der. | og. provi der =
net . j avacodi ng. j spi der. core. | oggi ng. i npl . CommonsLoggi ngLogPr ovi der

To this one:

j spi der. | og. provi der =
net . j avacodi ng. j spi der. core. | oggi ng. i npl . DevNul | LogPr ovi der

And you 1l see what rests when the logging is turned off completely!

2. Configuration

The class that handles the logging is specified in the
jspider.properties file. Normally, this is left on the default setting

http://j-spider.sourceforge.net 77/121

JSpider 0-5-0-dev User Manual

(using commons-logging, which will decide on log4j or jdk1.4
logging):

j spi der. | og. provi der =
net . j avacodi ng. j spi der. core. | oggi ng. i npl . CommonsLoggi ngLogPr ovi der

You can disable the logging by changing this to:

j spi der. | og. provi der =
net . j avacodi ng. j spi der. core. | oggi ng. i npl . DevNul | LogPr ovi der

Or simply log to the console straight away with:

j spi der. | og. provi der =
net . j avacodi ng. j spi der. core. | oggi ng. i npl . Syst emut LogPr ovi der

While the possibility to change this is there, normally commons-
logging would be preferable.

3. Using Log4j

Since Log4J is the default logging system used be JSpider, you can
just adapt the fog4j.xml ~file that configures it.

By default, we have configured a:

?? Console appender
Which writes logging info to your console (level INFO)

?? File appender
Which writes logging information to a tog4j.out ~file in your
output folder (also level INFO)

These should give you a good basis to adapt the logging
infrastructure to your needs.

Adapting the log4j configuration
How to do this is beyond the scope of this user manual (although
we 1l give some examples of configuration changes in a moment).

Please refer to the log4j information for this. (See the project
website for this information: http://jakarta.apache.org/log4j).

Configuration change example

When you use JSpider to spider a site with it3 default configuration,
you Tl end up with output on the console that starts like this:

INFO [core.inpl.PluginFactory] Loading 4 pl ugins.

http://j-spider.sourceforge.net 78/121

JSpider 0-5-0-dev User Manual

INFO [core.impl.Pl uginFactory] Loading plugin configuration
‘consol e'. ..

| NFO [nod. pl ugi n. consol e. Consol ePl ugin] Prefix set to '[Pl ugin]
INFO [core.inpl.PluginFactory] Plugin not configured for |ocal event
filtering

INFO [core.inpl.PluginFactory] Plugin Nane : Consol e witer
JSpi der nodul e

INFO [core.inpl.PluginFactory] Plugin Version : v1.0

INFO [core.inpl.PluginFactory] Plugin Vendor

htt p: // ww. j avacodi ng. net

INFO [core.inpl.PluginFactory] Loading plugin configuration

"velocity'...
INFO [core.inpl.Plugi nFactory] Plugin uses |local event filtering
--- continued ---

Now, open the log4j.xml configuration file, and search for this
piece:

<appender nane="CONSOLE' cl ass="org. apache. | og4j . Consol eAppender " >
<par am nane="Thr eshol d* val ue="I1 NFO'/ >
<par am name="Target" val ue="Systemout"/>

<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="% -5p [%] % %&a"/>
</ | ayout >
</ appender >

Change it to (bold shows the changes):

<appender nane="CONSOLE' cl ass ="org. apache. | og4j . Consol eAppender " >
<par am nane="Thr eshol d* val ue=" DEBUG'/>
<par am nane="Target" val ue="System out"/>

<l ayout cl ass="org. apache. | og4j. PatternLayout">
<par am name=" Conver si onPattern" value="% -5p {%{1}} %?"/>
</l ayout >
</ appender >

If you now start JSpider again, it will be quite more verbose, and
reports in a slightly different way:

I NFO {PluginFactory} Loading 4 pl ugins.

I NFO {PluginFactory} Loading plugin configuration 'console'...
DEBUG { Pl ugi ninstantiator} first trying to instantiate via ctr with
(nanme, config) parans

DEBUG { Consol ePl ugi n} plugin 'console' prefix is '[Plugin]’

DEBUG { Consol ePl ugi n} addi ng space after prefix

I NFO {Consol ePlugin} Prefix set to '[Pl ugin]

DEBUG { Pl ugi nlnstantiator} plugin ins tantiated.

I NFO {PluginFactory} Plugin not configured for |ocal event filtering
I NFO {PluginFactory} Plugin Nanme : Console witer JSpider nodul e
I NFO {PluginFactory} Plugin Version : v1.0

I NFO {PluginFactory} Plugin Vendor : http://ww:.javacoding.n et

I NFO {PluginFactory} Loading plugin configuration 'velocity'...
DEBUG { Pl ugi nlnstantiator} first trying to instantiate via ctr with
(nane, config) parans

DEBUG { Pl ugi nlnstanti ator} plugin instanti ated.

I NFO {PluginFactory} Plugin uses |local event filt ering

http://j-spider.sourceforge.net 79/121

JSpider 0-5-0-dev User Manual

DEBUG { Event Di spat cher} Event Di spatcher for Plugin 'Velocity Tenpl ate
JSpi der nodul e' configuring...
DEBUG { Event Di spat cher} EventFilter for engi ne events =
net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter
DEBUG { Event Di spatcher} EventFilte r for nonitor events =
net.j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil ter
DEBUG { Event Di spat cher} EventFilter for spider events =
net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter
DEBUG { Event Di spat cher} Event D spatcher EventD spatcher fo r Plugin
"Vel ocity Tenpl ate JSpi der nodul e confi gured.
-- continued --

4. Using JDK 1.4 logging

You can enable JDK1.4 logging by simply removing the log4j.jar
library from the JSPIDER/Iib folder. This way, the commons-logging
will not find log4j anymore, and fall back to JDK 1.4 logging.

This is of course only possible when you te using a VM of version
1.4 or higher.

You can customize the logging behaviour by adapting the
confuration file fogging.properties~

Specifics on what you can do in this file can be found on the
java.sun.com site.

http://j-spider.sourceforge.net 80/121

JSpider 0-5-0-dev User Manual

XV. General configuration

General configuration each have a separate folder under the
JSPIDER/conf folder.

You can pick the wanted one to use when starting JSpider by
typing:

j spider http://local host nyconfig

or (Unix)

./jspider.sh http://I ocal host myconfig

Which will then search for a Tyconfig *folder under the /conf folder
and use that one for the spider session.

A. The default*configuration.

The default configuration (found under the directory /conf/default)
is the one that is selected when you start JSpider without any

configuration specified, for example:
j spi der http://Iocal host

It is also a good example of a configuration to copy, and to use as a
base for your own custom-made configurations.

The layout of the configuration folder for the Wefault”configuration
is shown below:

http://j-spider.sourceforge.net 81/121

JSpider 0-5-0-dev User Manual

= bir
[Z] jspider-tool.bat
[£] jspider-tool.sh
[£] jspider.bat
[£] jspider.sh
[£] velocity.log
COMMon
= conf
logging
E’l commons-logging, properties
2 log4.xml
E’l logging. properties

|

= conf

[+ checkErrars

=] default

plugins
velocity

[

]

:__.

I
L

[

smidump

:] console, properties
j diskwriter, properties
[2] statushasedfilewriter . properties
j velocity . properties
Q xrnldump. properties
= sikes

E] default. properties

@ j-spider. sourceforge. net. properties
@ skip. properties
.% jspider. properties
3 plugin. properties
3’] sites.properties
download

o)

[#

B. Other configurations

Next to the tefault”one, some other out-of-the box configurations
come with JSpider (for instance, townload “and theckErrors?.

You can start these with:
j spider http://local host downl oad

And
jspider http://local host checkErrors

Respectively.

If you create your own folder (for instance: Mnyconf’) under
JSPIDER_HOME/conf, you can start JSpider using this configuration
by using:

j spider http://Iocal host nyconf

It3 always a good idea to copy an out-of-the box configuration (like
Hefault” or townload” to another folder, and to start from there

http://j-spider.sourceforge.net 82/121

JSpider 0-5-0-dev User Manual

instead of creating your won from scratch — many settings will be
the same anyway!

http://j-spider.sourceforge.net 83/121

JSpider 0-5-0-dev User Manual

C. Configuration Files

There several important files for the general configuration:

?? jspider.properties
?? sites.properties
?? plugin.properties

jspider.properties contains the largest number of settings, and
specifies every configuration this is applicable to all sites.

sites.properties links certain sites to certain site-specific
configurations, which are put under the Sites”subfolder, and are
explained further in this document.

plugin.properties defines which plugins will be used be JSpider to
dispatch events to, and any filtering upon these events.

The actual per-plugin configuration is described in files underneath
the Pplugins “subfolder.

Youll find these inside each configuration folder (conf/default,
conf/download, conf/checkErrors, ...).

Jspider.properties will be explained in this section, the other two are
explained in the chapter about per-site configurations and plugin
configuration respectively.

http://j-spider.sourceforge.net 84/121

JSpider 0-5-0-dev User Manual

D. jspider.properties

The fspider.properties *file is the main configuration file for JSpider,
and is located directly under the configuration folder of the specific
configuration. (For instance, ${JSPIDER_HOME}/conf/default” for
the default configuration.

This section will explain the customisations that can be done in this
file.

For each section in the configuration file, we 17l explain the purpose,
and show the actual default configuration as found in a freshly
installed JSpider instance.

1. Proxy settings

When spidering sites with JSpider, it is possible that you Tl have to
pass through a proxy server in order to reach sites on the
internet.

It is even possible that you 1l have to provide a username and a
password to authenticate on the proxy server.

This can be configured in jspider.properties by changing these
properties:

j spi der. proxy. use=f al se

j spi der. proxy. host =

j spi der. proxy. port =

j spi der. proxy. aut henti cat e=f al se
j spi der. proxy. user =

j spi der. pr oxy. passwor d=

The property jspider.proxy.use (which defaults to fTalse?)
determines whether a proxy server should be used when doing http
requests.

If this is set to true, you must also provide the jspider.proxy.host
and jspider.proxy.port properties!

In case your proxy server needs authentication, you must also set
the jspider.proxy.authenticate to true’ and fill in the correct
values for your jspider.proxy.user and jspider.proxy.password

A fictive example of such a configuration could be:

j spi der. proxy. use=t rue

j spi der. proxy. host =pr oxy. nyi sp. com
j spi der. proxy. port=8080

j spi der. proxy. aut henti cat e=t rue

j spi der. proxy. user =myaccount

j spi der. pr oxy. passw or d=nypasswor d

http://j-spider.sourceforge.net 85/121

JSpider 0-5-0-dev User Manual

When youte not sure about these settings, you can check your
browser (internet explorer, netscape, mozilla, ...) to see the correct
settings for your proxy server.

Setting the wrong properties might result JSpider to seem to “hang””
upon the first request, with a timeout after a long period.

If the proxy server and port is correct, but the authentication
information is not, you would get an HTTP Status 407 (FORBIDDEN)
upon each request.

In the per-site configurations (see later), youll be able to define
that the use of the proxy is not needed for certain sites (who reside
on your local network and can be accessed in direct)

2. Threading

JSpider is designed to be multi-threaded. Multiple web requests
are done in parallel, while previously fetched resources are
inspected and interpreted.

There are two groups of threads (pools): Spiders and Thinkers.

Spider threads are the ones that will execute fetch commands (go
out on the network and fetch data).

Thinker threads are used to interprete gathered data, apply rules,
etc...

One thinker thread can keep several spider threads busy in a typical
situation. By default the amount is 1 Thinker and 5 Spiders.

You can change the threading behaviour and it3 monitoring by
changing these properties:

j spi der. t hreads. spi ders. count =5

j spi der. t hreads. spi ders. noni t ori ng. enabl ed=t r ue

j spi der. t hreads. spi ders. noni tori ng. i nt er val =1000
j spi der. t hreads. t hi nkers. count =1

j spi der. t hreads. t hi nkers. noni t ori ng. enabl ed=t r ue
j spi der. threads.thinkers. noni toring.interval =1000

If enabled, the monitoring generates an overview of the thread pool
occupation every x milliseconds, determined by the interval.

This event will then be received by plugins, who can show a
progress bar, calculate the time elapsed and estimated spidering
finish time, etc...

3. User Agent

http://j-spider.sourceforge.net 86/121

JSpider 0-5-0-dev User Manual

The User-Agent sent with each HTTP request by JSpider can be
changed.
The settings for this are commented by default, but can be
uncommented for setting the User Agent to another value than the
default one.
By default, the User Agent string looks like this:

(JSpider 0.4.0 DEV (http://j-spider.sourceforge.net)

You can change this by setting this property:
j spi der . user Agent =JSpi der (http://] -spi der. sourcef orge. net)

Please note that there is also a setting site.userAgent on the site-
level (see further) that can override this one in it3 turn on a per-
site basis.

You might want to change the JSpider user agent in the following
cases:

?? Test your dynamic site that generates different output for
different user agents.

?? To pass a very restrictive proxy server that only allows
browsing sessions with a certain browser.

Please note that the User Agent is also used to determine
which rules from a site 3 robots.txt apply. Changing the user
agent can also change the obeyed rules!

Anyway, the user agent property is commented out by default, so
the string compiled into JSpider, containing it3 version, is used by
default.

4. Rules

Resources are processed in different steps:

?? Discovered when referred by another resource
?? Spidered when fetched
?? Parsed when interpreted and searched for new links

If this process went on forever, JSpider would ultimately index the
whole internet. Because of this, you have to scope the spidering
process.

http://j-spider.sourceforge.net 87/121

JSpider 0-5-0-dev User Manual

This can be done by creating rules that determine which resources
are eligible for spidering and/or parsing.

In the jspider.properties file, there are rules for both steps:

For the spidering (fetching) of resources:
j spi der. rul es. spi der. count =1
j spi der. rul es. spi der. 1. cl ass=
net . j avacodi ng. j spi der. nod. rul e. Onl yHt t pPr ot ocol Rul e

This makes sure that we only spider resources with the http://
protocol in front of the URL.

And the parsing rules:
j spi der. rul es. parser . count=1
j spi der. rul es. parser. 1. cl ass=
net . j avacodi ng. j spi der. nod. rul e. Text HH Ml M meTypenl yRul e

Which makes sure that only fetched resources with a mime type
containing “text/html”are parsed.

This way, no URLs are sought in images (gif,jpg,...), text, PDF, and
other file types.

These rules are only on the global level, you can add additional
rules on a per-site level basis.

Before a resource is fetched, it must first pass all spider rules on
the global level, then all spider rules on the site level (taken from
the per-site configuration assigned to the site related to the URL).

Before a resource is parsed, the same procedure is followed with
the global and per-site parsing rules.

There are a number of Rule implementations that come with
JSpider. It is also possible to implement your own. This is
explained in greater detail in the developer manual.

An overview of some rules that come with JSpider:
(all in the package net.javacoding.jspider.mod.rule)

AcceptAllRule
Lets all URLs pass

BaseSiteOnlyRule
Only if the URL is part of the base site (site used to start the
spidering process)

BaseURLOnNIlyRule
Only if the URL is the same as the base URL (url used to start
the spidering process)

http://j-spider.sourceforge.net 88/121

JSpider 0-5-0-dev User Manual

BoundedDepthRule
Rule that accepts an extra min and max depth parameter.
Only if the resource is at a minimum depth of <min> and a
maximum folder depth of <max> in the site, it is accepted.
Parameters:
o depth.min
0 depth.max

ExternallyReferencedOnlyRule
Only accepts an URL if it is referred to by a resource from
another site

ForbiddenPathRule
Accepts a path (folder or folders) from which no resources
may be retrieved — can be seen as an addition to robots.txt
disallows
Parameters:
o0 path

InternallyReferencedOnlyRule
Only accepts URLs if they are references by resources from
the same site

MaxNumberOfURLParamsRule
Only accepts URLs that have a maximum number of
parameters (configurable) in their URL query string
Parameters:
0 max

MaxResourcesPerSiteRule
Only accepts a limited number of resources (configurable via a
parameter) from the same site
Parameters:
0 max

NoURLParamsRule
Only accepts an URL if it has no HTTP GET parameters (Query
String in the form of “?param=value’)

OnlyDeeperiInSiteRule
Only accepts a URL if it is in the same site but teeper ”in the
folder structure than the base URL, the URL used to start the
spidering process

OnlyHttpProtocolRule
Only accepts a URL if it starts with “http://”

http://j-spider.sourceforge.net 89/121

JSpider 0-5-0-dev User Manual

RejectAllRule
Rejects all resources

TextHtmIMimeTypeOnlyRule
Only accepts a resource if it3 content type is text/html

Parameters can be passed to the rule like this:

j spider.rul e.spider.<rul e_nr>. config. <param nanme>=<par am val ue>

An example:

j spi der. rul es. spi der. count =2

j spi der. rul es. spi der. 1. cl ass=
net . j avacodi ng. j spi der. nod. rul e. Onl yHt t pPr ot ocol Rul e

jspider.rule.spider.2.class=

net . j avacodi ng. j spi der . nod. r ul e. BoundedDept hRul e
j spi der.rul e. spider. 2. config.depth. m n=3
j spi der.rul e. spider. 2. config. dept h. nax=4

Which will cause any resource that is not on the third or fourth level
in the site 3 folder hierarchy to be skipped for fetching.

URLs accepted would be:
http://somesite/one/two/three/file.html
http://somesite/first/second/third/fourth/index.html

URLSs rejected could be:

http://somesite

http://somesite/index.html
http://somesite/first/second/third/fourth/fifth/index.html

By combining the rule sets on the global and per-site level, it is
possible to scope the spidering process very good.

By making the distinction between rules for spidering and parsing, it
is possible to fetch certain resources (to see whether they exist),
without parsing them to look for new URLs.

A good example of this would be to check your site for any
outbound links, check these to find any 404 errors (dead links), but
not parse the external site pages, as this might lead us too far.

This way, you can simply check your site for dead links to external
sites.

http://j-spider.sourceforge.net 90/121

JSpider 0-5-0-dev User Manual

Please not that also the site.handle property in the per-site
configuration can cause any URL from a site assigned that
configuration to be skipped for spidering and parsing.

5. Storage

The object model for JSpider is backed by a Storage
implementation. By default, JSpider uses an in-memory data store.

It is, however, possible to use a JDBC (database) store for this.

As of this writing, the JDBC storage option is still
experimental, it has only been tested on MySQL 3, with the
Connector/J MySQL JDBC Driver version 2.14.

If you encounter any problems with the JDBC storage, other
databases or driver versions, please file a bug report on
sourceforge (see appendices at the end of this document for
the bug tracker URL)

In order to enabled the JDBC storage option, comment out this line
in your jspider.properties file (put a “#””in front of it):

j spi der. st orage. provi der=
net.j avacodi ng. j spi der. core. storage. menory .| nMenor ySt or agePr ovi der

And uncomment the following:

j spi der. st orage. provi der=
net.j avacodi ng. j spi der. core. st orage. j dbc. JdbcSt or agePr ovi der
j spi der. st orage. confi g.driver=com nysql .jdbc. Driver
j spi der. st orage. confi g.url =jdbc: mysql ://1 ocal host/ | spi der
j spi der. storage. confi g. user=
j spi der. st or age. confi g. passwor d=

(Don 1 forget to adapt the settings to your needs)

This will give JSpider the instructions to use the JDBC storage
option, with the connection information as in the properties.

First, youTl have to prepare your database with the tables.
There 3 a script to do this in the JSpider CVS repository (res/jdbc).
Any time you start JSpider, it will clean up all data in the tables.

Youll also need to have the appropriate JDBC driver in your
classpath when you start JSpider.

http://j-spider.sourceforge.net 91/121

JSpider 0-5-0-dev User Manual

You can verify that the JDBC storage option was used by
examining the logs (In this example, the Log4J logging treshhold
was set to TRACE):

I NFO [core.storage. StorageFactory] Storage provider class is 'class
net . j avacodi ng. j spi de r. core. storage. j dbc. JdbcSt or agePr ovi der'

DEBUG [core. storage.jdbc. DBUtil] jdbc driver = comnysql.jdbc. Driver
DEBUG [core. storage.jdbc. DBUil] jdbc user =

Of course, youTl also find you database filled with data after the
spidering process.

Using the JDBC storage has some advantages:
?? uses less memory, can spider larger scopes
?? you can query the database afterwards

There is, however, also the drawback of a performance hit in
comparison to in-memory storage.

http://j-spider.sourceforge.net 92/121

JSpider 0-5-0-dev User Manual

XV1. Per-site configurations

In Sites.properties? you assign a per-site configuration based on
the host and/or port of each site.

For each configuration specified in this file, you 7l have to add a per-
site configuration file used for handling all sites that are assigned
this specific configuration.

In the picture below, you 1l find three per-site configurations:

1]
e
3

jspider.sh

'i_'] velocity . log

= COMITMCN Cornmon Configuration
= conf

logging

E] commons-logging. properties
2] logdieml

E] logging. properties

[

conf

[+ checkErrors

= default General Configuration

|

plugins
velociky

+

I
L

[

smldump
:'i"] console.properties
Q diskwriter . properties
£| statusbasedfilewriter. properties
velocity . properties

][]]

xmldurnp. properties

[=l sites Fer-site configuration
E] default. properties
@ j-spider .sourceforge. net.properties
[Z] skip.properties

[£] jspider.properties

|Z] plugin.properties
a sikes.propetties

[+ download

The three site configurations found here are:

?? j-spider.sourceforge.net.properties
This configuration will be used when spider our own site

?? skip.properties
This configuration will be used for sites that are out of scope
for processing

?? default.properties
This one will be used for any other site

http://j-spider.sourceforge.net 93/121

JSpider 0-5-0-dev User Manual

A. sites.properties

You can create as much different per-site configurations as you
want. The only thing that you have to do, is to assign these
configuration files to specific sites. This is done in
sites.properties.

A snippet from the sites.properties file in the tefault”configuration:

j spi der.site.config. base=def aul t
j spi der.site.config.defaul t=skip

j - spi der. sour cef orge. net =j -spi der. sour cef org e. net

This means that the base site, the site from which JSpider starts
(the one typed at the console when starting JSpider) will be handled
according to the settings in default.properties.

The explicitly mentioned site j-spider.sourceforge.net gets it3
very own configuration file.

Any site that doesn1 get a separate config file assigned, will
default to the config file Skip "to be used.

If you assign a certain configuration in sites.properties to a site,
you 1l have to make sure that there3 a matching properties file in
the sites subfolder for that configuration.

For example, if you add a line:
www. googl e. conranot her conf

Then youTl have to create a file named @anotherconf.properties”in
the Sites~folder. All spidering actions regarding www.google.com
will then be done according to the settings found in that file.

For the rest of this section, we 1l explain the settings that are in a
site-specific configuration file (the files under the Sites *folder).

http://j-spider.sourceforge.net 94/121

JSpider 0-5-0-dev User Manual

B. Site-specific configuration files

The names of the site-specific configurations files is your own
choice, as you reference them from sites.properties.
You must put them under the Sites “subfolder.

We 1l now cover the different settings that can be configured in
these type of files:

1. Site handling

You can configure JSpider to ignore certain sites at all. This is
actually what the Skip "configuration in the default folder does:

si t e. handl e=f al se

this line makes sure that JSpider doesnt fetch any resource from
the site (not even robots.txt), but ignores it right away.

The normal setting is:

si t e. handl e=t rue

If you want to limit your spidering process to one or a few sites
only, you can assigned these sites a certain configuration, while
putting the default configuration to one that has it3 site.handle set
to false. (like the default configuration does):

The default configuration is very handy, since it really
scopes JSpider into a single site (the base site for
spidering, typed upon startup).

Any other sites found via links on the base site are mapped
onto the SKip ”configuration which has site.handle=false.
Misconfiguration can cause JSpider to be unscoped and
make the whole internet eligible for Spidering — which is
maybe a bit too heavy for our little spider...

2. Robots.txt

http://j-spider.sourceforge.net 95/121

JSpider 0-5-0-dev User Manual

As a well-behaving web robot, JSpider is configured to obey any
robots.txt file present on a webserver. If there is no robots.txt file
present, any resource is assumed to be accessible.

When a problem occurs fetching the robots.txt file other than the
file being not present, any resource from the site is ignored for the
rest of the spidering session.

The matching between User-Agents specified in the
robots.txt file is very simple: if the User-Agent specification is a
substring of the current spidering user agent, a match is found.

An example: When using the JSpider default user-agent:
JSpider v0.5.0-DEV (http://] -spider. sourceforge. net)

The spider would obey the same string, “ISpider”; “Spider”; “jspider
v0.5”’ etc...
The matching is done in a case-insensitive way.

You can change the behaviour of JSpider towards robots.txt file
handling in such a way that is never retrieved, or never obeyed.
Please use these modified settings only when spidering your own
sites, as it disables the robots.txt support built into JSpider.

These properties control the behaviour:

site.robotstxt.fetch=true
si t e. robot st xt. obey=t r ue

Please don1 use the robots.txt settings for the simple reason
that a webmaster has forbidden robot access to certain parts
of a site or a site as a whole. Contact the webmaster in case
and agree with him on what is allowed.

You can, however, temporarily bypass the robots.txt on your
own sites.

3. Throttling

JSpider can make many requests at the same time. Webservers,
however, have a limited capacity in serving user requests. Also,
when serving more requests at the same time, response times
degrade.

You should have control over when and how often JSpider
makes requests to a web server.

http://j-spider.sourceforge.net 96/121

JSpider 0-5-0-dev User Manual

This is exactly what the throttle component does. On a per-site
basis, the throttle controls the spider threads, and blocks them if
necessary until they te allowed to do a next request.

The default configuration in Sites/default/properties ~is:

site.throttle. provi der=net.javacodi ng.jspider.core.throttle.inpl.D st
ri but edLoadThrott| eProvi der
site.throttle.config.interval =1000

This will use the DistributedLoad throttle implementation that comes
with JSpider, with an interval of 1000 milliseconds. The result of
this configuration will be that there will be at maximum 1 request
per second towards sites assigned this configuration.

The default throttle setting (distributed load with an interval
of one second) is VERY conservative.

Diminishing the interval towards 500 ms or 250ms will speed
up the spider process considerably.

A decent web server shouldnt have any problem with these
values.

In fact, if you leave this value as-is, your CPU usage will be almost
zero when running JSpider, as most of the time will be spent waiting
for a next timeslot to fetch.

There is, however, a hardcoded minimum of 250 milliseconds to
avoid JSpider to do an accidental DOS attack on a webserver.

An alternative configuration would be:

site.throttle. provider=net.javacodi ng.jspi der.core.throttle.inpl.Sinmu
| t aneousUser sThrott| eProvi der

site.throttle. config.thinktime. mn=2000

site.throttle. config.thinktime. max=5000

This throttle implementation simulates real users on the web
site. Each Spider thread assigned (see threading configuration) will
become a virtual web surfer, which will be thinking~and reading
between 2 and 5 seconds before doing another web requests
towards the web server.

Please note that although multiple sites can use the same
configuration file (defined in sites.properties), the throttling (and
all other configured objects) are assigned on a per-site basis.

This means that two sites both using the Wefault *configuration will
both be throttled independently.

http://j-spider.sourceforge.net 97/121

JSpider 0-5-0-dev User Manual

JSpider will not fetch more resources in a certain timeframe than
allowed per site.

4. Proxy

The configuration of your proxy server is done in the general
jspider.properties configuration file.

You can, however specify on a per-site basis whether this proxy
should be used for a certain site. If you are spidering a site that is
internal to your network, you could disable the use of the proxy
server for this site:

site. proxy. use=true

enables the use of the proxy server for sites that are assigned this
configuration, while

site. proxy. use=f al se

disables the use of the proxy server.

5. User Agent

The User-Agent sent with each HTTP request by JSpider can be
changed.
The settings for this are commented by default, but can be
uncommented for setting the User Agent to another value than the
default one.
By default, the User Agent string looks like this:

(JSpider 0.4.0 DEV (http://j-spider.sourceforge.net)

You can change this by setting this property:
site. user Agent =JSpi der (http://]j - spider. sourceforge. net)

Please note that there is also a setting jspider.userAgent on the
global level (see above), but the setting on site-level can override
that one.

See the jspider.userAgent configuration discussion for some
important remarks regarding the changing of the user agent.

6. Cookies

The handling of cookies is configured on a per-site bases. This
means that youll have to decide whether cookies given by the
server will be sent back with later requests.

http://j-spider.sourceforge.net 98/121

JSpider 0-5-0-dev User Manual

The configuration is quite easy:

site. cooki es. use=true

The default value is true, set to Talse "to disable cookie support for
all sites assigned the specific configuration.

The biggest reason for JSpider to support cookies, is to allow all
requests towards a certain site during a spidering session to be
handled in one session.

7. Rules

Just like on the global level, you can assign Rules to URLs to be
spidered or parsed on a per-site level. These rules will then be
tested after all general rules have passed.

For more information about how rules work and how they can be
configured, please refer to the general configuration section.

A snippet from sites/default.properties should get you on the right
track:

site.rul es. spi der. count =2
site.rul es. spider. 1. cl ass=
net.j avacodi ng. jspider.nod. rul e. I nternal | yRef erencedOnl yRul e
site.rul es. spi der. 2. cl ass=
net . j avacodi ng. j spi der. nod. rul e. For bi ddenPat hRul e
site.rul es. spi der. 2. confi g. pat h=/ cont ent/j avadoc

site.rul es. parser. count =1
site.rul es. parser. 1. cl ass=
net.j avacodi ng. j spi der. nmod. rul e . BaseSi teOnl yRul e

Please note that the per-site rules are configured with
I site.rules and not jspider.rules, which is used on the
- global levell

This tells JSpider that resources should only be spidered (fetched) if
they were referred by a resource on the same site, and that we Te
going to ignore all resources from the /content/javadoc directory.

http://j-spider.sourceforge.net 99/121

JSpider 0-5-0-dev User Manual

Only resources from the base site will be interpreted (parsed), all
other resource will not be inspected to find references to other sites
and resources.

Debugging a JSpider configuration can become difficult. You
can however, trace the spidering and parsing decisions
taken for each resource.

Just look at the velocity-dump.out file in the output folder
after spidering with the default configuration, and youTl see
what | mean.

Per resource, you get an overview of each rule applied, and
the decision it took.

This way, you can track down why certain resources where or
where not spidered and/or parsed.

http://j-spider.sourceforge.net 100/121

JSpider 0-5-0-dev User Manual

XVI1Il. Plugin configuration

The plugin is the type of component that will be of the most
interest to you.

It will receive event notifications during the spidering process,
and has access to the object model of the spidered sites and
resources.

A. Plugin.properties

The plugin.properties file is used to list all plugins that should be
used in the configuration.

It also describes the filtering that should be applied on events
before they are dispatched to any plugin.

These are the settings configured in the plugin.properties file for the
default configuration:

jspider.filter.enabl ed=fal se
jspider.filter.engine=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter
jspider.filter.nonitoring=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter
jspider.filter.spider=

net . j avacodi ng. j spi der. nod. even tfilter. All owAl | EventFilter

j spi der. pl ugi n. count =4

j spi der. pl ugi n. 1. confi g=consol e

j spi der. pl ugi n. 2. confi g=vel ocity

j spi der. pl ugi n. 3. confi g=st at usbasedfil ewiter
j spi der. pl ugi n. 4. conf i g=xm dunp

1. Global event filtering

The first part concerns the global event filtering:
jspider.filter.enabled tells whether global event filtering should be
applied. If put to false, the filters are not used.

The settings for jspider.filter.engine, jspider.filter.monitoring
and jspider.filter.spider are classes that will be used for filtering
the events of the corresponding type. You can use other
implementations to filter the events that you dont want to reach
any plugin.

The default event filters that come with JSpider are:

http://j-spider.sourceforge.net 101/121

JSpider 0-5-0-dev User Manual

?? net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
Which lets all events pass

?? net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
Which blocks all events

?? net.javacoding.jspider.mod.eventfilter.ErrorsOnlyEventFilter
Which blocks all events except for those expressing an error

Event filtering can also be done on a per-plugin basis (see further)

So, if you want to suppress all monitoring messages, you can

simply change the line:
jspider.filter.nmonitoring=
net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter

to
jspider.filter.monit oring=
net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil ter

and no more monitoring events will reach any plugin.

It is also very easy to implement your own event filters, which is
explained in the developer manual.

2. Plugin definition

The second part of the file defines the plugins that should be used
while spidering with the current configuration.

It is simply a list of names given to plugins. Each name must have a
corresponding <name>.properties *file inside the Pplugins *folder.

So, for the line:
j spi der. pl ugi n. 2. confi g=vel ocity

There must be a file named ¥elocity.properties ”inside the plugins~
folder.

http://j-spider.sourceforge.net 102/121

JSpider 0-5-0-dev User Manual

B. Plugin configuration files

This type of configuration file is put in the plugins~folder, and can
have any name. Since you define a plugin in plugin.properties, you
should have a file with the name <plugin-name=>.properties in the
Pplugins “folder.

The content of a plugin configuration file is partly dependent on the
plugin.
What you always need is this basis:

pl ugi n. cl ass=net . j avacodi ng.j spi der. nod. pl ugi n. consol e. Consol ePl ugi n

plugi n. filter.enabl ed=fal se
plugin.filter.engi ne=

net.j avacodi ng. j spi der. nod. eventfilter. All owAl | EventFilter
plugin.filter.nonitoring=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter
plugin.filter.spider=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter

1. Plugin implementation class

The plugin.class property defines which plugin class will be used
for this plugin. In the example, this is a plugin implementation
class named TonsolePlugin’ which will print information in the
console.

2. Local event filtering

The plugin.filter properties work the same way as the jspider.filter
properties (see above), but filter events for this plugin only.
Changes made here will not influence other plugins.

The filter properties on the plugin level are called
I plugin.filter, while on the global level (jspider.properties),
- the filter properties are called jspider.filter

3. Plugin parameters

The rest of a plugin configuration file is composed out of parameters
needed by that particular plugin implementation.

A plugin writing a report to a file might need a filename, etc...

We 1l explain the configurations of the default plugins in the next
section.

http://j-spider.sourceforge.net 103/121

JSpider 0-5-0-dev User Manual

C. Default plugins

Some default plugins come with JSpider. These are:

?? Console
A simple plugin that prints information in the console where
JSpider is started

?? Velocity
A powerful plugin that writes report files according to
customisable templates, based on the Jakarta velocity
template engine.

?? FileWriter
A simple plugin (like the console plugin) that writes spidering
information to a file

?? StatusBasedFileWriter
A plugin that organizes web resources according to the HTTP
status (so you 1l end up with a file called 200.out with all good
resource, a file called 404.out, with all 404 error resources, a
file named 301.out”with all redirected resources, etc...

?7? DiskWriter
A plugin that creates a file on the file system per fetched
resource, and writes the resource content in it. This can be
used to download web resources or event complete sites to
your local disk.

Of course, you can also implement your own plugin classes. This is
explained in detail in the developer guide.

http://j-spider.sourceforge.net 104/121

JSpider 0-5-0-dev User Manual

1. Console Plugin

The console plugin is the simplest plugin, and is configured by
putting this line as the setting for plugin.class in your plugin
configuration file:

pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n. consol e. Consol ePl ugi n

Configuration

This is enough to configure the console plugins, but some
customisations can be done. An example from the default
configuration:

pl ugi n. confi g. prefix=[Pl ugi n]
pl ugi n. confi g. addspace=t r ue

The plugin.config.prefix defines the prefix that is put before each
line printed out by the console plugin.

Whether or not a space should be added after the prefix is
determined via the property plugin.config.addspace

Using different prefixes can be helpful when you configure to
plugins to be a ConsolePlugin, to difference the output between the
two.

Example

Let3 say you want three different Console plugins:
?? One for monitoring events
?? One for the engine and spidering events
?? One for all errors

You can create these by configuring your plugin.properties like
this:
jspider.filter.enabl ed=fal se

j spi der. pl ugi n. count =3

j spi der. pl ugi n. 1. confi g=noni tori ng
j spi der. pl ugi n. 2. con fi g=ot her

j spi der. pl ugi n. 3. confi g=errors

This way, we don1 filter any events on the global level, and we
define three plugins.

Now we Te going to create the needed file in the Pplugins ~folder for
these three plugins, namely:

?? monitoring.properties

?? other.properties

http://j-spider.sourceforge.net 105/121

JSpider 0-5-0-dev User Manual

?? errors.properties

In monitoring.properties we 1l put:

pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n. consol e. Consol ePl ugi n
pl ugi n. filter.enabl ed=true

plugin.filter.engi ne=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil ter
plugin. filter. nonitoring=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter
plugin.filter.spider=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil ter

pl ugi n. confi g. prefi x=[Moni t ori ng]

pl ugi n. confi g. addspace=t r ue

By doing so, all events will be filtered out (for this plugin), except
for the monitoring events.

The output will be given fronted by the prefix “{Monitoring] 2

In other.properties we 1l put:

pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n. consol e. Consol ePl ugi n
plugi n.filter.enabl ed =true

plugin.filter.engi ne=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter
plugin.filter.nonitoring=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil ter
plugin.filter. spider=

net.j avacodi ng. j spi der. nod. eventfilter. All owAl | EventFilte r

pl ugi n. confi g. prefi x=[& her]
pl ugi n. confi g. addspace=t r ue

This way, all non-monitoring related events will be printed out with
a prefix “{Other] “<

And finally, errors.properties will look like:
pl ugi n. cl ass=net . j avacodi ng. j spi der. nod. pl ugi n. consol e. Co nsol ePl ugi n

pl ugi n. filter.enabl ed=true

plugin.filter.engi ne=

net.j avacodi ng. j spi der. nod. eventfilter. ErrorsOnl yEventFilter
plugin.filter.nonitoring=

net.j avacodi ng. j spi der. nod. eventfilter. ErrorsOnl yEventFilter
plugin.filter.spider=

net.javacodi ng. jspid er. nod. eventfilter. ErrorsOnl yEventFilter

pl ugi n. confi g. prefi x=[Error]
pl ugi n. confi g. addspace=t r ue

http://j-spider.sourceforge.net 106/121

JSpider 0-5-0-dev User Manual

Which will print any type of event that tells about an error situation
fronted by the “{Error] ““prefix.

Sample output

If we then spider a host where no web server is running, we get the
following output (snippets —commented in between):

(Not the different prefixes that allow the distinction of the three
plugin instances)

[Moni toring] Modul e : Console witer JSpider nodul e

[Moni toring] Version: v1.0

[Moni toring] Vendor : http://ww:.javacodi ng. net

[Monitoring] Spidering Started, baseURL = http://| ocal host

This is the monitoring plugin presenting itself ...

[Gher] Module : Console witer JSpider nodul e

[Cher] Version: v1.0

[Gher] Vendor : http://ww.javac odi ng. net

[Gher] Spidering Started, baseURL = http://I ocal host

Then the “bther’’plugin is started.

[Error] Module : Console witer JSpider nodul e

[Error] Version: v1.0

[Error] Vendor : http://ww.javacodi ng. net

[Error] Spidering Started, baseURL = http://Iocal host

Finally, also the “Error’’plugin is started!

[Gher] site discovered : http://Iocal host
[Gher] resource discovered: http://I ocal host

A new site (localhost) and new resource being discovered are
spidering events, which are only accepted by the “bther’’plugin, due
to the filtering for “€rror’”’and “monitoring”’

[Monitoring] Job nonitor: 0% (0/1) [S:0% (0/1) | T:0% (0/0)]
[bl ocked: 1] [assi g ned: 1]

[Moni tori ng] ThreadPool Thi nkers occupati on: 0%
[idle: 100% blocked: 0% busy: 0%, size: 1

[Moni tori ng] ThreadPool Spiders occupation: 20%
[idle: 80% blocked: 0% busy: 20%, size: 5

These monitoring events are only received by the monitoring plugin,
again due to event filtering...

[her]

net . j avacodi ng. j spi der. api . event . si t e. Robot sTXTFet chEr r or Event
robots.txt was unreachable on site '[Site: http://I|ocal host -
ROBOTSTXT_ERROR *]'

[Error]

net . j avacodi ng. j spi der. api . event . si t e. Robot sTXTFet chErr or Event
robots.txt was unreachable on site '[Site: http://I|ocal host -
ROBOTSTXT_ERROR *]'

The failure to connect to the site (since | didnt start the webserver)
is a spidering event, thus allowed to pass to the “bther’’plugin.

http://j-spider.sourceforge.net 107/121

JSpider 0-5-0-dev User Manual

It is also an error event, so it also passes the filtering for the
“errors’’plugin.

It doesnt reach the monitoring plugin, however, since it is no
monitoring event.

[Gher] http://local host - Ignored for fetching
The notification that a certain resource will not be fetched is only
received by the “bther”’plugin.

[her]
SPI DERI NG SUMVARY :
known urls 2

visited urls : 0
parsed urls 0
parse ignored urls 0
parse error urls : 0

not visited urls 2
fetching ignored urls ..
forbidden urls
fetch error urls

R OP

not yet visited urls .. : O
Same goes for the spidering summary event, which tells us two
URLs are known during the spidering process:

?? http://localhost

?? http://localhost/robots.txt
Of which the robots.txt caused a fetch error (the web server wasnt
running in this example)
And the other (the original baseURL — http://localhost) is ignored
for fetching because JSpider wasnt able to determine whether a
robots.txt file is present

[Moni toring] Spidering Stopped
[Gher] Spidering Stopped
[Error] Spidering Stopped

The event that the spidering has stopped is not filterable, so
reaches every plugin.

This example showed how multiple instances of the same plugin
class (Console Plugin in this case) can be combined.

http://j-spider.sourceforge.net 108/121

JSpider 0-5-0-dev User Manual

2. Velocity Plugin

The velocity plugin is without doubt the most powerful that comes
with JSpider.

Based on the open source template engine ¥elocity”~
(http://jakarta.apache.org/velocity), it produces output according to
a template on a per-event basis, as well as an overview report.

Each event that enters a velocity plugin instance, will trigger the
rendering of output according to a template assigned for that event.

When the spidering is done, there is also a possibility to write a
report from the (by then) finished object model.

Example

The velocity plugin configured in the tefault*configuration is a good
example to see how it works.

In the plugin.properties file, you 7l find a plugin definition:
j spi der. pl ugi n. 2. confi g=vel ocity

Which will cause a plugin called ¥elocity "to be loaded, according to
the settings in Pplugins/velocity.properties =

pl ugi n. cl ass=

net . j avacodi ng. j spi der. nod. pl ugi n. vel o city. Vel ocityPl ugi n
Should look familiar, this is simply the implementation class of the
Velocity plugin.

pl ugi n. confi g.t enpl at ef ol der=vel ocity

pl ugi n. config.trace. wite=true

pl ugi n. config.trace.fil enane=./velocity -trace. out
pl ugi n. confi g. dunp. write=true

pl ugi n. confi g. dunp. fil enane=./vel ocity - dunp. out

This is the extra configuration needed for the velocity plugin, which
we 1l cover in a moment.

pl ugi n. filter.enabl ed=true

plugin.filter.engi ne=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFilter
pl ugin.filter. nonitoring=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fil t er
plugin.filter.spider=

net.j avacodi ng. j spi der. nod. eventfilter. All owA | EventFil ter
This should also look familiar, as it is simply the local event filtering
configuration for the plugin.

Note that we filter out all monitoring events, since we are only

http://j-spider.sourceforge.net 109/121

JSpider 0-5-0-dev User Manual

interested in data in our velocity reports, not in spidering progress
and system occupation information.

Configuration

The extra configuration needed for a velocity plugin are these
properties:

pl ugi n. confi g.t enpl at ef ol der=vel ocity

pl ugi n. config.trace. wite=true

pl ugi n. config.trace.fil enane=./velocity -trace. out
pl ugi n. confi g. dunp. write=true

pl ugi n. confi g. dunp. fil enane=./vel ocity -dunp. out

Since the velocity plugin maps each incoming event to a template
file, you Tl have to define the name of the subfolder under plugins?;
from where the templates can be loaded.
By default, the plugin.config.templatefolder is named ¥%elocity ~
This is thus also the name of the folder youTl find in the default
configuration.

The property plugin.config.trace.write determines whether the
velocity plugin should write a report for all incoming events during
the spidering process. If this is true, the file in which the output is
rendered is determined by the following property,
plugin.config.trace.filename.

The property plugin.config.dump.write determines whether a
dump of the object model should be rendered according to the
template ump.vm ~after the spidering is done.

If this property is set to true, the plugin.config.dump.filename is
the name of the file written into.

In the default configuration, this is used to write an XML report of
the sites spidered at the end of the process (see the xmldump
plugin, which is a customized velocity plugin specially created for
XML dumping the object model).

The best thing you can do is simply spider something small with the

default configuration, and see the result in the two report files you Tl
find in the /output folder afterwards.

Creating templates

Creating velocity templates for generating the reports is quite easy:
see the velocity site for the template language syntax.

http://j-spider.sourceforge.net 110/121

JSpider 0-5-0-dev User Manual

Each event is mapped upon a template, so the event
net.javacoding.jspider.api.event.site.SiteDiscoveredEvent

will be rendered by the template:
/conf/default/plugins/velocity/site/SiteDiscoveredEvent.vim, etc...

The template used for the final dump of the object model is
Yump.vm~

You can also use the original templates as a basis to create your
own.

For event templates, the velocity context will contain :
?? eventName
the name of the event (short notation)
?7? event
the event object (event class instance) that can be
interrogated

For the dump template, the context will contain:
?? sites
collection of all sites encountered during spidering
?? resources
collection of all resource encountered during spidering

These objects can then be further interrogated (ex: get all folders in

a site, get all resources in each folder, get all data about a resource,
find all references to other resources, etc...)

Template example

As an example, well take the template for the
ResourceReferenceDiscoveredEvent.

Since the class is
net.javacoding.jspider.api.event.resource.ResourceReferenceDiscov
eredEvent, we Tl find the template in

Plugins/velocity/resource/ResourceReferenceDiscoveredEvent.vm

[${event Name}] from ' ${event.resource. URL}'
to '${event.referencedResource. URL}'

This can generate an output like this in the trace file:
[resour ce. Resour ceD scoveredEvent] from'http://| ocal host'
to "http://Iocal host/ second. ht m'

Which gives you a very flexible way of writing spider reports.

http://j-spider.sourceforge.net 111/121

JSpider 0-5-0-dev User Manual

3. FileWriter Plugin

The filewriter plugin is very similar to the console plugin, but it
writes is output in a file, and not on the screen.

This plugin is not used in the default configuration included with
JSpider, but can be added very easily.

Configuration

The configuration to be done for the FileWriter plugin is very simple.
Only the target filename must be given:

pl ugi n. config.filename=filewiter.out

This way, a file named filewriter.out”will be created in the JSpider
output directory.

4. Status-Based FileWriter plugin

The status-based filewriter plugin is very handy to look for problems
in a website.

Since it writes the URLs of resources in a file named after the HTTP
status received when fetching that resource, it is easy to see which
resources where found, which were not, which URLs lead to a
redirect, etc...

An example of this plugin can be found in the <“theckErrors’”
configuration:

pl ugi n. cl ass=
net . j avacodi ng. j spi der. mod. pl ugi n. st at usbasedfil ewiter. St at usBasedF
leWiterPl ugin

plugi n. filter. enabl ed=fal se
No other configuration is needed.

When you spider a site with this plugin enabled, you 1l find files like
these in the output folder afterwards:

200.out — All perfectly fetched files

301.out —All temporary redirects

302.out — All permanent redirects

404.out —All resources that couldnt be found

407.out — All resources that were forbidden

500.out —All resources that lead to an internal server error
... (other HTTP statuses)

NN IIIIS

http://j-spider.sourceforge.net 112/121

JSpider 0-5-0-dev User Manual

Remark that the files are only present if at least one resource lead
to the corresponding HTTP status.

When the HTTP status is about an error (like a 404), also the
referring page is given.
This way, it is possible to distinguish between missing resources
(should be present on the webserver but is not there), and dead
links because of an error in the link (resource is there but the
reference is incorrect).

5. DiskWriter Plugin

The diskwriter plugin can be used to download web pages to the
local file system. Each time a successful resource fetch is notified
to this plugin, it will write the content down in a file on the
filesystem.

The configuration looks like this (taken from the tWownload~
configuration):

plugi n. filter.enabl ed=true

plugin.filt er.engi ne=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fi |t er
plugin.filter.nonitoring=

net . j avacodi ng. j spi der. nod. eventfilter. Al |l omNoneEvent Fi |t er
plugin.filter.spider=

net . j avacodi ng. j spi der. nod. eventfilter. All owAl | EventFilter

pl ugi n. cl as s=
net . j avacodi ng. j spi der. nod. pl ugi n. di skwriter.D skWiterPlugin

pl ugi n. confi g. out put . absol ut e=f al se
pl ugi n. confi g. out put . f ol der=.

As you can see, we filtered out the engine and spidering events,
which are of no use to this plugin.

The plugin-specific configuration properties for the download plugin
might some extra explanation:

jspider.config.output.folder is the folder to which downloaded
web pages should be saved. By default, this is a path relative to
the dutput~folder.

If you use a dot(<?) for this property (as in the given example), web
pages will be downloaded to the output folder itself.

If you want to put an absolute file system path, you must set the
jspider.config.output.absolute to true, which causes the folder to

http://j-spider.sourceforge.net 113/121

JSpider 0-5-0-dev User Manual

be interpreted as an absolute path (eg: c:\downloads\sites or
/var/jspider/sites).

After spidering with the DiskWriter plugin enabled, you will find the
structure of the spidered site(s) under the target folder like this:

{ FOLDER}/ <si t enane>/ <f ol der >/ r esour ce. ht m

etc...

http://j-spider.sourceforge.net 114/121

JSpider 0-5-0-dev User Manual

Part

http://j-spider.sourceforge.net 115/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 116/121

JSpider 0-5-0-dev User Manual

XVI1Il. Project info

This section contains global information about the JSpider project.

Official WebSite:
http://j-spider.sourceforge.net

Sourceforge.net project website:
http://www.sourceforge.net/projects/j-spider

Download page:
http://sourceforge.net/project/showfiles.php?group id=65617

CVS repository (Anonymous access, read only):
(set your CVSROOT to this)
Jpserver:anonymous@cvs.j-spider.sourceforge.net:/cvsroot/j-spider

Online CVS browsing:
http://cvs.sourceforge.net/cqgi-bin/viewcvs.cqi/j-spider/

Forums:

We currently have three forums (Developer, Help en Open
Discussion). These are the ones that are created by default on
sourceforge:

http://sourceforge.net/forum/?group_id=65617

Bug tracking:
http://sourceforge.net/tracker/?group id=65617&atid=511632

Feature requests:
http://sourceforge.net/tracker/?group _id=65617&atid=511635

http://j-spider.sourceforge.net 117/121

JSpider 0-5-0-dev User Manual

X1X. Versioning

We distinguish different version types:

?? release builds

?? release candidates

?? development builds

?? CVS versions (not released as a download, only in CVS)

A. Release builds

The builds are considered to be stable and released as official
JSpider versions.

Their name is formed as:

jspider-<Major=>-<minor>-<revision>
For example: jspider-1-0-0

B. Release candidates

Before each major release, a JSpider version will first do some time
as a release candidate, to ensure that everything is working fine.
No real new functionality will be added to a release candidate before
the actual release. Only bugfixes can be applied. When a release
candidate is considered to be production quality, it is made a
release build.

The name of a release candidate is constructed as follows:

jspider-<Major=>-<minor>-<revision>-rc<number>
For example: jspider-1-0-0-rc3

C. Development builds

This type of version is an intermediate step between two version,
with possibly many changes, new (mostly undocumented) new
features, etc...

While we offer these for download to test, they cannot be
considered stable.

It is however important that these are tested!

The name for a development build is constructed as follows:

http://j-spider.sourceforge.net 118/121

JSpider 0-5-0-dev User Manual

jspider-<Major=>-<minor>-<revision>-dev
For example: jspider-0-5-0-dev

Where the revision will be a pair number

D. CVS Versions

Each time a new release is done (development, release candidate or
major release), a new version number is created for the CVS HEAD.
This way, we can always distinguish between a CVS version
(between two releases) and a released development version.

The name is constructed as follows:

jspider-<Major=>-<minor>-<revision>-dev
For example: jspider-0-5-0-dev

Where revision is always odd.

For example, after the jspider-0-5-O-dev release, we will create a
new version to work on in CVS, jspider-0-5-1-dev.

Once this one is good enough to be released, we will create a
jspider-0-5-2-dev or jspider-0-6-0-dev development release.

So a version number with an odd revision is never released as a
download, but is a version that comes straight from CVS, and is in
between two official versions (thus possible unstable).

http://j-spider.sourceforge.net 119/121

JSpider 0-5-0-dev User Manual

XX. History

This is a list of all jspider releases (both stable and development).
The names are also the actual CVS tag names that can be used to
check out a certain version.

(listed in reverse order, so most recent is on top)

jspider-0-5-0-dev (2003-05-01 —DEVELOPMENT)

First version of User Manual (this doc)

Folder-level model implementation

Base Href support

XML Reporting

Email-address handling

New default Rule implementations

Several bugfixes, refactorings and smaller changes

NN INIIISN

jspider-0-4-0-dev (2003-04-06 - DEVELOPMENT)

?? Preliminary JDBC storage

?? New logging system

?? DAO-based storage approach
?? Velocity plugin

jspider-0-3-0-dev (2003-02-23 - DEVELOPMENT)

?? Major refactorings

?? Out-of-the-box download configuration
?? Decent cookie support

?? Http header interpretation

jspider-0-2-0-dev (2003-01-04 - DEVELOPMENT)

Internal refactorings

Task Scheduler introduction

Several bug fixes

New event filter system

Functional JUnit tests

Out-of-the-box checkErrors configuration

NI TN TN N TN

jspider-0-1-0-dev (2002-11-20 - DEVELOPMENT)

?? Initial release

?? Robots.txt support

?? In-Memory storage of gathered data
?? Basic plugin support

http://j-spider.sourceforge.net 120/121

JSpider 0-5-0-dev User Manual

?? Basic Rules implementation
?? Basic event Filtering

http://j-spider.sourceforge.net 121/121

