

JSpider
User Manual

version 0-5-0-dev
http://j-spider.sourceforge.net

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 2/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 3/121

OVERVIEW.. 9

I. INTRODUCTION ...11
A. What is JSpider?...11
B. Definition of terms..11
C. License..11
D. What can I do?...12

1. Using JSpider..12
2. Giving feedback..12
3. Posting on mailing lists ...12
4. Forums..12
5. Reporting bugs..12
6. Submitting feature requests ...13
7. Submitting patches..13

II. CONCEPTS ..14
A. JSpider global design ..14

1. Main components..14
2. JSpider engine core...15
3. SPI components ..15

Rules ..15
Plugins..16
Event Filters ...16

4. API components..16
Object model ..17
Event system...17

B. JSpider applications ..18
1. JSpider application..18
2. JSpider-tool...18

C. Event system ...20
1. Types of events ...20
2. Event Dispatching...20
3. Event list...22

D. Object model ...22
1. Sites ..23
2. Resources..24

E. Spidering process ..26

INSTALLATION ... 27

III. PREREQUISITES ..29
IV. BINARY INSTALLATION ..30

A. Downloading ..30
B. Unpacking ...30
C. Basic configuration..30
D. Testing..31

V. BUILDING FROM CVS..33
A. Setting the CVSROOT..33
B. Checking out..34

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 4/121

C. Basic configuration (optional)34
D. Building from source ...34
E. Running the test suite..36
F. Using JSpider ..37

VI. FOLDER OVERVIEW ..38

USAGE .. 41

VII. STARTING JSPIDER..43
A. Windows..43
B. Unix..43
C. Configurations..44

VIII. SCENARIO: CHECKING A SITE FOR ERRORS45
A. Goal..45
B. Configuration ...45

1. Global configuration ...46
Proxy configuration ..46
Other ..46

2. Per-site configuration ..47
Site Configuration ‘base’..47
Site Configuration ‘default’..48

3. Plugin Configuration...49
Console plugin..50
Filewriter plugin ...50
StatusBasedFileWriter Plugin ...51

C. Example ..51
1. Console output..52
2. 404.out..55
3. Error-report.out...55

IX. SCENARIO: DOWNLOADING A SITE TO LOCAL DISK56
A. Goal..56
B. Configuration ...56

1. Global configuration ...56
2. Site-specific configurations ...57

Site configuration ‘base’...57
Site configuration ‘skip’..57

C. Example ..58
D. Sample output..58

X. SCENARIO: PLAYING AROUND WITH JSPIDER59
A. The default configuration ...59

1. Configuration..59
2. Starting ...59
3. Output...59

B. Forgetting about robots.txt ..61
C. Going not too deep ...62

XI. USING JSPIDER-TOOL ...65
A. Usage ...65
B. Tools...66

1. headers..66

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 5/121

2. info ...66
3. fetch..67
4. download ..67
5. findlinks..68
6. email...68

CONFIGURATION.. 69

XII. ENVIRONMENT ...71
A. Java 1.3: XML parser Configuration.............................72
B. JSPIDER_HOME env. variable73

XIII. CONFIGURATION OVERVIEW74
A. Common configuration ..74
B. General configuration ..74
C. Per-site configuration ..74

XIV. COMMON CONFIGURATION..76
A. Logging subsystem ...77

1. Logged items ..77
2. Configuration..77
3. Using Log4j ..78

Adapting the log4j configuration...78
Configuration change example..78

4. Using JDK 1.4 logging..80
XV. GENERAL CONFIGURATION ..81

A. The ‘default’ configuration..81
B. Other configurations ...82
C. Configuration Files ..84
D. jspider.properties ...85

1. Proxy settings ...85
2. Threading..86
3. User Agent..86
4. Rules...87
5. Storage..91

XVI. PER-SITE CONFIGURATIONS93
A. sites.properties ..94
B. Site-specific configuration files95

1. Site handling ...95
2. Robots.txt ...95
3. Throttling..96
4. Proxy ..98
5. User Agent..98
6. Cookies...98
7. Rules...99

XVII. PLUGIN CONFIGURATION..101
A. Plugin.properties ..101

1. Global event filtering ..101
2. Plugin definition ...102

B. Plugin configuration files..103
1. Plugin implementation class..103

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 6/121

2. Local event filtering ..103
3. Plugin parameters ...103

C. Default plugins ...104
1. Console Plugin..105

Configuration..105
Example ...105
Sample output...107

2. Velocity Plugin ...109
Example ...109
Configuration..110
Creating templates ..110
Template example...111

3. FileWriter Plugin ..112
Configuration..112

4. Status-Based FileWriter plugin ...112
5. DiskWriter Plugin ...113

APPENDICES... 115

XVIII. PROJECT INFO ...117
XIX. VERSIONING ...118

A. Release builds ..118
B. Release candidates ...118
C. Development builds ..118
D. CVS Versions ...119

XX. HISTORY ..120

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 7/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 8/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 9/121

Part

1

Overview

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 10/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 11/121

I. Introduction

This section will introduce JSpider and give some general
information about the project.

A. What is JSpider?

JSpider is an open source project, written entirely in Java. (J2SE).
It is an implementation of a highly flexible, configurable web robot
engine.

B. Definition of terms

This is a list of terms used throughout the document with their
definition:

Base Site

The base site is the site that functions as the starting point of
the spidering process. When you start JSpider, the URL given
to start the spidering from will determine the base site.
The base site is the site of which the base URL is part of.

Base URL

The base URL is the URL given to JSpider to start the
spidering process from (at startup time).

Parsing

Used as a term for examining the content of a web page to
find links to other resources in it.

Spidering

Spidering is the process of fetching resource from a web
server, reading the content and looking for references to
other resources to fetch.
This way, the whole site (and other sites) can be ‘discovered’

C. License

JSpider is distributed under the LGPL license.
More information can be found at http://www.opensource.org.
The license itself comes with the JSpider distributions and is also
accessible at http://www.opensource.org/licenses/lgpl-license.php.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 12/121

D. What can I do?

JSpider is a piece of software that’s evolving constantly. Well,
great, but what can I do to make it even better?

1. Using JSpider

Well, as this is a free piece of software, you could simply start by
using it. We hope that the countless hours of thinking, designing,
implementing, testing and refactoring JSpider will pay off.
We really hope that this project will be of use to many of you out
there.

2. Giving feedback

We can’t create a top product without feedback from the user base.
If you have any comments, ideas, success or failure stories
regarding JSpider, please post them on our mailing lists or the
forums. Of course, any questions you might have are welcome and
will be answered as soon as possible by the people who know the
ins and outs of the software.

3. Posting on mailing lists

A great way of communicating is mail. JSpider has different mailing
lists to discuss its working, ask questions about the usage,
configuration and workings, and another subject you can think of.
The procedure to subscribe and post to the mailing lists, as well as
the information on how to browse the archives can be found in the
reference section.

4. Forums

The sourceforge project site also contains forums that can be used
to ask questions and discuss the future of the project.
The URL of the JSpider forums can be found in the reference section
at the end of this manual.

5. Reporting bugs

If you face bugs in JSpider while using it, or find that it behaves
another way than it should be, you can fill out a bug report on the
sourceforge project site.
This makes sure that your issue will attract the attention of the
developers and will be handled appropriately.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 13/121

Bug reporting URLs can be found at the end of this manual

6. Submitting feature requests

You’ll probably encounter situations where you find that JSpider is
lacking functionality, or doesn’t support something out-of-the-box
that would be beneficial to many people.
If you think of any feature, any idea related to JSpider, please
submit it to the project site on sourceforge as a feature request.
Even if you doubt how and if your idea is implementable, it doesn’t
cost anything to voice it to the world.
The location at which you can find the bug tracking is given at the
end of this document, in the reference section

7. Submitting patches

If you are a developer, you might want to dive into the JSpider code
right away.
If you implement some new functionality, or fix a bug, you can
contribute this to the project.
Instructions on how to do this can be found in the developer’s
manual.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 14/121

II. Concepts

This section will introduce you in the concepts of JSpider. When you
understand the different components and their interaction, you’ll be
able to configure JSpider to adapt it to your needs in any situation.

A. JSpider global design

JSpider is an engine, not an application. Although an out-of-the box
installation is very useful already, it is designed to be easily
extended and configured.
This means that the engine (the core) of JSpider is the most
important part. Actual functionality will be added afterwards, and
will be invoked by the engine.

1. Main components

The main parts that can be distinguished are:

?? the engine core
?? a model, describing all spidered resources, sites, etc…
?? an event model notifying of what’s going on
?? components implementing a SPI (Service Provider Interface)

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 15/121

2. JSpider engine core

The main part of JSpider is the engine core, that implements the
most basic functionality delivered by JSpider.

3. SPI components

The real application functionality that will be of use to you will be
implemented by the components that adhere to certain SPI
interfaces.
JSpider comes with a number of implementations of these
components, and you can also implement your own.
There are actually used to extend and add functionality to JSpider.

There are several types of components that can be used by JSpider.
The most important ones are:

?? Rules
?? Plugins
?? Event Filters

 Rules

Rules decide which resources should be fetched and/or processed
by JSpider. By construction a set of rules on a global or per-website
basis, you can define JSpider’s behaviour and scope.
There are a lot of rule implementations that come with JSpider, and
you can also develop your own.

Rules are executed one after another, until a decision is made.
The decision types that can be taken are:

?? don’t care
The rule states it doesn’t apply to the situation and doesn’t
interfere with the decision

?? accept

The rule checked the situation and decides that the URL
should be accepted for spidering or parsing (depending on the
situation in which it was used)
Other rules can override this decision, however.

?? ignore

The rule checked the situation and decided that the resource
should be skipped for processing (fetching or parsing,
depending on the situation presented). This decision is not

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 16/121

vetoable anymore by another rule and ends the decision
chain.

?? forbidden

The rule checked the situation and decided that the
processing of the resource (fetching or parsing, depending on
the situation) is forbidden. This is a stronger version of
ignore, and also ends the decision chain.

With every resource, the results of the spidering and parsing
decision chain is saved, so you can always trace what rule caused a
certain resource (not) to be fetched or parsed.

 Plugins

Plugins are components that have access to the data structures
exposed by JSpider, and are notified of certain events happening.
They can then take appropriate actions.
These actions can be anything you can think of:

?? Writing a report file
?? Displaying a message on the console
?? Writing a fetched resource to disk
?? Sending a mail to someone
?? Etc…

By implementing your own plugin, you can add functionality to
JSpider. You could, for instance, construct a configuration in which
JSpider tests a certain site for 404 errors (link errors), and send an
e-mail with all error links to the webmaster.
Another usage would be to mirror a website on your local disk: for
this purpose, you would enable a plugin that writes every fetched
resource into a file on your harddisk.

 Event Filters

Event Filters can select the events that have to be handled by the
system as a whole or a particular plugin.

4. API components

The JSpider API consists out of the following type of objects

?? an object model
?? an event system

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 17/121

 Object model

The model is an object model that represents everything that
JSpider encounters while spidering:

?? Sites
?? Resources (URLs)
?? Content
?? References between resources
?? Cookies
?? Etc…

This model can be accessed from within the components in order to
look up data, write a report, calculate statistics, etc…
The model is backed by the storage component.

 Event system

The event system is a group of event classes that will be used to
notify all interested plugins of certain events happening during the
spidering progress.

There are three types of events in JSpider:

?? engine events
spidering started, stopped, configuration chosen, …

?? spidering events
site discovered, resource spidered, fetch error, …

?? monitoring events
give information about the spidering progress and the thread
pool occupation.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 18/121

B. JSpider applications

JSpider is useable in two forms:

?? A standalone application (JSpider itself)
?? A set of useful tools (JSpider-tool)

1. JSpider application

The main JSpider application is a web robot that’ll spider (fetch)
web resources, parse the result content, search for new links, and
fetch those also.
This whole process is configurable, and only resources that apply to
certain rules are spidered and/or parsed.

You can easily limit the spidering process to:

?? a certain web site
?? a certain group of websites
?? a certain part of a web site
?? resources with a certain content type
?? resources that are referenced from a certain other site
?? etc…

The possibilities are virtually unlimited.

During and after this process, reports can be written to disk,
fetched resources can be downloaded to a local folder, errors can be
reported, etc…

2. JSpider-tool

The JSpider-tool is a tool that can do several things for you, all
based on JSpider. Instead of spidering everything that’s within the
boundaries of the configured rules, it is aiming towards a single web
resource (URL).

Tools exist to:

?? Download a file
?? Show the contents of a web resource
?? Show all info about a web resource
?? Show all HTTP Headers given by the server
?? Etc…

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 19/121

While this functionality is implemented in a way that it depends on
the JSpider core, it can be used separately from the main
application.

More information on how to use these applications can be found in
the section on the usage of JSpider.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 20/121

C. Event system

The JSpider event model is a group of java event classes that
represent events that can occur while spidering websites.

These events include:

?? An event telling that a new site was found
?? An event telling a certain web page was fetched
?? An event telling the robots.txt file for a certain site was

interpreted
?? An event telling that a web page wasn’t found on the server
?? An event telling a resource is skipped for processing because

access to it wasn’t allowed by some rule
?? …

These events will be generated in the JSpider core, and the
JSpider event dispatcher will dispatch them towards the
plugins.

Each plugin can then take appropriate action for each event. A
plugin that is interested in finding 404 errors, for example might
use the notification of a webpage-not-found-event to write the URL
of the page in a file, along with the page that referred to it.

1. Types of events

Different types of events can be distinguished, along different
criteria:

?? Whether the event is a Engine-related, spidering-related, or
a monitoring event.

?? Whether an event is filterable or will be dispatched no
matter what

?? Whether the event expresses an error situation or not.

These differences can be used to filter, select and interpret events.
They can be used inside plugins to determine the appropriate action
to take.

2. Event Dispatching

It’s important to understand what happens between the raising of
an event during spidering by the JSpider core, and the moment it
eventually arrives in a plugin.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 21/121

The process of dispatching is done as follows:

As you can see, the event dispatching starts at the dispatcher. This
component will throw the events to be dispatched through the
dispatching chain.

The first component met is the Global event filtering. This is a
group of filters (one for each type of event – engine, spidering,
monitoring), that will let or let not pass a certain event.
If an event is filtered out at this point, it will never arrive at any
plugin.

The second component exists per plugin: it is the local event
filtering, which functions in the same way as the global event
filtering, except that is put right in front of a particular plugin, so
events that are filtered out will not reach that particular plugin, but
may be let through to another one.

It is also possible to disable the global event filtering as a whole, or
the local event filtering for a certain plugin. (As plugin B in the
example picture).
This results in all events being passed through.

By customizing the event filtering chain, you can configure
JSpider to focus on the aspect of the spidering process you are

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 22/121

interested in. If you’re using JSpider to genere error reports for a
website, you’re probably only interested in error events.
If you’re automating the JSpider process, you’re probably not
interested in monitoring events telling how much load there is upon
the thread pools, etc…

3. Event list

In order to get a better insight of the JSpider event system, here is
an (incomplete) overview of all event classes: (Note that all
events are in packages under net.javacoding.jspider.api.event):

The engine-related events:
engine.Spideri ngStartedEvent
engine.SpideringStoppedEvent
engine.SpideringSummaryEvent

The monitoring events:
monitor.MonitorEvent
monitor.SchedulerMonitorEvent
monitor.ThreadPoolMonitorEvent

And finally the spidering-related events:
folder.FolderDiscoveredEvent

resource.EMailAddressDiscoveredEvent
resource.EMailAddressReferenceDiscoveredEvent
resource.MalformedBaseURLFoundEvent
resource.MalformedURLFoundEvent
resource.ResourceDiscoveredEvent
resource.ResourceFetchedEvent
resource.ResourceFetchErrorEvent
resource.Reso urceForbiddenEvent
resource.ResourceIgnoredForFetchingEvent
resource.ResourceIgnoredForParsingEvent
resource.ResourceParsedEvent
resource.ResourceReferenceDiscoveredEvent

site.RobotsTXTFetchedEvent
site.RobotsTXTFetchErrorEvent
site.RobotsTXTMissingEvent
site.RobotsTXTSkippedEvent
site.SiteDiscoveredEvent
site.UserAgentObeyedEvent

D. Object model

The second part of the public API of JSpider consists out of an
object model. This object model represents all entities found during
the spidering process.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 23/121

The entities presented here are:

?? Site
?? Resource
?? Folder
?? Cookie
?? Resource Reference
?? Email Address
?? Email address reference
?? Decision (one for the spidering, one for the parsing decision)
?? Decision Step

The public model interfaces and classes are found under the
package net.javacoding.jspider.api.model.

1. Sites

The site is a type of object in JSpider that aggregates all data about
resources that make up a web site. The unique combination of a
hostname/port makes up a site.

The status of a site is dependent on the stage of processing it is in:

?? STATE_DISCOVERED
?? STATE_ROBOTSTXT_HANDLED

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 24/121

?? STATE_ROBOTSTXT_ERROR
?? STATE_ROBOTSTXT_UNEXISTING
?? STATE_ROBOTSTXT_SKIPPED

As you can see, the state of a Site is highly dependent on the
processing of the robots.txt file.

2. Resources

The most important object type in JSpider is a Resource.
It is the representation of a web page, a URL.

An important concept you should know about is the status a
resource can have. JSpider knows different statuses for resources:

?? Discovered
Means that the resource is found in a web page that links to
it, but no processing has been done yet

?? Fetch_Ignored

Specifies that some rule decided that the resource should be
skipped for fetching (it will not be retrieved from the
webserver, so we won’t know whether it actually exists).

?? Fetch_Error

Used when we tried to fetch the resource, but this resulted in
an error situation.

?? Fetch_Forbidden
Used when our rules (custom, robots.txt) tell the resource
may not be fetched. Mostly used for robots.txt disallow rules.

?? Fetched
Used when the resource has been retrieved, but no
intepretation has been done yet.

?? Parse_Ignored

Used when rules decided that the resource that was fetched
from the server shouldn’t be inspected to find links to other
web pages.
This will be the final stage for images and binary files, for
example, since it’s no use parsing them to find other links.

?? Parse_Error

Specifies that we tried to parse the resource, but this resulted
in a severe error (rare).

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 25/121

?? Parsed
Specifies that the web page was parsed (inspected to find
other links in it). This is the final stage for web pages.

During the parsing process, all resources will loop their lifecycles.
According to rules, and encountered errors, they can end up in
some specific state.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 26/121

E. Spidering process

While this topic is strictly about JSpider internals, it might help to
explain these concepts a bit.

The design of JSpider is based upon a principle of micro-tasks.
Every piece of work that should be carried out by JSpider is made a
task.
For instance:

?? The task of fetching a web page
?? The task of parsing a web page an finding links in it
?? The task of deciding whether a certain resource needs to be

fetched (according to rules, robots.txt, etc…)
?? The task of deciding whether a certain resource needs to be

parsed (according to rules)
?? The task of interpreting a robots.txt file
?? …

All these tasks can produce new tasks:

?? The parsing of a web page can find new URLs, which should
be decided upon whether to fetch them or not

?? …

These tasks are scheduled in two different groups, according to
their type: we distinguish Thinker tasks and Spider tasks.

Spider tasks are tasks that go out on the network/internet and
fetch some data (web page, robots.txt).

Thinker tasks are tasks like parsing a web page, deciding whether
a resource should be fetched or parsed, interpreting a fetched
robots.txt file, etc…

This distinction will become important, as these two types of tasks
are carried out by two different thread pools. (see later in the
configuration section).

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 27/121

Part

2

Installation

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 28/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 29/121

III. Prerequisites

JSpider has some prerequisites to run:

?? J2SE 1.3+ Runtime
?? XMLParser (Xerces, …) installed (comes with JDK1.4)

If you’re planning to build from CVS installation, you’ll also need:

?? a CVS client
?? Ant 1.5.2 (http://ant.apache.org)
?? JDK 1.3+

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 30/121

IV. Binary Installation

The easiest way to install JSpider, is to download a binary JSpider
distribution. These distributions are released from time to time
when the codebase is considered stable enough, and a considerable
amount of new functionality or bug fixes has been implemented
since the previous release.

A. Downloading

The first step to do when installing a binary distribution is
downloading the installation.

Our download page can be found at:
http://sourceforge.net/project/showfiles.php?group_id=65617
It is always recommended to use the latest (stable) release.

We offer our downloads in several flavours: simple binary
downloads, or packages with the source included.
You can download them as a zip (jar) archive or a tar.gz file.

!

The filenames given are just examples.
Since the distribution file contains the JSpider version, you
should follow the examples using the filename of the actual
file you downloaded.

B. Unpacking

The process of unpacking is dependent on the type of file you
downloaded. For a zip (remember to use the appropriate name):

jar –xvf jspider -0-5-0-dev.zip

Will unzip the archive to it’s current location. Of course you can
also use WinZip, or any other program you’re comfortable with.

For a tar.gz file:

gunzip jspider -0-5-0-dev.tar.gz
tar –xvf jspider -0-5-0-dev.tar

C. Basic configuration

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 31/121

Before you can test your JSpider installation, you should set your
proxy server in the jspider.properties file (only have to do this if you
want to access a resource on the internet and when you’re behind a
proxy server).

Edit the conf/default/jspider.properties file and look for these lines:

jspider.pr oxy.use=false
jspider.proxy.host=
jspider.proxy.port=
jspider.proxy.authenticate=false
jspider.proxy.user=
jspider.proxy.password=

Adapt them as needed (see section on configuration for more
information about this)
If you’re going to test JSpider only on your local network (or even a
webserver on your own machine), you can simply skip this step for
now.

!

IMPORTANT NOTE: If you have a Java version lower then 1.4
(JDK1.3, …), you’ll have to add an XML Parser to your system
in order for JSpider to work!
See the section about “Environment Configuration” for more
details on this.

This is all that is needed to start off with JSpider. Once you get a
good understanding of how the system works, you will be able to
fine-tune every aspect of it.

D. Testing

Now you’ve got your JSpider instance, CD into the ‘bin’ folder.

Start JSpider and spider the site of your choice (in the example, the
webserver on the localmachine).
Since we don’t specify anything more, the ‘default’ configuration will
be used (all the settings in the files under the conf/default folder):

On Windows:
Jspider http://localhost

On unix:
./jspider.sh http://localhost

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 32/121

JSpider should start spitting out many lines in your console. After
the spidering has stopped, you’ll find many reports in the ‘output’
folder.

!

It’s a good idea to play around with JSpider on a small site at
first, so you can really understand what’s happening, and
which configuration changes cause which differences.
If you spider large sites, also be prepared for longer spider
sessions!

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 33/121

V. Building from CVS

The JSpider project has regular releases, both of stable (production)
releases, as well as ‘development’ releases which introduce new
features and bug fixes between two major releases.

If you want the very latest changes, you can build your own JSpider
from CVS source.

This section explains how to get the source from the CVS system,
build a JSpider distribution, and test it.

!

The CVS HEAD version of JSpider may be unstable, and new
features may be undocumented. If you’re not going to
develop on it, or don’t have a very good reason to use the
latest CVS version, you’re probably better off with the latest
release download.

Anyway, if you decide to build from CVS, here’s how to do so:

This explanation assumes a CVS console client being installed on
the system and put on the PATH environment variable. If you use a
CVS GUI client, you should be able to extract the necessary
information from the explanation.
(Also see the appendices section).

A. Setting the CVSROOT

The CVSROOT for the JSpider project must be set first.
On Unix:

export CVSROOT=
 :pserver:anonymous@cvs.j -spider.sourceforge.net:/cvsroot/j -spider

On Windows:

set CVSROOT=
 :pserver:anonymous@cvs.j -spider.sourceforge.net:/cvsroot/j -spider

after that, you can use ‘cvs login’ (with empty password) to verify
you didn’t make a typo in the CVSROOT, and the CVS server is
accessible:

cvs login
(give empty password)

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 34/121

Normally, this should return without an error.

B. Checking out

You now can checkout the JSpider sources.

There are two ways to do this:

?? a CVS checkout
?? a CVS export

A checkout keeps the reference to the CVS repository. Use this if
you’re thinking of making modifications to the sources. This way,
you can create a diff file to have your changes patched.

If you’re only interested in building the actual sources, and you’re
not going to change them, you can use the export function to get
the sources without any CVS administrative files.

To do a checkout, use:
cvs checkout –P jspider -main
To do an export, use:
cvs export –r HEAD jspider -main

You can also checkout or export an older version of jspider like this:
cvs checkout –P –r jspider-0-1-0-dev jspider -main
or
cvs export –r jspider -0-1-0-dev jspider -main

You should see a listing of all files being copied to your hard drive
now under a folder ‘jspider-main’. CD into this folder and you’re
ready to continue…

C. Basic configuration (optional)

If you copy the file ‘base.user.properties’ to ‘user.properties’
and fill in the right values for your proxy server, your JSpider
instance will be built with these settings already in each and every
configuration.
While you can skip this step, it’s quite handy to do so, otherwise
you’ll have to edit the jspider.properties file in every configuration
after the build is done.

D. Building from source

You’re now ready to build JSpider. We have an Ant script to do so,
which can be queried for it’s targets using:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 35/121

ant –projecthelp

This will return something like this:
Buildfile: build.xml
Main targets:

 buildComplete buildSimple + documentation
 buildDistro buildComplete + functionalTests + packaging
 buildSimple builds a runnable and testable distribution with
 technical tests
 testFull runs the JUnit technical and functional tests
 testFunctio nal runs the JUnit functional tests
 testInteractive runs the JUnit tests interactively (swing ui)
 testTechnical runs the JUnit technical tests

Default target: buildSimple

The ant targets for building JSpider are:

?? buildSimple (default)
This one compiles JSpider, runs a basic testsuite and prepares
a distribution in ‘dist/prepared’

?? buildComplete

This one does the same as buildSimple, but adds
documentation (javadoc, todo list, junit test report, …)

?? buildDistro

This one does the same as buildComplete, but runs a
complete online test suite also
(tests JSpider in a real-life, functional way against resource on
http://j-spider.sourceforge.net)
It also creates distributable packages (zip, tar.gz – both bin
and src) in ‘dist/packaged’.

For now, we only need a simple build, so we’re going to:
ant

You’ll see the code compile, and the technical (simple class-level)
junit tests to be carried out.

After this process has finished, you’ll find a complete JSpider
instance in a subfolder ‘dist/prepared’.

If you have skipped the previous step of configuring your proxy
server before building, now is the time to edit the jspider.properties
file in every subfolder of ‘dist/prepared/conf’ to do so…

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 36/121

E. Running the test suite

Each time you build JSpider, the most basic test suite, the
technical tests, will be run.

There is, however, a more thorough test suite, the functional
tests, which test JSpider as a whole by letting it spider well-known
resources on http://j-spider.sourceforge.net, and verify the results
with the expectations.

The ant targets used to test JSpider are:

?? TestTechnical
Runs the most basic test suite, simply testing JSpider classes.

?? testFunctional

Runs a set of functional tests, for which JSpider needs to be
configured (proxy server), and an internet connection needs
to be available.

?? testFull

Runs both the technical and the functional tests

?? testInteractive
Which starts the JUnit GUI interface for some interactive
testing.

After testing the JSpider instance with:
ant testFull
We will generate the JUnit test reports with:
ant generateJUnitDocs

You’ll now find the results of the tests in ‘stage/doc/junit’, as ‘junit-
noframes.html’ or ‘index.html’ (framed version).

!

IMPORTANT NOTE: The functional tests are dependent
on a bunch of server-side scripts and web pages to test
upon. Since these change with the JSpider sources itself,
only the testcase files for the latest JSpider version (CVS
HEAD) are online. This will cause functional tests of older
versions to fail, while the tests succeeded at the moment of
release in the past.
If you checkout the jspider-site module for the correct
version and install the scripts locally, you can test against an
older version.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 37/121

F. Using JSpider

When your freshly built JSpider instance passed it’s tests, you can
start using it: CD into the ‘dist/prepared/bin’ folder and launch it:

Windows:
jspider http://localhost
Unix:
./jspider.sh http://localhost

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 38/121

VI. Folder Overview

Once you have your JSpider installed, you’ll find a folder structure
on your hard drive that looks like the picture:

You can use this picture as a reference for the rest of this
document, as all files and folders we’ll be talking about are
presented here.

Most of the files are needed for configuration purposes, so we’ll
explain how they can be used to customize JSpider in the following
sections.

For now, this is an overview of the folders found in your JSpider
instance:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 39/121

?? bin
folder containing all the JSpider startup scripts, for JSpider
and JSpider-tool, both for windows and unix environments.

?? common

Files that are shared over all configurations
o Conf

Configuration files that are common to all configuration
sets.

?? conf

Folder with all configuration sets

o default
Default configuration set which will be used when none
is specified

o checkErrors
Out-of-the-box configuration that spiders a site looking
for errors (404, 500, …)

o download
Out-of-the-box configuration that spiders a site and
downloads it to the local disk.

o Unittest
Configuration that’s used when testing JSpider. Not to
be used manually.

?? lib

Folder containing all needed libraries (jar files)

?? output

Folder in which all output files will be written by default
(reports, downloads, …)

?? src (only if you downloaded the source distribution)

While this list is not exhaustive, it should give you a good overview
of what files and folders are part of JSpider. We’ll talk about all
important files in the configuration section.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 40/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 41/121

Part

3

Usage

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 42/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 43/121

VII. Starting JSpider

JSpider is started from the command prompt via a startup script.
This script makes sure that the needed properties are set, that the
right classpath is used (with all additional libraries on it), and that
the JSPIDER_HOME variable is propagated to the main class.

These startup scripts can be found in the {JSPIDER_HOME}/bin
folder.

If the JSPIDER_HOME environment variable is not set, it will be set
to ‘..’, since JSpider assumes to be started from within the bin
directory then.

A. Windows

On windows, the syntax to start JSpider is like this:
jspider url [configuration]

This will execute the jspider.bat batch file.

Examples:

jspider http://localhost
Will start JSpider spidering the web server on the local machine with
the default configuration (since none is specified).

jspider http://localhost checkErrors
Will start JSpider spidering the web server on the local machine with
the configuration found under the folder ‘conf/checkErrors’.

B. Unix

On unix, the syntax to start JSpider is like this:
./jspider.sh url [configuration]

This will execute the jspider.sh shell script.

Examples:

./jspider.sh http://localhost
Will start JSpider spidering the web server on the local machine with
the default configuration (since none is specified).

./jspider.sh http://localhost checkErrors

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 44/121

Will start JSpider spidering the web server on the local machine with
the configuration found under the folder ‘conf/checkErrors’.

C. Configurations

The concept of multiple configurations allows you to create a
separate configuration per environment or purpose for which you
use JSpider.

Some out-of-the-box configurations come with JSpider:

?? default
?? checkErrors
?? download

You can simply create your own by adding an extra folder for your
custom configuration to the ‘/conf’ folder and putting the necessary
files in it.
(It’s a good idea to start with a copy from another working
configuration and customize that one).

In the new sections in this manual, we’ll be looking into some
scenarios in which you can use JSpider, and explain the
configuration set up for those purposes.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 45/121

VIII. Scenario: Checking a
site for errors

In this section, we’ll dive into a real-life usage of JSpider. We’ll be
using it to check a site of errors.
You might want to keep an eye on the Configuration part of this
manual while reading this information.

A. Goal

It’s a hard task to keep a web site up-to-date. All the time, new
content is added, outdated content is removed, etc…

Another fact which adds to the complexity of maintaining a website,
is that a site doesn’t stand on it’s own. You probably have a bunch
of links to related sites.
Keeping track of changes in these sites (removed content, …) is
important as well, as it may outdate links on your site.

Without a decent tool, it is fairly impossible and surely time-
consuming to keep a site of any decent size clean and error-free.

JSpider can help you in this process, as it can automatically traverse
your site, checking each link found on it, also to external sites.

It can generate reports that pinpoint the exact problems (which
resources linked to an unexisting resource, which web pages
resulted in an internal server error, etc…)

In minutes, JSpider can check your whole site for errors, and
generate these reports for you. This dumb and repetitive checking
task would cost you hours or days otherwise, and isn’t as thorough
when done by a human.

What we want to do with JSpider is:

?? Check all links in our site
?? Check all references to resources on other sites
?? Write a report of all errors found
?? Write reports of each error type encountered

B. Configuration

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 46/121

There is an out-of-the-box JSpider configuration that helps you with
exactly this problematic: ‘checkErrors’.

You can start JSpider using this configuration by typing:

jspider [host] checkErrors

In this section, we’ll discuss this configuration, in order for you to
understand how it is constructed to aid you in the process of finding
errors on sites.
You might want to make small changes to adapt it to your specific
situation.

1. Global configuration

We’ll start of with the global configuration. Have a look in your
‘conf/checkErrors’ folder. The files involved in the global
configuration are:

You’ll find the file ‘jspider.properties’, which contains the global
configuration for this setup.
Open it with your favorite text editor, and have a look through it
while we explain each part:

 Proxy configuration

Well, this is something you should fill in. If you need a proxy server
to connect to the internet, you should make sure that these
properties are filled in with the correct values for your situation:

jspider.proxy.use=false
jspider.proxy.host=
jspider.proxy.port=
jspider.proxy.authenticate=false
jspider.proxy.user=
jspider.proxy.password=

See the configuration section for more information on these
properties.

 Other

The rest of the configuration can be kept as-is, as it is completely
parallel to the default configuration.
This means:

?? Threading: 5 spiders, 1 thinker
?? Logging via commons-logging

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 47/121

?? User Agent left default
?? Spider rule: only spidering HTTP urls
?? Parser rule: only parsing text/html mime type web pages

2. Per-site configuration

Open the ‘conf/checkErrors/sites.properties’ file.
It should look like this:

jspider.site.config.base=base
jspider.site.config.defaul t=default

This configuration is quite simple. We only make the difference
between the site we are testing for errors (the base site) and any
other site that might be referenced by ours.

According to this configuration file,our base site will have it’s
configuration in conf/checkErrors/sites/base.properties.
The configuration for all the other sites is described in the file
conf/checkErrors/sites/default.properties.

TIP: If you have several sites that are interlinked, you can add
these with the ‘base’ configuration, so they will be treated just like
the base site.
All other sites (not yours) will still be handled via the ‘default’ site
configuration.

We’ll discuss those two site configurations in-depth (the most
important part of the configuration will be the rules each time):

 Site Configuration ‘base’

This configuration will be assigned to the site(s) we’re actually
testing. This means we’re going to spider them completely,
checking each and every link.

The rules found in this file (near the bottom):

site.rules.spider.count=0

site.rules.parser.count=0

Well, isn’t this simple? No extra rules for the base site (the global
rules still apply).
So, a web page will be spidered if it’s part of a site assigned the
‘base’ configuration, and has a URL with the ‘http’ protocol (global
rule).

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 48/121

It will be parsed afterwards if it has a content type of “text/html”
(global rule).

If you want to restrict access of JSpider to some parts of your site
(that shouldn’t be checked for errors), this is your place to do so.

For example, changing to this:
site.rules.spider.count=1

site.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.ForbiddenPathRule
site.rules.spider.1.config.path=/apidocs

Will prevent JSpider from spidering your ‘apidocs’ folder on your
website.

Other things that you might want to change in this file are:

?? The throttling, to speed up the spidering process
?? The proxy usage, if your site is on the LAN
?? Robots.txt handling, to ignore your robots.txt file
?? The User Agent, to access your site with another user agent

 Site Configuration ‘default’

Every other site (not the one(s) we’re testing for errors) will be
assigned the ‘default’ configuration.

At first, you’d have the feeling that you would simply have to put
the ‘site.handle’ property to false.
However, this leads to a problem: if a link to any other site is found
on your site, the linked resource will be skipped, and you’ll never
know whether your site links to a valid resource, or whether your
link is dead.

Have a look in the conf/checkErrors/sites/default.properties site
configuration file.
You’ll find these rules:

site.rules.spider.count=1
site.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.ExternallyReferencedOnlyRule

site.rules.parser.count=1
site.rules.parser.1.class=
 net.java coding.jspider.mod.rule.RejectAllRule

Now this is a bit more interesting. What does this mean?

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 49/121

A web page of another site (not the base site) will only be spidered
if:

?? Its URL begins with the http protocol (global rule in
jspider.properties)

?? It is referenced from an external site. Only if the link to
the resource is found on another site, we will spider the
resource.
This prevents in-site spidering on the site.
Hey, we’re not going to check someone else’s site for errors,
they should download their own copy of JSpider and do it
theirselves!

A web page on another site (not the base site we’re checking for
errors) will NEVER be parsed :
The RejectAllRule tells that none of the resources in this type of site
should be parsed.

This way, we prevent spidering someone else’s site!

Please note that this way, we only spider web pages on external
sites that we link to in direct: this way, we can make sure we have
no dead links on our site.

3. Plugin Configuration

OK, now we taught JSpider to spider our own site completely, and
only checking web pages on external sites if we link to these in
direct.

But now we want JSpider to report it’s findings during the spidering
process: let’s configure some plugins!

In the conf/checkErrors/plugin.properties, you’ll find:

jspider.filter.enabled=true
jspider.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
jspider.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
jspider.filter.spider=
 net.javacoding.jspider.mod.event filter.ErrorsOnlyEventFilter

jspider.plugin.count=3
jspider.plugin.1.config=console
jspider.plugin.2.config=filewriter
jspider.plugin.3.config=statusbasedfilewriter

As you can see in the event filtering configuration, we let pass all
engine events, all monitoring events (we want to see on the console
how JSpider is doing), but only spider events that report errors.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 50/121

We also assign 3 plugins to be used:

?? Console, which we’ll use to see the JSpider progression
?? FileWriter, which will write down all our errors in a file report
?? StatusBasedFileWriter, which will generate nice reports on

each problem encountered (list with 404 errors, list with 500
errors, …)

Let’s have a look at the configuration of the plugins in detail:

 Console plugin

The console plugin is the easiest. Open the file
conf/checkErrors/plugins/console.properties, and you’ll find:

plugin.class=net.javacoding.jspider.mod.plugin.console.ConsolePlugin

plugin.filter.enabled=false

plugin.config.prefix=[Plugin]
plugin.config.addspace=true

Nothing suprising… we’ll just print out every event that passes,
prefixed by [Plugin].

If you want JSpider not to be so verbose, simply turn on the event
filtering and only let pass the events you are interested in!

 Filewriter plugin

Remember that in the global event filtering (plugin.properties),
we’ve filtered all spidering events so that only error events passed.

We’re now going to write these errors down in a file report:

plugin.filter.enabled=true

plugin.filter.engine=
 net.javacoding.jspider.mod.even tfilter.Allow NoneEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.Allow NoneEventFilter
plugin.filter.spider=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter

plugin.class=
 net.javacoding.jspider.mod.plugin.filew riter.FileWriterPlugin

plugin.config.filename=./error -report.out

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 51/121

The notion of JSpider progression is not wanted in our report, and
neither are the events about the engine. So, we filtered out these
in the filewriter’s plugin local event filtering (see bold text)

The spidering events (those that passed the global event filtering –
the error ones) are not filtered any further, all of them are used.

The filewriter plugin has one parameter, the filename. After the
spidering process, you’ll find this file in your JSpider’s output folder.

 StatusBasedFileWriter Plugin

Finally, we’re configuring the StatusBasedFileWriter: open the file
conf/checkErrors/plugins/statusbasedfilewriter.properties and you’ll
find:

plugin.class=net.javacoding.jspider.mod.plugin .statusbasedfilewriter.
StatusBasedFileWriterPlugin

plugin.filter.enabled=false

Which is very simple…
This plugin will create a file per http status encountered in the
output folder:

?? 404.out for all ‘Not Found’ errors
?? 500.out for all ‘Internal Server Errors’
?? etc…

C. Example

OK! We have a complete JSpider configuration (checkErrors). Now
let’s use it and find some errors on a site!

For this particular purpose, we’ve set up a very small site for you to
test JSpider upon.
You can find it at http://j-spider.sourceforge.net/samplesite.
Go have a look there with your favorite browser, you’ll simply find a
few interlinked web pages, one with an e-mail address on it, and
one with a dead link.

This little playground can be used to test various JSpider
configurations and to see the impact of configuration changes.

So, we’ll start off spidering this site with the checkErrors
configuration:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 52/121

On windows:
jspider http://j-spider.sourceforge.net/samplesite checkErrors
On uniw:
./jspider.sh http://j-spider.sourceforge.net/samplesite checkErrors

1. Console output

This should give output on your console similar to this:

--
JSpider startup script
JSPIDER_HOME=..
--
JSpider v0.4.1 DEV (http://j -spider.sourceforge.net)
Build: 20030429
Started from .
[Engine] jspider.home=..
[Engine] default output folder=.. \output
[Engine] starting with configuration 'checkErrors'
This is the welcome message of our polite spider, echoing some
information.

Next is the initialisation procedure for the plugins. You’ll find the
three plugins configured in the checkErrors configuration:
INFO [core.impl.PluginFactory] Loading 3 plugins.
INFO [core.impl.PluginFactory] Loading plugin configuration
'console'...
INFO [mod.plugin.console.ConsolePlugin] Prefix s et to '[Plugin] '
INFO [core.impl.PluginFactory] Plugin not configured for local event
filtering
INFO [core.impl.PluginFactory] Plugin Name : Console writer
JSpider module
INFO [core.impl.PluginFactory] Plugin Version : v1.0
INFO [core.impl.PluginFa ctory] Plugin Vendor :
http://www.javacoding.net
INFO [core.impl.PluginFactory] Loading plugin configuration
'filewriter'...
INFO [mod.plugin.filewriter.FileWriterPlugin] Writing to file:
./error-report.out
INFO [core.impl.PluginFactory] Plugin uses lo cal event filtering
INFO [core.impl.PluginFactory] Plugin Name : File writer JSpider
plugin
INFO [core.impl.PluginFactory] Plugin Version : v1.0
INFO [core.impl.PluginFactory] Plugin Vendor :
http://www.javacoding.net
INFO [core.impl.PluginFactory] Loading plugin configuration
'statusbasedfilewriter'...
INFO [mod.plugin.statusbasedfilewriter.StatusBasedFileWriterPlugin]
initialized.
INFO [core.impl.PluginFactory] Plugin not configured for local event
filtering
INFO [core.impl.PluginFactory] Plugi n Name : Status based
Filewriter JSpider plugin
INFO [core.impl.PluginFactory] Plugin Version : v1.0

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 53/121

INFO [core.impl.PluginFactory] Plugin Vendor :
http://www.javacoding.net
INFO [core.impl.PluginFactory] Loaded 3 plugins.

Then, the storage subsystemn is started:
INFO [core.storage.StorageFactory] Storage provider class is 'class
net.javacoding.jspider.core.storage.memory.InMemorySto

The context takes care of user agent usage, proxy settings, etc…
INFO [core.SpiderContext] default user Agent is 'JSpider v0.4.1 -dev
(http://j -spider.sourceforge.net)'
INFO [core.task.SchedulerFactory] TaskScheduler provider class is
'class net.javacoding.jspider.core.task.impl.DefaultSche

The worker threads are created:
INFO [core.Spider] Spider born - threads: s piders: 5, thinkers: 1
[Plugin] Module : Console writer JSpider module
[Plugin] Version: v1.0
[Plugin] Vendor : http://www.javacoding.net
[Plugin] Spidering Started,
 baseURL = http://j -spider.sourceforge.net/sampleSite
INFO [core.SpiderContext] using use rAgent 'JSpider v0.4.1 -dev
(http://j -spider.sourceforge.net)' for site 'http://localhos

Now, the spidering begins:
INFO [core.SpiderContext] Using proxy for http://j -
spider.sourceforge.net
INFO [core.throttle.ThrottleFactory] Throttle provider class is
'class net.javacoding.jspider.core.throttle.impl.Distribut
[Plugin] Job monitor: 66% (2/3) [S:50% (1/2) | T:100% (1/1)]
[blocked:0] [assigned:1]
[Plugin] ThreadPool Spiders occupation:20% [idle: 80%, blocked: 20%,
busy: 0%], size: 5
[Plugin] ThreadPool Th inkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
[Plugin] Job monitor: 85% (6/7) [S:66% (2/3) | T:100% (4/4)]
[blocked:0] [assigned:1]
[Plugin] ThreadPool Spiders occupation:20% [idle: 80%, blocked: 20%,
busy: 0%], size: 5
[Plugin] Thread Pool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
[Plugin] Job monitor: 84% (11/13) [S:60% (3/5) | T:100% (8/8)]
[blocked:0] [assigned:2]
[Plugin] ThreadPool Spiders occupation:40% [idle: 60%, blocked: 40%,
busy: 0%], size: 5
[Plugin] ThreadPool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
[Plugin] Job monitor: 84% (16/19) [S:57% (4/7) | T:100% (12/12)]
[blocked:0] [assigned:3]
[Plugin] ThreadPool Spiders occupation:60% [idle: 40%, blocked: 60%,
busy: 0%], siz e: 5
[Plugin] ThreadPool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1

JSpider finds our deliberately created dead link:
[Plugin] 404 - ERROR !!!http://j -
spider.sourceforge.net/sampleSite/unexisting.html

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 54/121

INFO [mod.plugin.statusbased filewriter.StatusBasedFileWriterPlugin]
creating file for status '404'
[Plugin] Job monitor: 89% (17/19) [S:71% (5/7) | T:100% (12/12)]
[blocked:0] [assigned:2]
[Plugin] ThreadPool Spiders occupation:40% [idle: 60%, blocked: 40%,
busy: 0%], size: 5
[Plugin] ThreadPool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
[Plugin] Job monitor: 95% (20/21) [S:85% (6/7) | T:100% (14/14)]
[blocked:0] [assigned:1]
[Plugin] ThreadPool Spiders occupation:20% [idle: 80%, blocked: 20%,
busy: 0%], siz e: 5
[Plugin] ThreadPool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
[Plugin] Job monitor: 96% (24/25) [S:87% (7/8) | T:100% (17/17)]
[blocked:0] [assigned:1]
[Plugin] ThreadPool Spiders occupation:20% [idle: 80%, blocked: 20%,
busy: 0%], size: 5
[Plugin] ThreadPool Thinkers occupation:0% [idle: 100%, blocked: 0%,
busy: 0%], size: 1
INFO [core.Spider] Stopped spider workers...
INFO [core.Spider] Stopped thinker workers...

When the process is finished, a summary is displayed:
 [Plugin]
SPIDERING SUMMARY :
known urls : 8

 visited urls : 7
 parsed urls : 6
 parse ignored urls : 1
 parse error urls : 0

 not visited urls : 1
 fetching ignored urls .. : 0
 forbidden urls : 0
 fetch error urls : 1

 not yet visited urls .. : 0
[Plugin] Spidering Stopped
INFO [core.Spider] Spidering done!
INFO [core.Spider] Elapsed time : 7490

You see that we encountered 1 fetch error, and one resource that’s
not parsed to find new URLs in it (this will be the robots.txt file)

Now, this was only the logging part and the console plugin. These
were configured to follow the progress while spidering.

More interesting is the contents of the output folder by now. You’ll
find the following files:

?? 404.out – contains all URLs of resources that resulted in a 404
?? Our error report

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 55/121

Remember that all resources that didn’t result in an error are not
known, as the global event filtering only passed events telling about
errors.

The contents of these files:

2. 404.out

http://j-spider.sourceforge.net/sampleSite/unexisting.html
 REFERED BY:
 http://j -spider.sourceforge.net/sampleSite/

Bingo! We’ve got our error. Now it’s up to us to determine whether
the referenced URL is wrong, or the resource is missing…
We also get the URL of the page that contains the dead link, to
make it even easier to track down the problem …

3. Error-report.out

[Tue Apr 29 20:24:05 CEST 2003] Module : File writer JSpider plugin
[Tue Apr 29 2 0:24:05 CEST 2003] Version: v1.0
[Tue Apr 29 20:24:05 CEST 2003] Vendor : http://www.javacoding.net
[Tue Apr 29 20:24:05 CEST 2003] Spidering Started,
 baseURL = http://j -spider.sourceforge.net/sampleSite
[Tue Apr 29 20:24:09 CEST 2003] 404 - ERROR !!!
 http://j -spider.sourceforge.net/sampleSite/unexisting.html
[Tue Apr 29 20:24:13 CEST 2003] Spidering Stopped

This file is a simple report of all errors reported by JSpider during
the spidering process.

And indeed, if you browse to the page with your web browser, you’ll
easily find the dead link.

Now, this example was really trivial, but if you’re responsible for a
web site that contains a few thousand pages, you’d be very happy
seeing JSpider creating new error reports for you in minutes!

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 56/121

IX. Scenario: Downloading
a site to local disk

In this section, we’ll use JSpider to download a website to the local
file system. This usage is supported by the out-of-the-box
configuration ‘download’.

A. Goal

We’ll use JSpider to spider a complete site (without ‘hopping’ to
other sites), and download each and every web page, image,
stylesheet, binary file, etc… to local disk, so we can view it off-line.

This task is preconfigured in JSpider, the configuration for this can
be found under the folder conf/download.
You might want to make small changes to this configuration, to
adapt it to your own situation.

While reading the explanation, it’s maybe a good idea to refer to the
part about JSpider configuration from time to time.

B. Configuration

Have a look in the conf/download folder in your JSpider installation
folder to see what configuration files are involved.

1. Global configuration

We’ll start off with the global configuration: jspider.properties:

Make sure you have the proxy settings put to the right values for
your situation. See the configuration section for more information
on this.

The most interesting part of the global configuration is the part with
the rules:

jspider.rules.spider.count=1
jspider.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.OnlyHt tpProtocolRule

jspider.rules.parser.count=1
jspider.rules.parser.1.class=
 net.javacoding.jspider.mod.rule.TextHtmlMimeTypeOnlyRule

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 57/121

Well... nothing special here... we’re only fetching HTTP resources,
and only parsing text/html web pages.

2. Site-specific configurations

We’ll distinguish two types of sites, as shows from the
sites.properties file:

jspider.site.config.base=base
jspider.site.config.default=skip

This allows us to scope the spidering process to the base site only,
and we’ll ignore any other site that might be referenced from the
base site.
After all, we want to download/mirror a site – not the whole
Internet!

This also means we’ll find a base.properties and skip.properties file
in the conf/download/sites subfolder:

 Site configuration ‘base’

This site configuration was assigned to the base site, and has
nothing special in it.
The only important property is:

site.handle=false

Which tells JSpider the site should be handled.

Another change you’ll want to make, is to decrease the throttle
interval, to speed up the site downloading progress. See the Site
Configuration section for more information about this topic.

 Site configuration ‘skip’

Any other site is assigned the skip configuration, which is quite
simple:

site.handle=false

This disables the handling of the site altogether, even the robots.txt
will not be fetched. Any resource in this site will simply be ignored.
This is because we only want to download a single site!

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 58/121

C. Example

Now, let’s download our little sample site:

jspider http://j-spider.sourceforge.net/samplesite download

This will give you similar output on the console as the checkErrors
example in the last chapter.

D. Sample output

After the spidering process is complete, you can find in your output
folder for the downloaded site:

- j-spider.sourceforge.net

- robots.txt
- samplesite
 - index.html

 - some
 - folder
 - test.html

Which is the structure of the sample site. Or at least, the part that
is not forbidden by the robots.txt file, but we’ll look into that later.

!

While the downloaded version of some sites (dynamic
content, absolute URLs in web pages, etc…) may not be
perfect, the quality of the downloads will be improved in
the future, with the diskwriter plugin rewriting the links to
other resources intelligently on-the-fly, and converting any
special extensions (.jsp, .php, .asp, …) to .html.

This example should put you in the right direction to create your
own custom download configurations for JSpider.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 59/121

X. Scenario: Playing around
with JSpider

Well, this JSpider usage scenario doesn’t serve a particular purpose
besides giving you an idea on how the configuration of JSpider can
be applied to influence the spidering process.

We’ll start of with the default configuration on our little sample test
site, make some modifications, and analyse the differences in the
results.

A. The default configuration

As said, we’ll simply start by spidering our little test site with the
‘default’ JSpider configuration.

1. Configuration

This will result in output delivered by the following plugins:

?? Console
?? Velocity (both trace and dump)
?? XMLDump (altered velocity plugin for XML reporting
?? StatusbasedFilewriter (shows fetched URLs per HTTP status)

(see plugin.properties – they’re configured there, and
plugins/*.properties – the per-plugin config files).

You can start the spidering process on the sample site like this:

2. Starting

On windows:
jspider http://j -spider.sourceforge.net/samplesite

On Unix:
./jspider.sh http://j -spider.sourceforge.net/samplesite

We’ll not show the resulting output on your screen here, since this
would be far too long and not very interesting (just look at yours).

3. Output

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 60/121

Maybe the most interesting file to have a look at after the spidering
process finishes is velocity-dump.out, which gives an overview of
all known resources, with their status. This are some snippets from
the file. (Just have a look at the one generated by your JSpider for
the rest of the information):

These are the URLs inside the site found during spidering:

 [Site: http:// j-spider.sourceforge.net - ROBOTSTXT_HANDLED *]
 http:// http://j -spider.sf.net/samplesite/forbidden/resource.html
 http:// http://j -spider.sf.net/samplesite/unexisting.html
 http:// http://j -spider.sf.net/samplesite/index.html
 http:// http:// j-spider.sf.net/robots.txt
 http:// http://j -spider.sf.net/samplesite/some/folder/test.html
 http:// http://j -spider.sf.net/samplesite/
 http:// http://j -spider.sf.net/samplesite

We see that there is a resource in the site that has been forbidden
by the robots.txt rule:
http://j-spider.sourceforge.net/samplesite/forbidden/resource.html
 STATUS : FETCH_FORBIDDEN

 SPIDER DECISION :
 [DecisionStep] GENERAL rule
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule -
 ACCEPT - (no comment given)
 [DecisionStep] GENERAL rule Ruleset –
 ACCEPT - ruleset final decision
 [DecisionStep] SITE rule
 net.javacoding.jspider.mod.rule.InternallyReferencedOnlyRule –
 ACCEPT - url is within same site - accepted
 [DecisionStep] S ITE rule
 net.javacoding.jspider.mod.rule.ForbiddenPathRule –
 DON'T CARE - (no comment given)
 [DecisionStep] SITE rule
 net.javacoding.jspider.core.rule.impl. RobotsTXTRule –
 FORBIDDEN - access forbidden
 [DecisionStep] SITE rule Rule set –
 FORBIDDEN - ruleset final decision

 PARSE DECISION :
 [Not yet taken]

There is also a resource that is not there (a dead link, 404 error):
 http://j-spider.sourceforge.net/samplesite/unexisting.html
 STATUS : FETCH_ERROR

 SPIDER DE CISION :
 [DecisionStep] GENERAL rule
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule –
 ACCEPT - (no comment given)
 [DecisionStep] GENERAL rule Ruleset –
 ACCEPT - ruleset final decision
 [DecisionStep] SITE rule
 net.javacodi ng.jspider.mod.rule.InternallyReferencedOnlyRule –
 ACCEPT - url is within same site - accepted
 [DecisionStep] SITE rule

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 61/121

 net.javacoding.jspider.mod.rule.ForbiddenPathRule –
 DON'T CARE - (no comment given)
 [DecisionStep] SITE rule
 net.javacoding.jspider.core.rule.impl.RobotsTXTRule –
 DON'T CARE - (no comment given)
 [DecisionStep] SITE rule Ruleset –
 ACCEPT - ruleset final decision

 PARSE DECISION :
 [Not yet taken]

 HTTP Status: 404
 REFERERS: 2
 http://j -spider.sour ceforge.net/samplesite/index.html
 http://j -spider.sourceforge.net/samplesite/
You can also see that this resource is linked from the home page of
our little testing site.

And this part describes the robots.txt file we fetched:
 http://j -spider.source forge.net/robots.txt
 STATUS : PARSE_IGNORED

 SPIDER DECISION :
 [Not yet taken]

 PARSE DECISION :
 [Not yet taken]
You see this type of file fetched, but never parsed.

B. Forgetting about robots.txt

Now, since this test site belongs to use, we feel we can do what we
want (and allow you to do so also).
Since there was one resource forbidden by the robots.txt file, we’ll
be not obeying the robots.txt file in order to get this resource
spidered as well.

Change in the conf/default/sites/default.properties the following
line:
site.robotstxt.obey=true
to
site.robotstxt.obey=false

It’s as simple as that! This will still fetch the robots.txt file, but not
obey it anymore.
Restart JSpider the same way as you did before and look at the
results in velocity-dump.out:

The forbidden resource seems to have a link to a resource we didn’t
know yet, since there shows up a new one in the list:

 [Site: http://j -spider.sourceforge.net - ROBOTSTXT_HANDLED *]
 http://j -spider.sf.net/samplesite/forbidden/resour ce.html

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 62/121

 http:// j -spider.sf.net /samplesite/unexisting.html
 http:// j -spider.sf.net /samplesite/index.html
 http:// j -spider.sf.net /samplesite/another/index.html
 http:// j -spider.sf.net /robots.txt
 http:// j -spider.sf.net /samplesite/so me/folder/test.html
 http:// j -spider.sf.net /samplesite/
 http:// j -spider.sf.net /samplesite

And if we look at the ‘forbidden’ resource in the detailed section
now, we find:

 http://j -spider.sourceforge.net/samplesite/forbidden/resource.html
 STATUS : PARSED

 SPIDER DECISION :
 [DecisionStep] GENERAL rule
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule –
 ACCEPT - (no comment given)
 [DecisionStep] GENERAL rule Ruleset –
 ACCEPT - ruleset final decision
 [DecisionStep] S ITE rule
 net.javacoding.jspider.mod.rule.InternallyReferencedOnlyRule –
 ACCEPT - url is within same site - accepted
 [DecisionStep] SITE rule
 net.javacoding.jspider.mod.rule.ForbiddenPathRule –
 DON'T CARE - (no comment given)
 [DecisionS tep] SITE rule
 net.javacoding.jspider.core.rule.impl.RobotsTXTRule –
 DON'T CARE - (no comment given)
 [DecisionStep] SITE rule Ruleset –
 ACCEPT - ruleset final decision

 PARSE DECISION :
 [DecisionStep] GENERAL rule
 net.javacoding. jspider.mod.rule.TextHtmlMimeTypeOnlyRule –
 ACCEPT - mimetype is 'text/html' - resource accepted
 [DecisionStep] GENERAL rule Ruleset –
 ACCEPT - ruleset final decision
 [DecisionStep] SITE rule
 net.javacoding.jspider.mod.rule.BaseSiteOnlyR ule –
 ACCEPT - url accepted
 [DecisionStep] SITE rule Ruleset –
 ACCEPT - ruleset final decision
 HTTP Status: 200, Content size: 422,
 Mime Type: text/html, Fetch time: 20

 REFERERS: 1
 http://j -spider.sourceforge.net/samplesite/some/fol der/test.html
 REFERENCES: 1
 http://j -spider.sourceforge.net/samplesite/another/index.html
 E-MAIL ADDRESSES: 0
Here, out expectations are confirmed: this resource has a link to a
previous unknown resource!

C. Going not too deep

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 63/121

Now, suppose we’re not interested in resources that are deeper
then 2 levels in the site.
Let’s configure a rule for that!
We’re going to do this one the site level, although we also could
have configured it on the global level (jspider.properties), then it
would be applied on all sites.
Since we only spider one site, this doesn’t matter for now.

Open the conf/default/sites/default.properties, and add a rule to the
end:

site.rules.spider.count= 3

site.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.InternallyReferenc edOnlyRule

site.rules.spider.2.class=
 net.javacoding.jspider.mod.rule.ForbiddenPathRule
site.rules.spider.2.config.path=/content/javadoc

site.rules.spider.3.class=
 net.javacoding.jspider.mod.rule.BoundedDepthRule
site.rules.spider.3.config.depth. min=0
site.rules.spider.3.config.depth.max=2

This will cause any resource in a third-level folder or deeper to be
ignored!

Now, spider again, and see that these resources are found:
 [Site: http://j -spider.sourceforge.net - ROBOTSTXT_HANDLED *]
 http://j-spider.sf.net/samplesite/unexisting.html
 http://j -spider.sf.net/robots.txt
 http://j -spider.sf.net/samplesite/some/folder/test.html
 http://j -spider.sf.net/samplesite/
 http://j -spider.sf.net/samplesite

Now, let’s look at the statuses:

?? http://j-spider.sf.net/samplesite/unexisting.html
o FETCH_ERROR, same as before

?? http://j-spider.sf.net/robots.txt
o PARSE_IGNORED, same as before

?? http://j-spider.sf.net/samplesite/some/folder/test.html
o FETCH_IGNORED, because of our rule:

 http://j -spider.sour ceforge.net/samplesite/some/folder/test.html
 STATUS : FETCH_IGNORED

 SPIDER DECISION :
 [DecisionStep] GENERAL rule
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule –
 ACCEPT - (no comment given)
 [DecisionStep] GENERAL rule Ruleset –
 ACCEPT - ruleset final decision
 [DecisionStep] SITE rule

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 64/121

 net.javacoding.jspider.mod.rule.InternallyReferencedOnlyRule –
 ACCEPT - url is within same site - accepted
 [DecisionStep] SITE rule
 net.javacoding.jspider.mod.rule.ForbiddenPa thRule –
 DON'T CARE - (no comment given)
 [DecisionStep] SITE rule
 net.javacoding.jspider.mod.rule.BoundedDepthRule –
 IGNORE - depth is 3, higher than maximum 2
 [DecisionStep] SITE rule Ruleset –
 IGNORE - ruleset final decision

 PARSE DECISION :
 [Not yet taken]

?? http://j-spider.sf.net/samplesite/
o FETCHED, same as before

?? http://j-spider.sf.net/samplesite
o FETCHED, same as before

These resources are missing this time, because they were only
referenced from resources that are now ignored because of our new
rule, or by other resources that are not found anymore:

?? http://j-spider.sf.net/samplesite/forbidden/resource.html
?? http:// j-spider.sf.net /samplesite/index.html
?? http:// j-spider.sf.net /samplesite/another/index.html

This should have given you a good idea on how to tune your JSpider
configurations for a particular use.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 65/121

XI. Using JSpider-tool

JSpider-tool is a set of utilities built on top of the JSpider
application. It has it’s own set of configuration files, found under
the folder ‘conf/tool’.

JSpider-tool is meant to be a small and simple-to-use test- and
diagnostic tool.
While JSpider on its own is used to spider complete sites, the usage
of jspider-tool limits itself to one web resource only.

The things you can do with JSpider-tool are:

?? Print out the headers sent by a web server
?? Display information about a web resource
?? Show the content of a web resource
?? Download a certain file from a web server to a local file
?? Find all links to other resources in a certain page
?? Find all e-mail addresses mentioned in a web page

We’ll cover these usages one by one

A. Usage

jspider-tool can be started from the same location as the JSpider
application (/bin), and also from anywhere if JSPIDER_HOME is set:

windows:
jspider-tool (toolName) http://lo calhost

unix:
./jspider -tool.sh (toolName) http://localhost

Please remark that since jspider-tool is built on top of JSpider, you
must adapt the jspider.properties file in ‘conf/tool’ to include your
proxy settings.

!

Be careful when editing the configuration files for
jspider-tool (found in /conf/tool).
Since jspider-tool is built on top of JSpider, changing things
in the configuration files may break jspider-tool.

In a typical usage scenario, the only things you should adapt
are your proxy settings.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 66/121

B. Tools

There are several tools implemented in JSpider-tool.

1. headers

This utility prints out the headers sent by a web server, which can
be very useful in order to understand what’s being sent to web
clients.

Some examples:
jspider-tool headers http: //localhost

Results in something like this:
null:HTTP/1.1 200 OK
Date:Thu, 24 Apr 2003 13:34:11 GMT
Server:Apache/1.3.27 (Win32) PHP/4.3.2 -RC1
Last-Modified:Thu, 10 Apr 2003 13:15:45 GMT
ETag:"0-165-3e956e81"
Accept-Ranges:bytes
Content-Length:357
Keep-Alive:timeout=15, max=100
Connection:Keep -Alive
Content-Type:text/html

If there is a redirect on the resource, you’ll see something like this:
null:HTTP/1.1 302 Found
Date:Thu, 24 Apr 2003 13:37:35 GMT
Server:Apache/1.3.27 (Win32) PHP/4.3.2 -RC1
X-Powered-By:PHP/4.3.2 -RC1
Location:http://localhost/target.html
Keep-Alive:timeout=15, max=100
Connection:Keep -Alive
Transfer-Encoding:chunked
Content-Type:text/html

And if the server gave us a cookie to set, you’ll also find that
information in the output:
null:HTTP/1.1 200 OK
Date:Thu, 24 Apr 2003 13:42:01 GMT
Server:Apache/1.3.27 (Win32) PHP/4.3.2 -RC1
X-Powered-By:PHP/4.3.2 -RC1
Set-Cookie:testCookie=someValue
Keep-Alive:timeout=15, max=100
Connection:Keep -Alive
Transfer-Encoding:chunked
Content-Type:text/html

As you see, inspecting the headers sent back by the web server can
be quite informative!

2. info

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 67/121

The info utility is very similar to the headers utility, but gives a bit
more information:

jspider-tool info http://localhost

URL : http://localhost
HTTP Headers :
 null:HTTP/1.1 200 OK
 Date:Thu, 24 Apr 2003 13:44:13 GMT
 Server:Apache/1.3.27 (Win32) PHP/4.3.2 -RC1
 Last-Modified:Thu, 10 Apr 2003 13:15:45 GMT
 ETag:"0 -165-3e956e81"
 Accept-Ranges:bytes
 Content -Length:357
 Keep-Alive:timeout=15, m ax=100
 Connection:Keep -Alive
 Content -Type:text/html
Mime Type : text/html
Size : 357
Time (ms) : 60

It returns the URL fetched, the mime type, size of the content and
the time it took to fetch the resource.

3. fetch

The ‘fetch’ utility does a real simple job: it fetches the requested
resource and displays it’s content.

jspider-tool fetch http://j -spider.sourceforge.net/robots.txt

results in the robots.txt file being printed out:

User-agent: JSpiderUnitTest
Disallow: /testcases/specific/ robotstxt/disallowedFolder2
Disallow: /testcases/specific/robotstxt/disallowedResource2.html

User-agent: JSpider
Disallow: /testcases/specific/robotstxt/disallowedFolder1
Disallow: /testcases/specific/robotstxt/disallowedResource1.html

4. download

The download utility downloads the requested resource and saves it
in a file on the local filesystem.

jspider-tool download http://j -spider.sourceforge.net/robots.txt
 local_robots.txt

result:

Downloaded resource to 'local_robots.txt' (304 bytes)

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 68/121

You’ll find a file called ‘local_robots.txt’ on your filesystem now.

5. findlinks

The findlinks utility fetches, parses and lists all links found in a
certain resource.

jspider-tool findlinks http://j -spider.sourceforge.net

results in a list of all resources linked to by our project’s main page:

http://j-spider.sourceforge.net/style/ns4_only.css
http://j-spider.sourceforge.net/style/maven_ns4_only.css
http://j-spider.sourceforge.net/style/print.css
http://www.javacoding.net
http://j-spider.sourceforge.net/images/ja karta-logo-blue.gif
http://j-spider.sourceforge.net
http://j-spider.sourceforge.net/images/blue -logo.gif
http://www.javacoding.net
http://www.sourceforge.net
http://j-spider.sourceforge.net/index.html
http://j-spider.sourceforge.net/docs/manual/index.html
http://j-spider.sourceforge.net/docs/manual/install/index.html
http://j-spider.sourceforge.net/docs/manual/install/binaries.html
http://j-spider.sourceforge.net/docs/manual/install/cvs.html
http://j-spider.sourceforge.net/docs/manual/install/ant.html
http://j-spider.sourceforge.net/docs/manual/install/testing.html
http://j-spider.sourceforge.net/docs/manual/usage/index.html
http://j-spider.sourceforge.net/docs/manual/config/index.html
http://j-spider.sourceforge.net/docs/manual/config/proxy.html
http://j-spider.sourceforge.net/docs/manual/config/threading.html
http://j-spider.sourceforge.net/docs/manual/config/sites.html
http://j-spider.sourceforge.net/docs/manual/config/site -props.html
http://j-spider.sourceforge.net/index.html
http://j-spider.sourceforge.n et/project -info.html
http://j-spider.sourceforge.net/maven -reports.html
http://j-spider.sourceforge.net/apidocs/index.html
http://j-spider.sourceforge.net/xref/index.html
http://jakarta.apache.org/turbine/maven/development -process.html

Resources that are linked several times are printed out each time.

6. email

The email tool works the same way as the findlinks tool, but reports
all e-mail addresses found in the web resource:

jspider email http://j -spider.sourceforge.net

Issuing this statement will print out all e-mail addresses found in
this web page.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 69/121

Part

4

Configuration

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 70/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 71/121

XII. Environment

This section explains some environmental configurations that
can/should be made in order to use JSpider.

You can skip this chapter at first, and come back later when you are
more familiar with JSpider.

The only thing you’ll need to do in order to be able to use JSpider, is
to configure an XML parser if you’re using JDK1.3.
Otherwise, no configuration issues explained here are absolutely
necessary to do.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 72/121

A. Java 1.3: XML parser Configuration

JSpider needs an XML Parser in order to read some configuration
files that are specified in XML.
As of Java 1.4 (J2SE1.4), the needed XML API’s and an
implementation are already delivered by the platform.
For Java 1.3, you’ll need to add the XML parser to the classpath in
order to use JSpider.

If you don’t do this, you’ll see an exception like this when starting
JSpider or JSpider-tool:

Exception in thread "main" java.lang.NoClassDefFoundError:
javax/xml/parsers /FactoryConfigurationError
(...StackTrace..)

You can download a free, open source XML parser from Apache,
Xerces. You can find it at:

http://xml.apache.org/dist/xerces -j/

The CLASSPATH is a Java related environment variable that tells
where the system can find needed classes.

The easiest thing to do is to add the xmlApis.jar and parserImpl.jar
files to the {JSPIDER_INSTALLATION_DIR}/lib folder.
After that, add these libraries to the classpath:

Windows:
set CLASSPATH=%CLASSPATH%;../lib/xmlApis.jar
set CLASSPATH=%CLASSPATH%;../lib/parserImpl.jar

Unix:
export CLASSPATH=$CLASSPATH:../lib/xmlApis.jar
export CLASSPATH=$CLASSPATH:../lib/parserImpl.jar
When this is done, you can simply start JSpider from the ‘bin’ folder
and the xml libraries should be found.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 73/121

B. JSPIDER_HOME env. variable

In the section about the usage of JSpider, you’ve learned that you
can start it by launching the jspider.bat or jspider.sh startup script.
Without any extra configuration, this script assumes that your
current working directory is {JSPIDER_INSTALL_DIR}/bin.

This can be problematic if you want to launch JSpider from another
location.

When JSpider is started, it will look for an environment variable
called JSPIDER_HOME. If this is present, that folder is taken as
reference for the JSpider installation.
If this environment variable is not found, the value ‘..’ is assumed,
changing the current directory from the /bin folder to the
{JSPIDER_INSTALLATION_DIR} if started from /bin.

Setting JSPIDER_HOME is very easy:

On unix:
export JSPIDER_HOME=/opt/jspider

On windows:
set JSPIDER_HOME=c: \jspider

make sure you use the path to which you installed JSpider.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 74/121

XIII. Configuration overview

This section will explain how you can configure JSpider to adapt it to
your needs. Most of the explanation will be related to the
configuration of add-on components (plugins and other). While
many standard components come with JSpider, it is possible to
create your own, as described in the developer’s guide.

JSpider configuration consists out of different levels:

?? Common Configuration
?? General configuration
?? Site-specific configuration

A. Common configuration

The common configuration (which is currently limited to logging
configuration), is the place for all system-wide configurations.

B. General configuration

The general configuration exists in several versions. Under the
/conf folder in your JSpider distribution, you’ll find several
configurations. This way, you can create different configurations
from which you can pick one when starting JSpider. This way, it is
easy to keep different configurations for different purposes or
environments.

C. Per-site configuration

Site-specific configurations are part of the general configuration,
but are duplicated for one or more sites.
This way, you can use different settings of certain aspects of
JSpider for different websites.
An example of this would be to use the proxy server to connect to a
website on the internet, while using a direct connection for a site on
the local LAN.

The locations where you can find these are shown in the picture
below (the ‘default’ configuration is assumed – a similar file
structure exists under ‘download’ and ‘checkErrors’ as well):

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 75/121

This information may still seem a bit abstract for now, but you’ll
understand better as we discuss each configuration topic in-depth.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 76/121

XIV. Common configuration

The common configuration defines all JSpider behaviour that is
common to all specifically created configuration sets.
For the moment, the only thing defined here is the logging system.

Under your JSpider distribution directory, you’ll find a
‘common/conf’ folder, which is the folder in which all common
configurations reside:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 77/121

A. Logging subsystem

Logging in JSpider is done via Jakarta Commons-Logging, an open
source wrapper implementation for logging systems. It implements
a very basic logging service itself, but has an interface that can
front any Logging framework.

When JSpider is installed, you’re using the open source Jakarta
Log4j logging framework (http://jakarta.apache.org/log4j) as the
default logging system.

Another logging system that’s supported out-of-the box by JSpider
is JDK1.4 logging (javax.util.logging)

1. Logged items

Be aware that logging is only used for information about JSpider.
It’s startup procedure, eventual configuration or environmental
errors, etc… are the things that are logged.

Spidering events and progression is not logged. These type of
things are dispatched via the event system.
Plugins can then choose to write these things events down in a file
or on the console.

It’s very important to keep the distinction between what output is
produced by plugins (although plugins can also log via the logging
system), and what output is produced by the JSpider logging
subsystem.

Try this by disabling the logging system. Change this line in your
jspider.properties file:

jspider.log.provider=
 net.javacoding.jspider.core.logging.impl.CommonsLoggingLogProvider

To this one:

jspider.log.provider=
 net.javacoding.jspider.core.logging.impl.DevNullLogProvider

And you’ll see what rests when the logging is turned off completely!

2. Configuration

The class that handles the logging is specified in the
jspider.properties file. Normally, this is left on the default setting

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 78/121

(using commons-logging, which will decide on log4j or jdk1.4
logging):

jspider.log.provider=
 net.javacoding.jspider.core.logging.impl.CommonsLoggingLogProvider

You can disable the logging by changing this to:

jspider.log.provider=
 net.javacoding.jspider.core.logging.impl.DevNullLogProvider

Or simply log to the console straight away with:

jspider.log.provider=
 net.javacoding.jspider.core.logging.impl.SystemOutLogProvider

While the possibility to change this is there, normally commons-
logging would be preferable.

3. Using Log4j

Since Log4J is the default logging system used be JSpider, you can
just adapt the ‘log4j.xml’ file that configures it.

By default, we have configured a:

?? Console appender
Which writes logging info to your console (level INFO)

?? File appender
Which writes logging information to a ‘log4j.out’ file in your
output folder (also level INFO)

These should give you a good basis to adapt the logging
infrastructure to your needs.

 Adapting the log4j configuration

How to do this is beyond the scope of this user manual (although
we’ll give some examples of configuration changes in a moment).
Please refer to the log4j information for this. (See the project
website for this information: http://jakarta.apache.org/log4j).

 Configuration change example

When you use JSpider to spider a site with it’s default configuration,
you’ll end up with output on the console that starts like this:

INFO [core.impl.PluginFactory] Loading 4 plugins.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 79/121

INFO [core.im pl.PluginFactory] Loading plugin configuration
'console'...
INFO [mod.plugin.console.ConsolePlugin] Prefix set to '[Plugin] '
INFO [core.impl.PluginFactory] Plugin not configured for local event
filtering
INFO [core.impl.PluginFactory] Plugin Name : Console writer
JSpider module
INFO [core.impl.PluginFactory] Plugin Version : v1.0
INFO [core.impl.PluginFactory] Plugin Vendor :
http://www.javacoding.net
INFO [core.impl.PluginFactory] Loading plugin configuration
'velocity'...
INFO [core.impl.Plugi nFactory] Plugin uses local event filtering
 --- continued ---

Now, open the log4j.xml configuration file, and search for this
piece:

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="INFO"/>
 <param name="Target" value="System.out"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="% -5p [%c] %m%n"/>
 </layout>
 </appender>

Change it to (bold shows the changes):

 <appender name="CONSOLE" class ="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value=" DEBUG"/>
 <param name="Target" value="System.out"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="% -5p {%c{1}} %m%n"/>
 </layo ut>
 </appender>

If you now start JSpider again, it will be quite more verbose, and
reports in a slightly different way:

INFO {PluginFactory} Loading 4 plugins.
INFO {PluginFactory} Loading plugin configuration 'console'...
DEBUG {PluginInstantiator} first trying to instantiate via ctr with
(name, config) params
DEBUG {ConsolePlugin} plugin 'console' prefix is '[Plugin]'
DEBUG {ConsolePlugin} adding space after prefix
INFO {ConsolePlugin} Prefix set to '[Plugin] '
DEBUG {PluginInstantiator} plugin ins tantiated.
INFO {PluginFactory} Plugin not configured for local event filtering
INFO {PluginFactory} Plugin Name : Console writer JSpider module
INFO {PluginFactory} Plugin Version : v1.0
INFO {PluginFactory} Plugin Vendor : http://www.javacoding.n et
INFO {PluginFactory} Loading plugin configuration 'velocity'...
DEBUG {PluginInstantiator} first trying to instantiate via ctr with
(name, config) params
DEBUG {PluginInstantiator} plugin instantiated.
INFO {PluginFactory} Plugin uses local event filt ering

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 80/121

DEBUG {EventDispatcher} EventDispatcher for Plugin 'Velocity Template
JSpider module' configuring...
DEBUG {EventDispatcher} EventFilter for engine events =
net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
DEBUG {EventDispatcher} EventFilte r for monitor events =
net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
DEBUG {EventDispatcher} EventFilter for spider events =
net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
DEBUG {EventDispatcher} EventDispatcher EventDispatcher fo r Plugin
'Velocity Template JSpider module' configured.
 -- continued --

4. Using JDK 1.4 logging

You can enable JDK1.4 logging by simply removing the log4j.jar
library from the JSPIDER/lib folder. This way, the commons-logging
will not find log4j anymore, and fall back to JDK 1.4 logging.
This is of course only possible when you’re using a VM of version
1.4 or higher.
You can customize the logging behaviour by adapting the
confuration file ‘logging.properties’.
Specifics on what you can do in this file can be found on the
java.sun.com site.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 81/121

XV. General configuration

General configuration each have a separate folder under the
JSPIDER/conf folder.
You can pick the wanted one to use when starting JSpider by
typing:
jspider http://localhost myconfig
or (Unix)
./jspider.sh http://localhost myconfig

Which will then search for a ‘myconfig’ folder under the /conf folder
and use that one for the spider session.

A. The ‘default’ configuration.

The default configuration (found under the directory /conf/default)
is the one that is selected when you start JSpider without any
configuration specified, for example:
jspider http://localhost

It is also a good example of a configuration to copy, and to use as a
base for your own custom-made configurations.

The layout of the configuration folder for the ‘default’ configuration
is shown below:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 82/121

B. Other configurations

Next to the ‘default’ one, some other out-of-the box configurations
come with JSpider (for instance, ‘download’ and ‘checkErrors’).

You can start these with:
jspider http://localhost download
And
jspider http://localhost checkErrors
Respectively.

If you create your own folder (for instance: ‘myconf’) under
JSPIDER_HOME/conf, you can start JSpider using this configuration
by using:

jspider http://localhost myconf

It’s always a good idea to copy an out-of-the box configuration (like
‘default’ or ‘download’ to another folder, and to start from there

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 83/121

instead of creating your won from scratch – many settings will be
the same anyway!

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 84/121

C. Configuration Files

There several important files for the general configuration:

?? jspider.properties
?? sites.properties
?? plugin.properties

jspider.properties contains the largest number of settings, and
specifies every configuration this is applicable to all sites.

sites.properties links certain sites to certain site-specific
configurations, which are put under the ‘sites’ subfolder, and are
explained further in this document.

plugin.properties defines which plugins will be used be JSpider to
dispatch events to, and any filtering upon these events.
The actual per-plugin configuration is described in files underneath
the ‘plugins’ subfolder.

You’ll find these inside each configuration folder (conf/default,
conf/download, conf/checkErrors, …).

Jspider.properties will be explained in this section, the other two are
explained in the chapter about per-site configurations and plugin
configuration respectively.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 85/121

D. jspider.properties

The ‘jspider.properties’ file is the main configuration file for JSpider,
and is located directly under the configuration folder of the specific
configuration. (For instance, ‘${JSPIDER_HOME}/conf/default’ for
the default configuration.

This section will explain the customisations that can be done in this
file.

For each section in the configuration file, we’ll explain the purpose,
and show the actual default configuration as found in a freshly
installed JSpider instance.

1. Proxy settings

When spidering sites with JSpider, it is possible that you’ll have to
pass through a proxy server in order to reach sites on the
internet.
It is even possible that you’ll have to provide a username and a
password to authenticate on the proxy server.
This can be configured in jspider.properties by changing these
properties:

jspider.proxy.use=false
jspider.proxy.host=
jspider.proxy.port=
jspider.proxy.authenticate=false
jspider.proxy.user=
jspider.proxy.password=

The property jspider.proxy.use (which defaults to ‘false’)
determines whether a proxy server should be used when doing http
requests.
If this is set to true, you must also provide the jspider.proxy.host
and jspider.proxy.port properties!

In case your proxy server needs authentication, you must also set
the jspider.proxy.authenticate to ‘true’, and fill in the correct
values for your jspider.proxy.user and jspider.proxy.password

A fictive example of such a configuration could be:

jspider.proxy.use=true
jspider.proxy.host=proxy.myisp.com
jspider.proxy.port=8080
jspider.proxy.authenticate=true
jspider.proxy.user=myaccount
jspider.proxy.passw ord=mypassword

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 86/121

When you’re not sure about these settings, you can check your
browser (internet explorer, netscape, mozilla, …) to see the correct
settings for your proxy server.

Setting the wrong properties might result JSpider to seem to “hang”
upon the first request, with a timeout after a long period.
If the proxy server and port is correct, but the authentication
information is not, you would get an HTTP Status 407 (FORBIDDEN)
upon each request.

In the per-site configurations (see later), you’ll be able to define
that the use of the proxy is not needed for certain sites (who reside
on your local network and can be accessed in direct)

2. Threading

JSpider is designed to be multi-threaded. Multiple web requests
are done in parallel, while previously fetched resources are
inspected and interpreted.
There are two groups of threads (pools): Spiders and Thinkers.

Spider threads are the ones that will execute fetch commands (go
out on the network and fetch data).

Thinker threads are used to interprete gathered data, apply rules,
etc…

One thinker thread can keep several spider threads busy in a typical
situation. By default the amount is 1 Thinker and 5 Spiders.
You can change the threading behaviour and it’s monitoring by
changing these properties:

jspider.threads.spiders.count=5
jspider.threads.spiders.monitoring.enabled=true
jspider.threads.spiders.monitoring.interval=1000
jspider.threads.thinkers.count=1
jspider.threads.thinkers.monitoring.enabled=true
jspider.threads.thinkers.monitoring.interval=1000

If enabled, the monitoring generates an overview of the thread pool
occupation every x milliseconds, determined by the interval.
This event will then be received by plugins, who can show a
progress bar, calculate the time elapsed and estimated spidering
finish time, etc…

3. User Agent

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 87/121

The User-Agent sent with each HTTP request by JSpider can be
changed.
The settings for this are commented by default, but can be
uncommented for setting the User Agent to another value than the
default one.
By default, the User Agent string looks like this:

(JSpider 0.4.0 DEV (http://j-spider.sourceforge.net)

You can change this by setting this property:
jspider.userAgent=JSpider (http://j-spider.sourceforge.net)

Please note that there is also a setting site.userAgent on the site-
level (see further) that can override this one in it’s turn on a per-
site basis.

You might want to change the JSpider user agent in the following
cases:

?? Test your dynamic site that generates different output for
different user agents.

?? To pass a very restrictive proxy server that only allows

browsing sessions with a certain browser.

!

Please note that the User Agent is also used to determine
which rules from a site’s robots.txt apply. Changing the user
agent can also change the obeyed rules!

Anyway, the user agent property is commented out by default, so
the string compiled into JSpider, containing it’s version, is used by
default.

4. Rules

Resources are processed in different steps:

?? Discovered when referred by another resource
?? Spidered when fetched
?? Parsed when interpreted and searched for new links

If this process went on forever, JSpider would ultimately index the
whole internet. Because of this, you have to scope the spidering
process.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 88/121

This can be done by creating rules that determine which resources
are eligible for spidering and/or parsing.

In the jspider.properties file, there are rules for both steps:

For the spidering (fetching) of resources:
jspider.rules.spider.count=1
jspider.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule
This makes sure that we only spider resources with the http://
protocol in front of the URL.

And the parsing rules:
jspider.rules.parser .count=1
jspider.rules.parser.1.class=
 net.javacoding.jspider.mod.rule.TextHtmlMimeTypeOnlyRule
Which makes sure that only fetched resources with a mime type
containing “text/html” are parsed.
This way, no URLs are sought in images (gif,jpg,…), text, PDF, and
other file types.

These rules are only on the global level, you can add additional
rules on a per-site level basis.

Before a resource is fetched, it must first pass all spider rules on
the global level, then all spider rules on the site level (taken from
the per-site configuration assigned to the site related to the URL).

Before a resource is parsed, the same procedure is followed with
the global and per-site parsing rules.

There are a number of Rule implementations that come with
JSpider. It is also possible to implement your own. This is
explained in greater detail in the developer manual.

An overview of some rules that come with JSpider:
(all in the package net.javacoding.jspider.mod.rule)

AcceptAllRule

Lets all URLs pass

BaseSiteOnlyRule
Only if the URL is part of the base site (site used to start the
spidering process)

BaseURLOnlyRule
Only if the URL is the same as the base URL (url used to start
the spidering process)

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 89/121

BoundedDepthRule
Rule that accepts an extra min and max depth parameter.
Only if the resource is at a minimum depth of <min> and a
maximum folder depth of <max> in the site, it is accepted.
Parameters:

o depth.min
o depth.max

ExternallyReferencedOnlyRule

Only accepts an URL if it is referred to by a resource from
another site

ForbiddenPathRule
Accepts a path (folder or folders) from which no resources
may be retrieved – can be seen as an addition to robots.txt
disallows
Parameters:

o path

InternallyReferencedOnlyRule
Only accepts URLs if they are references by resources from
the same site

MaxNumberOfURLParamsRule
Only accepts URLs that have a maximum number of
parameters (configurable) in their URL query string
Parameters:

o max

MaxResourcesPerSiteRule
Only accepts a limited number of resources (configurable via a
parameter) from the same site
Parameters:

o max

NoURLParamsRule

Only accepts an URL if it has no HTTP GET parameters (Query
String in the form of “?param=value”)

OnlyDeeperInSiteRule

Only accepts a URL if it is in the same site but ‘deeper’ in the
folder structure than the base URL, the URL used to start the
spidering process

OnlyHttpProtocolRule
 Only accepts a URL if it starts with “http://”

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 90/121

RejectAllRule
 Rejects all resources

TextHtmlMimeTypeOnlyRule
 Only accepts a resource if it’s content type is text/html

Parameters can be passed to the rule like this:

jspider.rule.spider.<rule_nr>.config.<param_name>=<param_value>

An example:

jspider.rules.spider.count=2

jspider.rules.spider.1.class=
 net.javacoding.jspider.mod.rule.OnlyHttpProtocolRule

jspider.rule.spid er.2.class=
 net.javacoding.jspider.mod.rule.BoundedDepthRule
jspider.rule.spider.2.config.depth.min=3
jspider.rule.spider.2.config.depth.max=4

Which will cause any resource that is not on the third or fourth level
in the site’s folder hierarchy to be skipped for fetching.

URLs accepted would be:
http://somesite/one/two/three/file.html
http://somesite/first/second/third/fourth/index.html

URLs rejected could be:
http://somesite
http://somesite/index.html
http://somesite/first/second/third/fourth/fifth/index.html

By combining the rule sets on the global and per-site level, it is
possible to scope the spidering process very good.

By making the distinction between rules for spidering and parsing, it
is possible to fetch certain resources (to see whether they exist),
without parsing them to look for new URLs.
A good example of this would be to check your site for any
outbound links, check these to find any 404 errors (dead links), but
not parse the external site pages, as this might lead us too far.
This way, you can simply check your site for dead links to external
sites.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 91/121

Please not that also the site.handle property in the per-site
configuration can cause any URL from a site assigned that
configuration to be skipped for spidering and parsing.

5. Storage

The object model for JSpider is backed by a Storage
implementation. By default, JSpider uses an in-memory data store.

It is, however, possible to use a JDBC (database) store for this.

!

As of this writing, the JDBC storage option is still
experimental, it has only been tested on MySQL 3, with the
Connector/J MySQL JDBC Driver version 2.14.

If you encounter any problems with the JDBC storage, other
databases or driver versions, please file a bug report on
sourceforge (see appendices at the end of this document for
the bug tracker URL)

In order to enabled the JDBC storage option, comment out this line
in your jspider.properties file (put a “#” in front of it):

jspider.storage.provider=
 net.javacoding.jspider.core.storage.memory .InMemoryStorageProvider

And uncomment the following:

jspider.storage.provider=
 net.javacoding.jspider.core.storage.jdbc.JdbcStorageProvider
jspider.storage.config.driver=com.mysql.jdbc.Driver
jspider.storage.config.url=jdbc:mysql://localhost/jspider
jspider.storage.config.user=
jspider.storage.config.password=

(Don’t forget to adapt the settings to your needs)

This will give JSpider the instructions to use the JDBC storage
option, with the connection information as in the properties.

First, you’ll have to prepare your database with the tables.
There’s a script to do this in the JSpider CVS repository (res/jdbc).
Any time you start JSpider, it will clean up all data in the tables.

You’ll also need to have the appropriate JDBC driver in your
classpath when you start JSpider.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 92/121

You can verify that the JDBC storage option was used by
examining the logs (In this example, the Log4J logging treshhold
was set to TRACE):

INFO [core.storage.StorageFactory] Storage provider class is 'class
net.javacoding.jspide r.core.storage.jdbc.JdbcStorageProvider'
DEBUG [core.storage.jdbc.DBUtil] jdbc driver = com.mysql.jdbc.Driver
DEBUG [core.storage.jdbc.DBUtil] jdbc user =

Of course, you’ll also find you database filled with data after the
spidering process.

Using the JDBC storage has some advantages:

?? uses less memory, can spider larger scopes
?? you can query the database afterwards

There is, however, also the drawback of a performance hit in
comparison to in-memory storage.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 93/121

XVI. Per-site configurations

In ‘sites.properties’, you assign a per-site configuration based on
the host and/or port of each site.
For each configuration specified in this file, you’ll have to add a per-
site configuration file used for handling all sites that are assigned
this specific configuration.

In the picture below, you’ll find three per-site configurations:

The three site configurations found here are:

?? j-spider.sourceforge.net.properties
This configuration will be used when spider our own site

?? skip.properties
This configuration will be used for sites that are out of scope
for processing

?? default.properties
This one will be used for any other site

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 94/121

A. sites.properties

You can create as much different per-site configurations as you
want. The only thing that you have to do, is to assign these
configuration files to specific sites. This is done in
sites.properties.

A snippet from the sites.properties file in the ‘default’ configuration:

jspider.site.config.base=default
jspider.site.config.default=skip

j-spider.sourceforge.net=j -spider.sourceforg e.net

This means that the base site, the site from which JSpider starts
(the one typed at the console when starting JSpider) will be handled
according to the settings in default.properties.

The explicitly mentioned site j-spider.sourceforge.net gets it’s
very own configuration file.

Any site that doesn’t get a separate config file assigned, will
default to the config file ‘skip’ to be used.

If you assign a certain configuration in sites.properties to a site,
you’ll have to make sure that there’s a matching properties file in
the sites subfolder for that configuration.

For example, if you add a line:
www.google.com=anotherconf
Then you’ll have to create a file named ‘anotherconf.properties’ in
the ‘sites’ folder. All spidering actions regarding www.google.com
will then be done according to the settings found in that file.

For the rest of this section, we’ll explain the settings that are in a
site-specific configuration file (the files under the ‘sites’ folder).

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 95/121

B. Site-specific configuration files

The names of the site-specific configurations files is your own
choice, as you reference them from sites.properties.
You must put them under the ‘sites’ subfolder.

We’ll now cover the different settings that can be configured in
these type of files:

1. Site handling

You can configure JSpider to ignore certain sites at all. This is
actually what the ‘skip’ configuration in the default folder does:

site.handle=false

this line makes sure that JSpider doesn’t fetch any resource from
the site (not even robots.txt), but ignores it right away.

The normal setting is:

site.handle=true

If you want to limit your spidering process to one or a few sites
only, you can assigned these sites a certain configuration, while
putting the default configuration to one that has it’s site.handle set
to false. (like the default configuration does):

!

The default configuration is very handy, since it really
scopes JSpider into a single site (the base site for
spidering, typed upon startup).
Any other sites found via links on the base site are mapped
onto the ‘skip’ configuration which has site.handle=false.
Misconfiguration can cause JSpider to be unscoped and
make the whole internet eligible for Spidering – which is
maybe a bit too heavy for our little spider…

2. Robots.txt

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 96/121

As a well-behaving web robot, JSpider is configured to obey any
robots.txt file present on a webserver. If there is no robots.txt file
present, any resource is assumed to be accessible.
When a problem occurs fetching the robots.txt file other than the
file being not present, any resource from the site is ignored for the
rest of the spidering session.

The matching between User-Agents specified in the
robots.txt file is very simple: if the User-Agent specification is a
substring of the current spidering user agent, a match is found.

An example: When using the JSpider default user-agent:
JSpider v0.5.0 -DEV (http://j-spider.sourceforge.net)
The spider would obey the same string, “JSpider”, “spider”, “jspider
v0.5”, etc…
The matching is done in a case-insensitive way.

You can change the behaviour of JSpider towards robots.txt file
handling in such a way that is never retrieved, or never obeyed.
Please use these modified settings only when spidering your own
sites, as it disables the robots.txt support built into JSpider.

These properties control the behaviour:

site.robotstxt.fetch=true
site.robotstxt.obey=true

!

Please don’t use the robots.txt settings for the simple reason
that a webmaster has forbidden robot access to certain parts
of a site or a site as a whole. Contact the webmaster in case
and agree with him on what is allowed.
You can, however, temporarily bypass the robots.txt on your
own sites.

3. Throttling

JSpider can make many requests at the same time. Webservers,
however, have a limited capacity in serving user requests. Also,
when serving more requests at the same time, response times
degrade.

You should have control over when and how often JSpider
makes requests to a web server.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 97/121

This is exactly what the throttle component does. On a per-site
basis, the throttle controls the spider threads, and blocks them if
necessary until they’re allowed to do a next request.

The default configuration in ‘sites/default/properties’ is:

site.throttle. provider=net.javacoding.jspider.core.throttle.impl.Dist
ributedLoadThrottleProvider
site.throttle.config.interval=1000

This will use the DistributedLoad throttle implementation that comes
with JSpider, with an interval of 1000 milliseconds. The result of
this configuration will be that there will be at maximum 1 request
per second towards sites assigned this configuration.

!

The default throttle setting (distributed load with an interval
of one second) is VERY conservative.
Diminishing the interval towards 500 ms or 250ms will speed
up the spider process considerably.
A decent web server shouldn’t have any problem with these
values.

In fact, if you leave this value as-is, your CPU usage will be almost
zero when running JSpider, as most of the time will be spent waiting
for a next timeslot to fetch.
There is, however, a hardcoded minimum of 250 milliseconds to
avoid JSpider to do an accidental DOS attack on a webserver.

An alternative configuration would be:

site.throttle.provider=net.javacoding.jspi der.core.throttle.impl.Simu
ltaneousUsersThrottleProvider
site.throttle.config.thinktime.min=2000
site.throttle.config.thinktime.max=5000

This throttle implementation simulates real users on the web
site. Each Spider thread assigned (see threading configuration) will
become a virtual web surfer, which will be ‘thinking’ and reading
between 2 and 5 seconds before doing another web requests
towards the web server.

Please note that although multiple sites can use the same
configuration file (defined in sites.properties), the throttling (and
all other configured objects) are assigned on a per-site basis.
This means that two sites both using the ‘default’ configuration will
both be throttled independently.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 98/121

JSpider will not fetch more resources in a certain timeframe than
allowed per site.

4. Proxy

The configuration of your proxy server is done in the general
jspider.properties configuration file.
You can, however specify on a per-site basis whether this proxy
should be used for a certain site. If you are spidering a site that is
internal to your network, you could disable the use of the proxy
server for this site:

site.proxy.use=true

enables the use of the proxy server for sites that are assigned this
configuration, while

site.proxy.use=false

disables the use of the proxy server.

5. User Agent

The User-Agent sent with each HTTP request by JSpider can be
changed.
The settings for this are commented by default, but can be
uncommented for setting the User Agent to another value than the
default one.
By default, the User Agent string looks like this:

(JSpider 0.4.0 DEV (http://j-spider.sourceforge.net)

You can change this by setting this property:
site.userAgent=JSpider (http://j-spider.sourceforge.net)

Please note that there is also a setting jspider.userAgent on the
global level (see above), but the setting on site-level can override
that one.
See the jspider.userAgent configuration discussion for some
important remarks regarding the changing of the user agent.

6. Cookies

The handling of cookies is configured on a per-site bases. This
means that you’ll have to decide whether cookies given by the
server will be sent back with later requests.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 99/121

The configuration is quite easy:

site.cookies.use=true

The default value is true, set to ‘false’ to disable cookie support for
all sites assigned the specific configuration.

The biggest reason for JSpider to support cookies, is to allow all
requests towards a certain site during a spidering session to be
handled in one session.

7. Rules

Just like on the global level, you can assign Rules to URLs to be
spidered or parsed on a per-site level. These rules will then be
tested after all general rules have passed.

For more information about how rules work and how they can be
configured, please refer to the general configuration section.

A snippet from sites/default.properties should get you on the right
track:

site.rules.spider.count=2
site.rules.spider.1.class=
 net.javacoding.jsp ider.mod.rule.InternallyReferencedOnlyRule
site.rules.spider.2.class=
 net.javacoding.jspider.mod.rule.ForbiddenPathRule
site.rules.spider.2.config.path=/content/javadoc

site.rules.parser.count=1
site.rules.parser.1.class=
 net.javacoding.jspider.mod.rule .BaseSiteOnlyRule

!

Please note that the per-site rules are configured with
site.rules and not jspider.rules, which is used on the
global level!

This tells JSpider that resources should only be spidered (fetched) if
they were referred by a resource on the same site, and that we’re
going to ignore all resources from the /content/javadoc directory.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 100/121

Only resources from the base site will be interpreted (parsed), all
other resource will not be inspected to find references to other sites
and resources.

!

Debugging a JSpider configuration can become difficult. You
can however, trace the spidering and parsing decisions
taken for each resource.
Just look at the velocity-dump.out file in the output folder
after spidering with the default configuration, and you’ll see
what I mean.
Per resource, you get an overview of each rule applied, and
the decision it took.
This way, you can track down why certain resources where or
where not spidered and/or parsed.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 101/121

XVII. Plugin configuration

The plugin is the type of component that will be of the most
interest to you.
It will receive event notifications during the spidering process,
and has access to the object model of the spidered sites and
resources.

A. Plugin.properties

The plugin.properties file is used to list all plugins that should be
used in the configuration.

It also describes the filtering that should be applied on events
before they are dispatched to any plugin.

These are the settings configured in the plugin.properties file for the
default configuration:

jspider.filter.enabled=false
jspider.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
jspider.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
jspider.filter.spider=
 net.javacoding.jspider.mod.even tfilter.AllowAllEventFilter

jspider.plugin.count=4
jspider.plugin.1.config=console
jspider.plugin.2.config=velocity
jspider.plugin.3.config=statusbasedfilewriter
jspider.plugin.4.config=xmldump

1. Global event filtering

The first part concerns the global event filtering:
jspider.filter.enabled tells whether global event filtering should be
applied. If put to false, the filters are not used.

The settings for jspider.filter.engine, jspider.filter.monitoring
and jspider.filter.spider are classes that will be used for filtering
the events of the corresponding type. You can use other
implementations to filter the events that you don’t want to reach
any plugin.

The default event filters that come with JSpider are:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 102/121

?? net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
Which lets all events pass

?? net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
Which blocks all events

?? net.javacoding.jspider.mod.eventfilter.ErrorsOnlyEventFilter
Which blocks all events except for those expressing an error

Event filtering can also be done on a per-plugin basis (see further)

So, if you want to suppress all monitoring messages, you can
simply change the line:
jspider.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
to
jspider.filter.monit oring=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
and no more monitoring events will reach any plugin.

It is also very easy to implement your own event filters, which is
explained in the developer manual.

2. Plugin definition

The second part of the file defines the plugins that should be used
while spidering with the current configuration.
It is simply a list of names given to plugins. Each name must have a
corresponding ‘<name>.properties’ file inside the ‘plugins’ folder.
So, for the line:
jspider.plugin.2.config=velocity
There must be a file named ‘velocity.properties’ inside the ‘plugins’
folder.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 103/121

B. Plugin configuration files

This type of configuration file is put in the ‘plugins’ folder, and can
have any name. Since you define a plugin in plugin.properties, you
should have a file with the name <plugin-name>.properties in the
‘plugins’ folder.

The content of a plugin configuration file is partly dependent on the
plugin.
What you always need is this basis:

plugin.class=net.javacoding.j spider.mod.plugin.console.ConsolePlugin

plugin.filter.enabled=false
plugin.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
plugin.filter.spide r=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter

1. Plugin implementation class

The plugin.class property defines which plugin class will be used
for this plugin. In the example, this is a plugin implementation
class named ‘ConsolePlugin’, which will print information in the
console.

2. Local event filtering

The plugin.filter properties work the same way as the jspider.filter
properties (see above), but filter events for this plugin only.
Changes made here will not influence other plugins.

!

The filter properties on the plugin level are called
plugin.filter, while on the global level (jspider.properties),
the filter properties are called jspider.filter

3. Plugin parameters

The rest of a plugin configuration file is composed out of parameters
needed by that particular plugin implementation.
A plugin writing a report to a file might need a filename, etc…
We’ll explain the configurations of the default plugins in the next
section.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 104/121

C. Default plugins

Some default plugins come with JSpider. These are:

?? Console
A simple plugin that prints information in the console where
JSpider is started

?? Velocity

A powerful plugin that writes report files according to
customisable templates, based on the Jakarta velocity
template engine.

?? FileWriter

A simple plugin (like the console plugin) that writes spidering
information to a file

?? StatusBasedFileWriter

A plugin that organizes web resources according to the HTTP
status (so you’ll end up with a file called 200.out with all good
resource, a file called 404.out, with all 404 error resources, a
file named ‘301.out’ with all redirected resources, etc…

?? DiskWriter

A plugin that creates a file on the file system per fetched
resource, and writes the resource content in it. This can be
used to download web resources or event complete sites to
your local disk.

Of course, you can also implement your own plugin classes. This is
explained in detail in the developer guide.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 105/121

1. Console Plugin

The console plugin is the simplest plugin, and is configured by
putting this line as the setting for plugin.class in your plugin
configuration file:

plugin.class=net.javacoding.jspider.mod.plugin.console.ConsolePlugin

 Configuration

This is enough to configure the console plugins, but some
customisations can be done. An example from the default
configuration:

plugin.config.prefix=[Plugin]
plugin.config.addspace=true

The plugin.config.prefix defines the prefix that is put before each
line printed out by the console plugin.
Whether or not a space should be added after the prefix is
determined via the property plugin.config.addspace

Using different prefixes can be helpful when you configure to
plugins to be a ConsolePlugin, to difference the output between the
two.

 Example

Let’s say you want three different Console plugins:

?? One for monitoring events
?? One for the engine and spidering events
?? One for all errors

You can create these by configuring your plugin.properties like
this:
jspider.filter.enabled=false

jspider.plugin.count=3
jspider.plugin.1.config=monitoring
jspider.plugin.2.con fig=other
jspider.plugin.3.config=errors

This way, we don’t filter any events on the global level, and we
define three plugins.

Now we’re going to create the needed file in the ‘plugins’ folder for
these three plugins, namely:

?? monitoring.properties
?? other.properties

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 106/121

?? errors.properties

In monitoring.properties we’ll put:

plugin.class=net.javacoding.jspider.mod.plugin.console.ConsolePlugin

plugin.filter.enabled=true

plugin.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
plugin.filter.spider=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter

plugin.config.prefix=[Monitoring]
plugin.config.addspace=true
By doing so, all events will be filtered out (for this plugin), except
for the monitoring events.
The output will be given fronted by the prefix “[Monitoring] ”.

In other.properties we’ll put:

plugin.class=net.javacoding.jspider.mod.plugin.console.ConsolePlugin

plugin.filter.enabled =true

plugin.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
plugin.filter.spider=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilte r

plugin.config.prefix=[Other]
plugin.config.addspace=true

This way, all non-monitoring related events will be printed out with
a prefix “[Other] “.

And finally, errors.properties will look like:
plugin.class=net.javacoding.jspider.mod.plugin.console.Co nsolePlugin

plugin.filter.enabled=true

plugin.filter.engine=
 net.javacoding.jspider.mod.eventfilter.ErrorsOnlyEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.ErrorsOnlyEventFilter
plugin.filter.spider=
 net.javacoding.jspid er.mod.eventfilter.ErrorsOnlyEventFilter

plugin.config.prefix=[Error]
plugin.config.addspace=true

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 107/121

Which will print any type of event that tells about an error situation
fronted by the “[Error] “ prefix.

 Sample output

If we then spider a host where no web server is running, we get the
following output (snippets – commented in between):
(Not the different prefixes that allow the distinction of the three
plugin instances)

[Monitoring] Module : Console writer JSpider module
[Monitoring] Version: v1.0
[Monitoring] Vendor : http://www.javacoding.net
[Monitoring] Spidering Started, baseURL = http://localhost
This is the monitoring plugin presenting itself …

[Other] Module : Console writer JSpider module
[Other] Version: v1.0
[Other] Vendor : http://www.javac oding.net
[Other] Spidering Started, baseURL = http://localhost
Then the “other” plugin is started.

[Error] Module : Console writer JSpider module
[Error] Version: v1.0
[Error] Vendor : http://www.javacoding.net
[Error] Spidering Started, baseURL = http://localhost
Finally, also the “Error” plugin is started!

[Other] site discovered : http://localhost
[Other] resource discovered: http://localhost
A new site (localhost) and new resource being discovered are
spidering events, which are only accepted by the “other” plugin, due
to the filtering for “error” and “monitoring”.

[Monitoring] Job monitor: 0% (0/1) [S:0% (0/1) | T:0% (0/0)]
 [blocked:1] [assig ned:1]
[Monitoring] ThreadPool Thinkers occupation:0%
 [idle: 100%, blocked: 0%, busy: 0%], size: 1
[Monitoring] ThreadPool Spiders occupation:20%
 [idle: 80%, blocked: 0%, busy: 20%], size: 5

These monitoring events are only received by the monitoring plugin,
again due to event filtering…

[Other]
net.javacoding.jspider.api.event.site.RobotsTXTFetchErrorEvent
robots.txt was unreachable on site '[Site: http://localhost -
ROBOTSTXT_ERROR *]'
[Error]
net.javacoding.jspider.api.event.site.RobotsTXTFetchErr orEvent
robots.txt was unreachable on site '[Site: http://localhost -
ROBOTSTXT_ERROR *]'
The failure to connect to the site (since I didn’t start the webserver)
is a spidering event, thus allowed to pass to the “other” plugin.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 108/121

It is also an error event, so it also passes the filtering for the
“errors” plugin.
It doesn’t reach the monitoring plugin, however, since it is no
monitoring event.

[Other] http://localhost - Ignored for fetching
The notification that a certain resource will not be fetched is only
received by the “other” plugin.

[Other]
SPIDERING SUMMARY :
known urls : 2

 visited urls : 0
 parsed urls : 0
 parse ignored urls : 0
 parse error urls : 0

 not visited urls : 2
 fetching ignored urls .. : 1
 forbidden urls : 0
 fetch error urls : 1

 not yet visited urls .. : 0
Same goes for the spidering summary event, which tells us two
URLs are known during the spidering process:

?? http://localhost
?? http://localhost/robots.txt

Of which the robots.txt caused a fetch error (the web server wasn’t
running in this example)
And the other (the original baseURL – http://localhost) is ignored
for fetching because JSpider wasn’t able to determine whether a
robots.txt file is present

[Monitoring] Spidering Stopped
[Other] Spidering Stopped
[Error] Spidering Stopped
The event that the spidering has stopped is not filterable, so
reaches every plugin.

This example showed how multiple instances of the same plugin
class (Console Plugin in this case) can be combined.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 109/121

2. Velocity Plugin

The velocity plugin is without doubt the most powerful that comes
with JSpider.
Based on the open source template engine ‘velocity’
(http://jakarta.apache.org/velocity), it produces output according to
a template on a per-event basis, as well as an overview report.

Each event that enters a velocity plugin instance, will trigger the
rendering of output according to a template assigned for that event.

When the spidering is done, there is also a possibility to write a
report from the (by then) finished object model.

 Example

The velocity plugin configured in the ‘default’ configuration is a good
example to see how it works.

In the plugin.properties file, you’ll find a plugin definition:
jspider.plugin.2.config=velocity

Which will cause a plugin called ‘velocity’ to be loaded, according to
the settings in ‘plugins/velocity.properties’:

plugin.class=
 net.javacoding.jspider.mod.plugin.velo city.VelocityPlugin
Should look familiar, this is simply the implementation class of the
Velocity plugin.

plugin.config.templatefolder=velocity
plugin.config.trace.write=true
plugin.config.trace.filename=./velocity -trace.out
plugin.config.dump.write=true
plugin.config.dump.filename=./velocity -dump.out
This is the extra configuration needed for the velocity plugin, which
we’ll cover in a moment.

plugin.filter.enabled=true

plugin.filter.engine=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
plugin.filter.spider=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter
This should also look familiar, as it is simply the local event filtering
configuration for the plugin.
Note that we filter out all monitoring events, since we are only

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 110/121

interested in data in our velocity reports, not in spidering progress
and system occupation information.

 Configuration

The extra configuration needed for a velocity plugin are these
properties:

plugin.config.templatefolder=velocity
plugin.config.trace.write=true
plugin.config.trace.filename=./velocity -trace.out
plugin.config.dump.write=true
plugin.config.dump.filename=./velocity -dump.out

Since the velocity plugin maps each incoming event to a template
file, you’ll have to define the name of the subfolder under ‘plugins’,
from where the templates can be loaded.
By default, the plugin.config.templatefolder is named ‘velocity’.
This is thus also the name of the folder you’ll find in the default
configuration.

The property plugin.config.trace.write determines whether the
velocity plugin should write a report for all incoming events during
the spidering process. If this is true, the file in which the output is
rendered is determined by the following property,
plugin.config.trace.filename.

The property plugin.config.dump.write determines whether a
dump of the object model should be rendered according to the
template ‘dump.vm’ after the spidering is done.
If this property is set to true, the plugin.config.dump.filename is
the name of the file written into.

In the default configuration, this is used to write an XML report of
the sites spidered at the end of the process (see the xmldump
plugin, which is a customized velocity plugin specially created for
XML dumping the object model).

The best thing you can do is simply spider something small with the
default configuration, and see the result in the two report files you’ll
find in the /output folder afterwards.

 Creating templates

Creating velocity templates for generating the reports is quite easy:
see the velocity site for the template language syntax.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 111/121

Each event is mapped upon a template, so the event
net.javacoding.jspider.api.event.site.SiteDiscoveredEvent
will be rendered by the template:
/conf/default/plugins/velocity/site/SiteDiscoveredEvent.vm, etc…

The template used for the final dump of the object model is
‘dump.vm’.

You can also use the original templates as a basis to create your
own.

For event templates, the velocity context will contain :

?? eventName
the name of the event (short notation)

?? event
the event object (event class instance) that can be
interrogated

For the dump template, the context will contain:

?? sites
collection of all sites encountered during spidering

?? resources
collection of all resource encountered during spidering

These objects can then be further interrogated (ex: get all folders in
a site, get all resources in each folder, get all data about a resource,
find all references to other resources, etc…)

 Template example

As an example, we’ll take the template for the
ResourceReferenceDiscoveredEvent.

Since the class is
net.javacoding.jspider.api.event.resource.ResourceReferenceDiscov
eredEvent, we’ll find the template in
‘plugins/velocity/resource/ResourceReferenceDiscoveredEvent.vm’:

[${eventName}] from '${event.resource.URL}'
 to '${event.referencedResource.URL}'

This can generate an output like this in the trace file:
[resource.ResourceDiscoveredEvent] from 'http://localhost'
 to 'http://localhost/ second.html'

Which gives you a very flexible way of writing spider reports.

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 112/121

3. FileWriter Plugin

The filewriter plugin is very similar to the console plugin, but it
writes is output in a file, and not on the screen.
This plugin is not used in the default configuration included with
JSpider, but can be added very easily.

 Configuration

The configuration to be done for the FileWriter plugin is very simple.
Only the target filename must be given:

plugin.config.filename=filewriter.out

This way, a file named ‘filewriter.out’ will be created in the JSpider
output directory.

4. Status-Based FileWriter plugin

The status-based filewriter plugin is very handy to look for problems
in a website.
Since it writes the URLs of resources in a file named after the HTTP
status received when fetching that resource, it is easy to see which
resources where found, which were not, which URLs lead to a
redirect, etc…

An example of this plugin can be found in the “checkErrors”
configuration:

plugin.class=
net.javacoding.jspider.m od.plugin.statusbasedfilewriter.StatusBasedFi
leWriterPlugin

plugin.filter.enabled=false

No other configuration is needed.

When you spider a site with this plugin enabled, you’ll find files like
these in the output folder afterwards:

?? 200.out – All perfectly fetched files
?? 301.out – All temporary redirects
?? 302.out – All permanent redirects
?? 404.out – All resources that couldn’t be found
?? 407.out – All resources that were forbidden
?? 500.out – All resources that lead to an internal server error
?? … (other HTTP statuses)

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 113/121

Remark that the files are only present if at least one resource lead
to the corresponding HTTP status.

When the HTTP status is about an error (like a 404), also the
referring page is given.
This way, it is possible to distinguish between missing resources
(should be present on the webserver but is not there), and dead
links because of an error in the link (resource is there but the
reference is incorrect).

5. DiskWriter Plugin

The diskwriter plugin can be used to download web pages to the
local file system. Each time a successful resource fetch is notified
to this plugin, it will write the content down in a file on the
filesystem.

The configuration looks like this (taken from the ‘download’
configuration):

plugin.filter.enabled=true

plugin.filt er.engine=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
plugin.filter.monitoring=
 net.javacoding.jspider.mod.eventfilter.AllowNoneEventFilter
plugin.filter.spider=
 net.javacoding.jspider.mod.eventfilter.AllowAllEventFilter

plugin.clas s=
 net.javacoding.jspider.mod.plugin.diskwriter.DiskWriterPlugin

plugin.config.output.absolute=false
plugin.config.output.folder=.

As you can see, we filtered out the engine and spidering events,
which are of no use to this plugin.

The plugin-specific configuration properties for the download plugin
might some extra explanation:

jspider.config.output.folder is the folder to which downloaded
web pages should be saved. By default, this is a path relative to
the ‘output’ folder.

If you use a dot(‘.’) for this property (as in the given example), web
pages will be downloaded to the output folder itself.

If you want to put an absolute file system path, you must set the
jspider.config.output.absolute to true, which causes the folder to

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 114/121

be interpreted as an absolute path (eg: c:\downloads\sites or
/var/jspider/sites).

After spidering with the DiskWriter plugin enabled, you will find the
structure of the spidered site(s) under the target folder like this:

{FOLDER}/<sitename>/<folder>/resource.html

etc…

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 115/121

Part

5

Appendices

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 116/121

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 117/121

XVIII. Project info

This section contains global information about the JSpider project.

Official WebSite:
http://j-spider.sourceforge.net

Sourceforge.net project website:
http://www.sourceforge.net/projects/j-spider

Download page:
http://sourceforge.net/project/showfiles.php?group_id=65617

CVS repository (Anonymous access, read only):
(set your CVSROOT to this)
:pserver:anonymous@cvs.j-spider.sourceforge.net:/cvsroot/j-spider

Online CVS browsing:
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/j-spider/

Forums:
We currently have three forums (Developer, Help en Open
Discussion). These are the ones that are created by default on
sourceforge:
http://sourceforge.net/forum/?group_id=65617

Bug tracking:
http://sourceforge.net/tracker/?group_id=65617&atid=511632

Feature requests:
http://sourceforge.net/tracker/?group_id=65617&atid=511635

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 118/121

XIX. Versioning

We distinguish different version types:

?? release builds
?? release candidates
?? development builds
?? CVS versions (not released as a download, only in CVS)

A. Release builds

The builds are considered to be stable and released as official
JSpider versions.

Their name is formed as:

jspider-<Major>-<minor>-<revision>
For example: jspider-1-0-0

B. Release candidates

Before each major release, a JSpider version will first do some time
as a release candidate, to ensure that everything is working fine.
No real new functionality will be added to a release candidate before
the actual release. Only bugfixes can be applied. When a release
candidate is considered to be production quality, it is made a
release build.

The name of a release candidate is constructed as follows:

jspider-<Major>-<minor>-<revision>-rc<number>
For example: jspider-1-0-0-rc3

C. Development builds

This type of version is an intermediate step between two version,
with possibly many changes, new (mostly undocumented) new
features, etc…
While we offer these for download to test, they cannot be
considered stable.
It is however important that these are tested!

The name for a development build is constructed as follows:

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 119/121

jspider-<Major>-<minor>-<revision>-dev
For example: jspider-0-5-0-dev

Where the revision will be a pair number

D. CVS Versions

Each time a new release is done (development, release candidate or
major release), a new version number is created for the CVS HEAD.
This way, we can always distinguish between a CVS version
(between two releases) and a released development version.

The name is constructed as follows:

jspider-<Major>-<minor>-<revision>-dev
For example: jspider-0-5-0-dev

Where revision is always odd.

For example, after the jspider-0-5-0-dev release, we will create a
new version to work on in CVS, jspider-0-5-1-dev.
Once this one is good enough to be released, we will create a
jspider-0-5-2-dev or jspider-0-6-0-dev development release.

So a version number with an odd revision is never released as a
download, but is a version that comes straight from CVS, and is in
between two official versions (thus possible unstable).

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 120/121

XX. History

This is a list of all jspider releases (both stable and development).
The names are also the actual CVS tag names that can be used to
check out a certain version.
(listed in reverse order, so most recent is on top)

jspider-0-5-0-dev (2003-05-01 – DEVELOPMENT)

?? First version of User Manual (this doc)
?? Folder-level model implementation
?? Base Href support
?? XML Reporting
?? Email-address handling
?? New default Rule implementations
?? Several bugfixes, refactorings and smaller changes

jspider-0-4-0-dev (2003-04-06 - DEVELOPMENT)

?? Preliminary JDBC storage
?? New logging system
?? DAO-based storage approach
?? Velocity plugin

jspider-0-3-0-dev (2003-02-23 - DEVELOPMENT)

?? Major refactorings
?? Out-of-the-box download configuration
?? Decent cookie support
?? Http header interpretation

jspider-0-2-0-dev (2003-01-04 - DEVELOPMENT)

?? Internal refactorings
?? Task Scheduler introduction
?? Several bug fixes
?? New event filter system
?? Functional JUnit tests
?? Out-of-the-box checkErrors configuration

jspider-0-1-0-dev (2002-11-20 - DEVELOPMENT)

?? Initial release
?? Robots.txt support
?? In-Memory storage of gathered data
?? Basic plugin support

JSpider 0-5-0-dev User Manual

http://j-spider.sourceforge.net 121/121

?? Basic Rules implementation
?? Basic event Filtering

