
User / Developer Guide

2.1.0

Copyright © 2004-2008 Peter Thomas

Table of Contents
Preface ..
1. Introduction ..

1.1. About .. 1
1.2. Release Notes: Version 2.1.0 ... 1

2. Features ..
2.1. Easy to Install .. 2
2.2. Custom Fields .. 2
2.3. Custom Workflow .. 3
2.4. Detailed History View .. 6
2.5. Attachments Support .. 6
2.6. Custom Roles ... 6
2.7. Search Custom Fields ... 7
2.8. Dashboard ... 7
2.9. Search Across All Projects .. 8
2.10. Full Text Search ... 8
2.11. Export to Excel .. 9
2.12. Simple Navigation .. 9
2.13. Cross Referencing of Items ... 10
2.14. Read-Only Access .. 10
2.15. E-mail Integration .. 11
2.16. Multi-Language Support ... 12
2.17. LDAP / CAS authentication support .. 12

3. Installation ..
3.1. Prerequisites .. 13
3.2. Quick Installation ... 13

3.2.1. Notes for Linux / Unix users .. 13
3.2.2. Security and Backup .. 14

3.3. Settings ... 14
3.4. Using only the WAR file .. 15
3.5. Custom Installation .. 15

3.5.1. Edit the "jtrac-init.properties" file ... 15
3.5.2. Set a Servlet context parameter ... 15
3.5.3. Set a System / JVM parameter .. 15

3.6. Using a different database such as MySQL .. 16
3.7. Using a JNDI Datasource .. 16
3.8. Configuring LDAP Authentication .. 17
3.9. Integrating with CAS for Single Sign On ... 17

3.9.1. Changes to web.xml .. 17
3.9.2. Changes to applicationContext-acegi-cas.xml .. 17

3.10. Installing as a Windows Service .. 18
3.11. What to Backup .. 19
3.12. Upgrading .. 19

4. FAQ ..
4.1. Do we really need another issue tracker? .. 20
4.2. What is the JTrac architecture like? ... 20
4.3. Why start with version 2.0? What about 1.0? ... 20
4.4. What is the username and password when you log in for the first time? 20
4.5. How can I help? ... 20

JTrac (2.1.0) ii

4.6. We are heavy users of JTrac but it is running on the embedded HSQLDB database. Can it
cope? .. 21
4.7. Why does JTrac have a limit on custom fields? I really need more! ... 21
4.8. How do I report bugs or feature requests? .. 21
4.9. Why is JTrac not being used as the bug-tracker for this project? You should be eating your
own dog food right? ... 21
4.10. Do you have a list of users or references? ... 22

5. Roadmap ...
5.1. Field-Level "Hide" Permissions .. 23
5.2. Nested Items .. 23
5.3. Custom Validation ... 23
5.4. Custom Scheduled Jobs .. 23
5.5. Submit By Email .. 23
5.6. Screenshot Capture ... 23
5.7. Saved Searches .. 24
5.8. Wiki Engine ... 24
5.9. Subversion Integration .. 24
5.10. Tags .. 24
5.11. RSS Feeds ... 24
5.12. Import from other tools ... 24
5.13. Single Sign On ... 25
5.14. XML API .. 25
5.15. Eclipse Mylyn integration ... 25
5.16. Time Tracking .. 25
5.17. Custom Reports .. 25

6. Interim Builds ...
6.1. Overview ... 26
6.2. Notes on using Interim Builds ... 26

7. Upgrading and Database Migration ..
7.1. Deleting webapp temporary files ... 27
7.2. Upgrading the Database .. 27
7.3. Upgrading Jetty .. 28
7.4. Database Migration .. 28

8. Developer Guide ..
8.1. Pre Requisites .. 29
8.2. Check Prerequisites .. 29
8.3. Download / Extract Source ... 29
8.4. Customize Ant Build Properties File .. 30
8.5. Generate Dependencies Properties File .. 30
8.6. Import project into your IDE ... 30
8.7. Building And Running JTrac ... 31
8.8. Adding a language translation for JTrac ... 31

JTrac

JTrac (2.1.0) iii

Preface
This document is a reference guide for JTrac - the generic issue tracking web-application. This document is not
only a user-guide but can also serve as a reference for developers interested in contributing to JTrac.

This documentation has been generated using the DocBook configuration used by the Spring development
team. This particular simplified DocBook helper package was originally developed by Chris Bauer of the
Hibernate project. Thanks go out to all those who perfected this very handy approach.

JTrac (2.1.0) iv

http://jtrac.info
http://www.springframework.org
http://www.hibernate.org

Chapter 1. Introduction

1.1. About

JTrac is a generic issue-tracking web-application that can be easily customized by adding custom fields and
drop-downs. Features include customizable workflow, field level permissions, e-mail integration, file
attachments and a detailed history view.

JTrac was created after the author felt that he could write a much better alternative to a commercial defect
tracking tool that he was having to use. Development started in 2004. JTrac is ideal for issue tracking or
bug-tracking, but it has been designed to be generic and you can define custom fields to track almost anything
you need.

JTrac development used to be hosted at https://jtrac.dev.java.net but moved to SourceForge in early 2006. The
older working version was based on Spring MVC, Spring JDBC and MS Access and is not being maintained
any more. JTrac 2.0 uses Java 5.0 features and was completely re-written to use Hibernate for persistence and
the Acegi Security framework for Spring. The presentation layer for version 2.0 was mainly using Spring
WebFlow but as of early 2007 (version 2.1.0 onwards) JTrac switched to using the Apache Wicket framework.

JTrac is extremely easy to install and the only pre-requisite is a Java 5 (or higher) Runtime Environment. You
can be up and running in seconds because JTrac comes bundled with a small-footprint web-application server
called Jetty and an embedded database called HSQLDB. Please refer to the installation section of this
documentation for details. You can also choose to drop the WAR file into an application server of your choice
and start using JTrac right away.

1.2. Release Notes: Version 2.1.0

There are no database changes between version 2.0 and 2.1.0. Instructions on how to upgrade are available in
the "upgrading" section of this document. The bundled Jetty web-app server has been upgraded from version
6.0.2 to 6.1.1 but it is not mandatory that you upgrade.

JTrac (2.1.0) 1

https://jtrac.dev.java.net
http://www.hibernate.org/
http://www.acegisecurity.org/
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/Home
http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/Home
http://ptrthomas.wordpress.com/2007/03/02/wicket-impressions-moving-from-spring-mvc-webflow/
http://wicket.apache.org/
http://jetty.mortbay.org/
http://www.hsqldb.org/

Chapter 2. Features
JTrac has all the features that you would expect from a standard issue-tracking application such as support for
file-attachments and e-mail integration. JTrac offers powerful customization options, especially in the areas of
workflow and field-level permissions and compares well to even commercial tools.

2.1. Easy to Install

One of the useful features of JTrac is that it is distributed with an embedded web-application server (Jetty) that
has a very small footprint. If you have Java 5 installed you can be up and running after downloading and
extracting JTrac - by simply using the provided start and stop scripts. JTrac scans its environment on startup
and if a configured database is not detected, HSQLDB is used by default.

If you already have a web-application server that you wish to use (such as Tomcat), you can just drop in the
WAR file provided and sign on into the application straight-away.

You can refer the installation section of this document for more details. JTrac uses Hibernate and so it can use
any database supported by Hibernate.

2.2. Custom Fields

JTrac can be used to effectively track various kinds of things such as Bugs, Action Items and Tasks. You can
easily add the following types of custom fields to a tracker Project (Space):

• Drop Down List

• Free Text Field

• Date Picker

• (Decimal) Number

JTrac (2.1.0) 2

http://jetty.mortbay.org/
http://www.hsqldb.org/
http://tomcat.apache.org/
http://www.hibernate.org
http://www.hibernate.org/80.html

Setting up custom fields for a project

There is a limit to how many custom fields of each type that you can configure for a Space. These limits have
been set after careful consideration and would very rarely fail to suffice. They are as follows: Drop Down - 10,
Free Text - 5, Numeric - 3, Date/Time - 3.

The screenshot below shows how creating a new item would look like for the typical project (space) where
'Severity', 'Module', 'Type' and 'Priority' have been defined as custom fields.

Creating a new item

2.3. Custom Workflow

Each tracker project that you create can have a different workflow. JTrac allows for complete customization of
the tracker-item lifecycle, right down to the names of each intermediate state. It is possible to create very
sophisticated workflows and a visual "map" of the workflow being edited is displayed below the state-transition
toggle-buttons to make it easier to manage.

The default workflow shown below is ideal if you simply want to track issues with just two states - Open and
Closed. However, with just a few mouse clicks, you can turn this into a complex workflow involving multiple
states.

Features

JTrac (2.1.0) 3

Default workflow - before customization

Example of a workflow - after customization

You can even configure whether or not changing of values is permitted given the current state within the
workflow - and that too at a field-level. This flexibility allows for some interesting possibilities. For example,
assume that you want to maintain a "percentage complete" field that can be updated at any time during the
life-cycle of an item. The screenshot below demonstrates how you can set up a drop down field called "%
Complete":

Features

JTrac (2.1.0) 4

Setting up of a drop down custom field called "% Complete"

Then when customizing the roles and field-level permissions, all you need to do is specify that the "%
Complete" field is editable even when the status is "Open".

Making a custom field editable when updating an item (after new item has been created)

This results in the "% Complete" field being available for updating whenever anyone views an item with a
status of "Open". Notice also how the "% Complete" field is added as a column to the "History" section so that
the complete history of changes to this custom field can be viewed.

Features

JTrac (2.1.0) 5

Example of a custom field that can be updated even when status is "Open"

2.4. Detailed History View

JTrac provides a very detailed history view that completely captures all comments or status changes for an
item. The history can be seen when viewing an item as shown above.

2.5. Attachments Support

You can upload file attachments at the time of creating of an item or as many times as required after an item
has been created.

2.6. Custom Roles

JTrac customization does not stop at workflow - you can also define different roles for each tracker project that
you set up. This allows for power and flexibility. For example you could enforce that a "DEVELOPER" role
can only mark "Assigned" items as "Fixed" and that only a "TESTER" role has the power to mark a "Fixed"
item as "Closed". You can even disallow selected roles from being able to create new items. JTrac gives you
complete control over the workflow and you can easily tweak it to fit your existing process rather than the other
way around.

Example of workflow where each role has clearly defined responsibilities.

Features

JTrac (2.1.0) 6

In the example above, the roles highlighted in red on the visual "map" of the workflow being edited mean that
at these points in the workflow - a user with the given role can assign only to other roles. So in this case, the
TESTER can assign a New item only to a DEVELOPER role and not another TESTER. And when an item is in
the "Assigned" state, a DEVELOPER can only assign to a TESTER when changing the status to "Fixed" or
"Rejected".

Field-level permissions can be mapped to roles which allows for even more flexibility. For example, you can
set a project up so that only a "MANAGER" can change the "Severity" level after a bug is submitted. JTrac
makes it possible for you to define very complex workflows, complete with both Status and Role dependent
field-level permissions, and you can do all this within a single admin screen.

2.7. Search Custom Fields

The intuitive search screen (shown below) allows for easy execution of common queries such as find all items
"logged by" or "assigned to" a user (or users). JTrac allows for filtering even on custom fields.

You can navigate back to the search setup screen from the search results screen and have the search parameters
still active. This is useful when trying to tweak complex queries by trial and error.

The search screen - which allows filtering on custom fields

2.8. Dashboard

The default view when you log into JTrac is a very handy dashboard view that provides the most frequently
used statistics at a glance. You can click on any of the numbers to immediately bring up the search results view
listing the items matched. For example, clicking on the count of items "Logged By Me" would immediately
display the list of items initiated by the currently logged in user.

Features

JTrac (2.1.0) 7

Statistics at a glance and search results available with just one click

For each Space, you can also drill-down to a finer level of detail by clicking on the right-arrow 'expand' icon.
This expands the dashboard rows so that you can see a break-up of item counts, not only by whether 'logged by
me' / 'assigned to me' - but against the custom workflow states defined for the Space as well. Again, it is
possible to directly navigate to the items by clicking on the dashboard numbers.

Expanded statistics for a Space showing counts by workflow status

2.9. Search Across All Projects

In addition to be able to search within a single space (project) JTrac allows for searching across all (or a sub set
of) projects that a user is mapped to. For example, in the screenshot of the dashboard above, there are two
projects. The "SEARCH" link at the top of the page (as well as the "search" link on the "totals" row) would
bring up the search wizard that can search across all (or a subset of) the spaces assigned to the currently logged
in user.

2.10. Full Text Search

The summary and even the detailed descriptions of items are indexed and can be searched. Note that if you are
upgrading or migrating databases, you may need to "re-index" which is an option available to admin users.

Features

JTrac (2.1.0) 8

Lucene powered full text search with wildcard support

2.11. Export to Excel

JTrac is able to export the results of any search (or all items in a Space) as an Excel Sheet. The link for this
appears at the top right of the search results screen.

Download search results as an excel sheet

One the data is in a spreadsheet, it is very easy to analyze data and do things like creating pivot-tables and
charts. Many users use the 'export to Excel' feature to fulfil custom reporting requirements.

2.12. Simple Navigation

Most users will use only five screens in JTrac: Dashboard, Create, View, Search and Results. Navigation has
been designed with usability and simplicity in mind. A screenshot of the search results screen is shown below.

Features

JTrac (2.1.0) 9

The search results screen

2.13. Cross Referencing of Items

You can establish bi-directional links between items. For example you can mark an item as being a "duplicate
of" another item. You can easily navigate to related items (and back) when viewing any particular item.

The option to add related items is available when viewing an item after it is created. The navigation is designed
so that you have the option to execute a search before selecting an item to cross-reference.

2.14. Read-Only Access

When setting up a Space you can define whether this space can be viewed by users without having to log-in.

Specify if read-only anonymous access is allowed per-space

Features

JTrac (2.1.0) 10

2.15. E-mail Integration

All status changes for an item will trigger e-mail notifications by default. You can choose to add multiple users
into a "notify list" at the time of raising a new item or updating the history for an item.

Add multiple users to a "notify list" while creating or updating an item

The e-mail content is very nicely formatted HTML and is laid out in the same way as how the screen looks
within JTrac when viewing an item. Users do not need to get used to a different or possibly less pleasing format
such as plain-text.

Example of an e-mail sent by JTrac

Admin users can configure the SMTP / e-mail server that JTrac should use in the "Manage Settings" page. This
page can be accessed from the "OPTIONS" menu. JTrac also can handle an e-mail server that requires
authentication or even a secure connection over HTTPS.

Features

JTrac (2.1.0) 11

2.16. Multi-Language Support

JTrac has complete internationalization support and you can change the user interface language instantly by
editing your user-profile. Adding a translation is very easy and does not require any Java development
expertise. See this section of the developer guide for more details and please consider contributing translations
to the JTrac project.

JTrac has already been translated into the following languages:

• German - de

• Greek - el

• Spanish - es

• Spanish (Argentina) - es_AR

• Spanish (Mexico) - es_MX

• French - fr

• Hungarian - hu

• Italian - it

• Japanese - ja

• Dutch - nl

• Polish - pl

• Portugese (Brazil) - pt_BR

• Russian - ru

• Chinese (China) - zh_CN

• Chinese (Taiwan) - zh_TW

2.17. LDAP / CAS authentication support

JTrac has built-in support for authenticating user credentials against an LDAP or Active Directory server.
Please refer the LDAP section of the installation guide for more details.

JTrac also has support for integrating with a Central Authentication Service (CAS) installation. The install
guide has more details on how to configure single sign-on using CAS.

Features

JTrac (2.1.0) 12

http://www.ja-sig.org/products/cas/

Chapter 3. Installation

3.1. Prerequisites

All you require in order to start using JTrac is Java 5 (or higher). Only a JRE (Java Runtime Environment) is
required and not the full-blown JDK (Java Development Kit).

There is a good chance that Java is already installed on your system and you can verify whether it is ready to
run JTrac by opening a command prompt and typing the following command:

java -version

If the system responds with a java version that is 1.5 or greater, you are ready to download and run JTrac.

You can download Java from here: http://www.java.com/download.

3.2. Quick Installation

Once you have Java you can start using JTrac right away because you do not need to configure a
web-application server or a database. JTrac embeds both of these (Jetty and HSQLDB) to make it easy for you
to evaluate JTrac.

• First, download the latest release from the JTrac downloads area

• Extract the zip file into a directory of your choice

• Double-click or run "start.bat" to start JTrac

• Point your web-browser to http://localhost/jtrac

• Sign on with the user name "admin" and password "admin"

• Start using JTrac

You can use the "stop.bat" script to stop the application. The "start.bat" file configures the Jetty server to use
port 80 which you can easily change by editing "start.bat". You may need to do this if for example JTrac does
not start because a web-server (like Apache or IIS) is already running on port 80.

Remote users should be able to access JTrac over the network by using the machine name instead of "localhost"
in the URL shown above. If there is a problem, it could be due to a firewall running on the machine where
JTrac is installed - and you may have to reconfigure things so that for example "java.exe" is not blocked.

3.2.1. Notes for Linux / Unix users

If you are not on Windows, you may want to rename the start and stop *.bat files to e.g. *.sh for Linux (*.bat is
reported to work for Ubuntu). The commands within the batch files will work unchanged as long as Java has

JTrac (2.1.0) 13

http://www.java.com/download
http://jetty.mortbay.org/
http://www.hsqldb.org/
http://sourceforge.net/project/showfiles.php?group_id=162983&package_id=184104
http://localhost/jtrac

been installed correctly i.e. "java" is in the PATH and it is the expected 1.5 or greater version. You may need to
do things like apply executable permissions to the batch files on Linux, e.g. "chmod +x *.bat". And also -
unless you have "root" permissions, you may face problems starting services on port 80 etc.

3.2.2. Security and Backup

For security reasons, it is best that you change the default "admin" password after installing JTrac, especially if
you are going to make the application accessible on a public-facing web-site over the internet.

JTrac by default will use a "data" directory that will be automatically created within the root folder "jtrac". The
data directory will contain the files needed by HSQLDB (the embedded database) as well as hold uploaded
attachments. When using JTrac in production, this is the location that you should consider backing-up on a
regular basis.

3.3. Settings

For e-mail notifications to work, an SMTP server needs to be configured in JTrac. Users who have the ADMIN
role will be able to access the JTrac configuration settings screen from a link on the "OPTIONS" screen. Note
that you will need to provide values for the "mail.from" and the "jtrac.url.base" properties also, for things like
the hyperlinks within e-mail to work properly. JTrac also supports mail servers that require authentication or
secure connections using SSL. You can refer the descriptions of the available configuration property settings
available from the settings screen as shown below.

If you have trouble getting e-mail to work, one of the things to watch out for is whether there is any firewall
blocking the communication between JTrac and the mail server - for example you may have a firewall runnning
on the machine where JTrac is installed. It is very common for mail servers to be configured to prevent
mail-relay requests from unknown applications or IP addresses so you may need to check with your mail server
administrator.

The JTrac settings screen where you can configure an e-mail / SMTP server

JTrac also can lookup and use a JNDI mail session (javax.mail.Session) if required. If you provide a JNDI
name, JTrac will ignore the SMTP server details provided.

Installation

JTrac (2.1.0) 14

3.4. Using only the WAR file

JTrac is designed so that you can be up and running by just deploying the WAR file into your existing
web-application server. Note that you need a servlet 2.4 compliant container. For example, if you have Apache
Tomcat 5.5.X, you can either copy the WAR file into the [tomcat.home]/webapps folder or choose to upload
the WAR file through the Tomcat console.

JTrac saves database information and uploaded attachments into a directory on the server. This directory is
logically called the "jtrac.home". When you do a "quick-install" of JTrac by just deploying the WAR file, JTrac
creates a ".jtrac" folder in the user home folder and uses that location as the home directory. This is great for
quickly evaluating JTrac but when you actually use JTrac in production you should configure the JTrac home
directory as a location that can easily be backed-up for example.

3.5. Custom Installation

To customize the location of "jtrac.home" you have the following three options. On startup, JTrac tries to detect
the value of "jtrac.home", and checks the following configuration options in the order listed below.

3.5.1. Edit the "jtrac-init.properties" file

If you explode (unzip) the WAR file, you can edit the /WEB-INF/classes/jtrac-init.properties file and customize
the location of "jtrac.home". Note that you can choose to deploy JTrac as an exploded-war and it is not
mandatory that you re-package (zip) the WAR file after editing "jtrac-init.properties".

3.5.2. Set a Servlet context parameter

For example you can specify the jtrac.home using the Tomcat administration console or as follows using a
<Context> parameter.

<Context docBase="${catalina.home}/jtrac/jtrac.war">
<Parameter name="jtrac.home" value="C:/data/jtrac_home"/>

</Context>

3.5.3. Set a System / JVM parameter

If you can easily set a system property called "jtrac.home" within the environment of your application server
then you don't need to edit the WAR file. Please look at the contents of "start.bat" to see an example of how the
appropriate JVM (Java Virtual Machine) parameters can be set when deploying JTrac. For example, if you are
using Apache Tomcat 5.5.X, you can set an environment variable called JAVA_OPTS before invoking the
startup script (startup.bat / startup.sh). Here is an example for Tomcat 5.5.X on Windows:

set JAVA_OPTS=-Djtrac.home=C:/data/jtrac_home -Dfile.encoding=UTF-8

Installation

JTrac (2.1.0) 15

http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

If "jtrac.home" has not been configured in any of the above ways, JTrac will create a folder called ".jtrac" in the
user home directory and proceed to use that as "jtrac.home".

3.6. Using a different database such as MySQL

You can configure the database that JTrac uses by editing the "jtrac.properties" file that JTrac expects within
the "jtrac.home" folder. Note that if JTrac does not find a "jtrac.properties" file in the expected location, JTrac
creates a fresh one which is pre-configured for HSQLDB. The contents of this file are as follows:

database.driver=org.hsqldb.jdbcDriver
database.url=jdbc:hsqldb:file:${jtrac.home}/db/jtrac
database.username=sa
database.password=
hibernate.dialect=org.hibernate.dialect.HSQLDialect
hibernate.show_sql=false

You can change the database values and the hibernate dialect to match the settings of a database that you have
already. When JTrac starts, it will connect to the database and create the schema if one does not already exist.

If you edit the "jtrac.properties" file, ensure that there are no trailing spaces in the entries shown above
(especially when cutting and pasting from somewhere). This can save you a lot of frustration!

Don't forget to make the database driver available for the web-application. If you are using the bundled Jetty
web-app server, this is as simple as copying the jar file into the "lib" folder along with the jetty jar files. If you
are using Tomcat, you can either place the jar file under "shared/lib" or within the "/WEB-INF/lib" folder of the
"jtrac" (exploded) WAR itself.

Given below is a sample jtrac.properties file for MySQL. Using the default "root" user is obviously not
advisable from a security point of view and you should try and have a separate user for the database used by
JTrac.

database.driver=com.mysql.jdbc.Driver
database.url=jdbc:mysql://localhost/jtrac
database.username=root
database.password=
hibernate.dialect=org.hibernate.dialect.MySQLDialect
hibernate.show_sql=false

For MySQL, do not use the "autoReconnect=true" parameter in the MySQL URL, this is not recommended by
the MySQL team. The Apache DBCP connection pool used internally by JTrac is configured to refresh stale
database connections.

The default query to test idle database connections is "SELECT 1". This has been reported to not work for
databases such as Derby and Progress because they consider this invalid SQL. You can customize the
validation query by adding a "database.validationQuery" property in "jtrac.properties. If you set the validation
query to an empty string, this effectively disables the periodic testing of idle database connections that Apache
DBCP performs.

3.7. Using a JNDI Datasource

Installation

JTrac (2.1.0) 16

http://dev.mysql.com/doc/connector/j/en/connector-j-usagenotes-j2ee.html#connector-j-usagenotes-tomcat
http://jakarta.apache.org/commons/dbcp/

You can provide a JNDI datasource name as an additional property called "database.datasource.jndiname" in
the "jtrac.properties" file. JTrac will ignore the other database properties in this case.

3.8. Configuring LDAP Authentication

A couple of extra entries in "jtrac.properties" are required in order to configure LDAP authentication. JTrac
will attempt LDAP authentication if an "ldap.url" config entry is present.

ldap.url=ldap://myldaphost
ldap.searchBase=DC=foo,DC=bar,DC=org

The following additional entry is recommended if you are using Active Directory. This switches on an LDAP
optimization that is specific to Active Directory.

ldap.activeDirectoryDomain=MYDOMAIN

The benefit of LDAP authentication is that users can sign-on to JTrac by using their existing LDAP credentials
(username and password). At the moment, LDAP support is limited to authentication and not authorization.
Users still have to be created by an administrator and mapped to the relevant Spaces using the JTrac
administration screens before they can start using JTrac.

3.9. Integrating with CAS for Single Sign On

In order to integrate JTrac with CAS you have to edit a couple of XML files within the "WEB-INF" folder
('web.xml' and 'applicationContext-acegi-cas.xml'). The changes that you need to make are described below.

3.9.1. Changes to web.xml

• Change "applicationContext-acegi.xml" to "applicationContext-acegi-cas.xml". This appears towards the
start of the file in the 'contextConfigLocation' context-param.

• Uncomment the filter and filter-mapping XML for the 'acegi' FilterToBeanProxy

• Uncomment the servlet and servlet-mapping XML for the 'casProxy' ProxyTicketReceptor. You should also
uncomment the associated context-param called 'edu.yale.its.tp.cas.proxyUrl' and customize the value for
your environment.

3.9.2. Changes to applicationContext-acegi-cas.xml

In the XML corresponding to bean id "casProxyTicketValidator" - edit the following property values to suit
your environment:

Installation

JTrac (2.1.0) 17

http://www.ja-sig.org/products/cas/

• casValidate

• proxyCallbackUrl

• trustStore

• loginUrl

• logoutUrl

For more details and troubleshooting, you can refer to the Acegi documentation on CAS integration.

3.10. Installing as a Windows Service

Note that this approach can reportedly apply to other operating systems. If you have been able to do this
successfully on Linux or Mac environments, please consider contributing some documentation on this.

If you choose to use the bundled Jetty web-application server, you can easily install JTrac as a Windows
service so that it can start automatically when the host machine is switched on. One of the big advantages of
this is that the console window will be invisible and will run in the background. You can therefore avoid the
possibility of the Jetty server getting terminated because somebody decided to close "that pesky DOS Window
that gets in the way". Having JTrac start automatically without requiring someone to log-in is ideal when you
have a server that may be restarted occasionally due to power outages or maintenance.

JTrac can be configured as a Windows service by using the Java Service Wrapper project. For convenience, the
JTrac distribution contains a "wrapper.conf" file in the "etc" folder that is pre-configured for the Java Service
Wrapper. But first you have to download the Java Service Wrapper distribution separately. Note that the Java
Service Wrapper project supports other operating systems such as Linux or Mac also.

Place some of the files from the Java Service Wrapper distribution into the JTrac folder structure as follows:

• From the "bin" folder, copy "wrapper.exe" to the "jtrac" root folder

• From the "lib" folder, copy "wrapper.jar" and "wrapper.dll" into the "jtrac/etc" folder

To install JTrac as a windows service, open a command prompt, change to the "jtrac" directory (where you
extracted the JTrac distribution) and run the following command:

wrapper.exe -i etc/wrapper.conf

This will install a windows service called "JTrac-Jetty". You can now go to the Windows - Control Panel ::
Administrative Tools :: Services dialog to start the "JTrac-Jetty" service. Note that this service is configured to
automatically start when Windows starts, by default. To remove the service, you can use the following
command:

wrapper.exe -r etc/wrapper.conf

Installation

JTrac (2.1.0) 18

http://www.acegisecurity.org/guide/springsecurity.html#cas-client
http://jetty.mortbay.org/
http://wrapper.tanukisoftware.org/

The "wrapper.conf" file in the "etc" folder can be modified in case you need JTrac to run on a different port
from the default (80). Look for the "-Djetty.port=80" entry. When running as a service under the Java Service
Wrapper, you can look at the "wrapper.log" file in the "jtrac/logs" folder for troubleshooting.

3.11. What to Backup

Although in practice JTrac has been found to be extremely stable in production - to safeguard against hardware
failures, you should regularly backup the database and stored attachments. If you are using JTrac with the
embedded HSQLDB database, backing up the contents of "jtrac.home" will be sufficient. The HSQLDB data
will be stored as files in a directory called "db" under the JTrac home.

If you are using the JTrac distribution as-is, i.e. if you are using the bundled Jetty application server - the JTrac
home directory will be called "data" and this is created automatically under the folder where you un-zipped
JTrac.

Of course, if you are using a different database you will have to backup the database separately. The
"jtrac.home" would still need to be backed up because this is where uploaded attachments are stored.

3.12. Upgrading

Please refer to the "upgrading" section of this document.

Installation

JTrac (2.1.0) 19

Chapter 4. FAQ

4.1. Do we really need another issue tracker?

JTrac can be installed in a few minutes without having to type any commands and you don't even need to set-up
a database. Configuring an e-mail server for notifications is something easily done through the user interface.
One of the reasons why many people choose JTrac over other open-source issue trackers or bug trackers is
because of how easy it is to set up.

JTrac is also written from the ground up to make use of the very best and latest in Java. For example JTrac is
developed using JDK 5.0 features, uses Apache Wicket, Spring and Hibernate and has full internationalization
support.

JTrac is designed to be able to handle requirements management in the future and this an area where there is a
clear lack of open source tools that support the needs of agile development teams. JTrac also has flexible
workflow capabilities and offers a rare level of control over field-level permissions.

4.2. What is the JTrac architecture like?

The presentation layer is using the Apache Wicket framework.

The service layer uses the Spring Framework. Also the Acegi Security framework for Spring has been used.
JTrac is effectively a "light-weight" Java EE application and any version 2.4 compliant servlet engine is
sufficient for deployment.

Hibernate is used for data persistence. This allows for JTrac to be database neutral and any database supported
by Hibernate can be used.

4.3. Why start with version 2.0? What about 1.0?

There was an earlier version of JTrac which used to be hosted at https://jtrac.dev.java.net That project was
called "jTrac" (with a lowercase 'j') and it was based on Spring JDBC and MS Access. JTrac was completely
re-written to use Spring and Hibernate - and the 2.0 version number reflects this.

4.4. What is the username and password when you log in for
the first time?

username: admin

password: admin

Of course, it is recommended that you change the default password as soon as possible!

4.5. How can I help?

We welcome code contributions in the form of patches which you can submit here. JTrac has a detailed

JTrac (2.1.0) 20

http://wicket.apache.org/
http://www.springframework.org
http://www.acegisecurity.org/
http://www.hibernate.org/
https://jtrac.dev.java.net
http://sourceforge.net/tracker/?atid=825943&group_id=162983

developer guide which can get you up and running even if you are new to Java development.

Do consider contributing a translation which is very easy to do and does not require any knowledge of Java at
all. You can refer to this section of the developer guide for details.

Read the section on interim builds on how you can help by testing the development builds.

4.6. We are heavy users of JTrac but it is running on the
embedded HSQLDB database. Can it cope?

HSQLDB is surprisingly resilient and we have an instance of JTrac running in the place where I work that over
a span of 2 years has accumulated more than 2000 items across multiple spaces with around 200 users. The
database file has grown beyond 10MB but there are still no signs of problems and the application screens still
load fast.

But depending on what you are comfortable with, you can consider moving to another database if your usage is
really high. The upgrading section of this document has details on how you can migrate data from HSQLDB to
other databases such as MySQL.

4.7. Why does JTrac have a limit on custom fields? I really
need more!

JTrac provides an ample number of custom fields which can be used for all kinds of tracking needs. In very rare
cases where people run out of custom fields, it is invariably for "free text" fields. The limit on custom fields is
primarily for performance reasons especially where filtered searches are involved. So when JTrac introduces
the feature of being able to "tag" items, these kinds of things are likely to be covered.

Anyway, if you really, really want more custom fields, the JTrac code is very clean and you can easily
customize a version that meets your requirements. A few people have reported having done this and for
example - this forum thread can help you get started.

4.8. How do I report bugs or feature requests?

Use the SourceForge trackers here:

• Bugs: http://sourceforge.net/tracker/?atid=825941&group_id=162983

• Feature Requests: http://sourceforge.net/tracker/?atid=825944&group_id=162983

4.9. Why is JTrac not being used as the bug-tracker for this
project? You should be eating your own dog food right?

We are just trying to use the SourceForge infrastructure as far as possible and the activity on the SourceForge
trackers translates into higher rankings which is important for project visibility. At this point, we would rather
not get into the details of hosting an instance of JTrac on the internet.

FAQ

JTrac (2.1.0) 21

http://sourceforge.net/forum/forum.php?thread_id=1919986&forum_id=552477
http://sourceforge.net/tracker/?atid=825941&group_id=162983
http://sourceforge.net/tracker/?atid=825944&group_id=162983

4.10. Do you have a list of users or references?

Plenty. Have a look at this page: http://j-trac.wiki.sourceforge.net/references

FAQ

JTrac (2.1.0) 22

http://j-trac.wiki.sourceforge.net/references

Chapter 5. Roadmap
Have a look at our detailed developer guide and you will find that JTrac has one of the most developer-friendly
set-ups among open-source projects. It will take you only a few minutes to be up and running no matter which
Java IDE you use. We actively encourage contributions and with your support JTrac can become better than it
is today.

Apart from using the forums you can also consider joining the JTrac mailing-list.

5.1. Field-Level "Hide" Permissions

In a future version of JTrac, the ability to even hide fields depending on the role and status will be
implemented. The design for this is already in place.

5.2. Nested Items

JTrac will support "nested" items under a first-level "parent" item and the design and database schema for this
is already in place. This will allow users to split tasks into sub-tasks and opens up other possibilities. One of the
plans in the roadmap is to build JTrac into a full-fledged requirements capture tool complete with test-case
management and traceability. JTrac can then be used to manage user-stories or use-cases for agile development
teams.

5.3. Custom Validation

Using Beanshell, users should be able to introduce custom routines to validate item data entered by a user. Even
conditional validation across fields should be possible.

5.4. Custom Scheduled Jobs

Again using Beanshell, users should be able to define routines to execute periodically, say at a pre-determined
time every day. This would allow triggers for events such as slippage of a "due-date" field. This can be
combined with e-mail notifications. Also a daily dashboard summary could be mailed out once the scheduler is
in place. [As of version 2.1.0 - the scheduler is already in place for those who are working on extending JTrac.]

5.5. Submit By Email

JTrac should be able to monitor an e-mail account and incoming e-mail should trigger creation / updation of
items. It would be handy to have attachments submitted through email also.

5.6. Screenshot Capture

Using a Java applet, it should be possible for the user to upload a screenshot directly from the system clipboard.
The user should be able to annotate (e.g. highlight a particular area of) the image before uploading.

JTrac (2.1.0) 23

http://sourceforge.net/forum/forum.php?forum_id=552477
https://lists.sourceforge.net/lists/listinfo/j-trac-users
http://www.beanshell.org/

5.7. Saved Searches

It should be possible for users to save search filters and re-use them.

5.8. Wiki Engine

There is a plan to embed a wiki-engine into JTrac. This will supplement the requirements management road
map.

5.9. Subversion Integration

Integration with Subversion has already been implemented using the JavaSVN library and this will enable
effective integration of bug reports with commit history in the future. You can try out the existing experimental
support by going to the following url of your JTrac installation: http://[hostname]/jtrac/app/svn

Experimental Subversion support: commits per user report

5.10. Tags

A one-to-many data model for being able to tag items "Web 2.0" style is already in place. This would be ideal
to track things such as mapping bugs to software release version numbers, associating keywords with items and
to do all kinds of other cool stuff.

5.11. RSS Feeds

RSS feeds will be introduced so that you can monitor new items and updates to items.

5.12. Import from other tools

Import from other issue tracking systems (such as BugZilla) to be considered. Once complete, this feature will

Roadmap

JTrac (2.1.0) 24

http://subversion.tigris.org/
http://tmate.org/svn/

allow you to import raw data from a spreadsheet, apply any data cleanup needed, identify and load custom
fields / drop down values and finally import the items, creating a new Space and users if required.

5.13. Single Sign On

JTrac uses the Acegi Security framework which supports integration with a Central Authentication Service
(CAS) installation. You can refer to the installation guide for how to configure JTrac to use CAS for single sign
on. As of version 2.1.0 JTrac supports LDAP authentication out of the box. This needs to be improved by
adding an admin screen that can browse and add users from an LDAP server. Authorization using LDAP and
allowing users to plug in custom authentication and authorization routines would be good to have as well.

5.14. XML API

JTrac should be able to expose a remote XML API (SOAP or REST) so that core functionality can be invoked /
integrated with other systems.

5.15. Eclipse Mylyn integration

Mylyn (previously known as Mylar) integration in the form of a connector (Eclipse plugin) is currently being
implemented. The remote API mentioned above is also being developed (REST).

5.16. Time Tracking

The database schema already has support for capturing planned vs actual effort against items. This needs to be
implemented and obviously will open up a lot of possibilities.

5.17. Custom Reports

Although JTrac has an 'Excel Export' feature that should suffice for all your reporting and charting needs, it
would be good to have a reporting engine that allows the user to create custom reports and even schedule
reports to be sent out over e-mail.

Roadmap

JTrac (2.1.0) 25

http://www.acegisecurity.org/
http://www.ja-sig.org/products/cas/
http://www.eclipse.org/mylyn/

Chapter 6. Interim Builds

6.1. Overview

For the convenience of those who would like to test the latest possible builds of JTrac without having to
check-out and compile from version-control, binaries in WAR form are periodically uploaded to the JTrac
web-site at this URL: http://j-trac.sourceforge.net/files/

You would be able to see the time-stamp of the last uploaded binary when you access the above URL.
Subscribers to The JTrac mailing-list would be notified whenever a new binary is available. This is not on a
daily basis at the moment and happens only when significant changes or fixes are made in the development
version.

If you want to stay updated about the status of JTrac development as well as contribute and brainstorm ideas for
incorporation into future releases, please consider joining the JTrac mailing-list at:
https://lists.sourceforge.net/lists/listinfo/j-trac-users

6.2. Notes on using Interim Builds

• Interim builds are provided only as WAR files. If you are using the embedded Jetty webapp-server, you
have to replace the WAR that came along with the formal downloadable distribution.

• When you are replacing the WAR file in an existing installation it is best that you delete the contents of the
webapp-server temporary / work folder before re-starting. Details on how to do this are provided in the
"upgrading" section of this document.

• In rare cases, there may be database schema changes. This will be made clear in the upload notification that
is broadcast on the mailing-list. If you wish to retain existing data, you will have to run a database upgrade
script. Details on how to do this are also provided in the "upgrading" section of this document.

• Even if the database schema has changed, JTrac will re-create the database if one does not exist on startup.
So when trying out the interim builds, this may be all that you really want to do. If you are using JTrac
bundled with Jetty and / or with the embedded HSQLB database, removing the old database is as simple as
deleting the "db" folder in which HSQLDB keeps the data files. Of course, you don't have to disturb your
existing data at all since running a fresh instance of JTrac is as easy as extracting the distribution to a new
directory.

JTrac (2.1.0) 26

http://j-trac.sourceforge.net/files/
https://lists.sourceforge.net/lists/listinfo/j-trac-users

Chapter 7. Upgrading and Database Migration
Upgrading to higher versions of JTrac is usually as simple as replacing the WAR file and deleting the web-app
server temporary / work folder before re-starting. In some rare cases the database schema may have changed
and a script for updating the database would then be provided. It may also happen that upgrading the Jetty
version would be recommended in case you happen to be using the bundled Jetty webapp-server for deploying
JTrac.

7.1. Deleting webapp temporary files

In case you are using the bundled Jetty server in the JTrac distribution, you should delete the contents of the
folder called "work". Note that Jetty expects a folder called "work" to exist when it starts, so ensure that you
leave the empty "work" folder in place.

If you are using another application server please follow the steps for removing temporary files corresponding
to the server that you are using.

7.2. Upgrading the Database

If the JTrac release notes mention database schema changes, you need to additionally run an upgrade script
before restarting the webapp-server with the new WAR in place. Upgrade scripts come in the form of Beanshell
scripts (*.bsh) and would be always released within the "etc" folder of the JTrac downloadable distribution.

These files are tested on HSQLDB and may need minor changes to work with other databases. No
re-compilation is needed, therefore making it extremely easy for you to tweak them if required. Of course it is
strongly recommended that you backup your old data before an upgrade. Please use the JTrac forums for help
and for helping other users with your experiences.

If you are shadowing the development builds you would be able to obtain the latest database upgrade scripts
from here: http://j-trac.svn.sourceforge.net/viewvc/j-trac/trunk/jtrac/etc/ Look for files that end with ".bsh" -
e.g: "jtrac-hsqldb-2_0rc3-to-2_0.bsh"

Steps to follow:

• First, stop the server, JTrac should not be connected to the database.

• The "java" command should be available on the command line.

• Get the latest beanshell jar file (~300 KB) from here: http://www.beanshell.org/bsh-2.0b4.jar

• Get the right JDBC driver for your database. If you have been using the embedded HSQLDB database,
hsqldb-x-x-x.jar will be available in the jtrac war file within "lib".

• Edit the connection params (jdbc URL, username, password) to match your database. For HSQLDB, to
make it easier - you can copy the beanshell jar and the hsqldb jar into the "db" folder of "jtrac.home". The
db folder will contain a "jtrac.script" file. There may also be a "jtrac.log" file. So when you are in the same
directory as the HSQLDB data files, the URL is "jdbc:hsqldb:file:jtrac". Otherwise, replace the "jtrac" part
in the URL with the relative or absolute path of where the "jtrac.script" file exists on your file-system.

• Execute the beanshell script from the command line. The database driver should be added to the classpath

JTrac (2.1.0) 27

http://www.beanshell.org/
http://sourceforge.net/forum/forum.php?forum_id=552477
http://j-trac.svn.sourceforge.net/viewvc/j-trac/trunk/jtrac/etc/
http://www.beanshell.org/bsh-2.0b4.jar

along with the beanshell jar. This is how the command would look like:

java -cp bsh-2.0b4.jar;hsqldb-1.8.0.1.jar bsh.Interpreter jtrac-hsqldb-2_0rc3-to-2_0.bsh

• If there were no errors, you can now upgrade the WAR (don't forget to delete the temporary files) and
restart.

7.3. Upgrading Jetty

If you are using the embedded Jetty web-app server, you can also choose to upgrade the JAR files that make up
Jetty. This is optional, but is as simple as overwriting the contents of the "lib" directory with the corresponding
files within the new distribution. You can easily check if the Jetty related JAR file versions have changed
because the file-names clearly include the version numbers.

7.4. Database Migration

Using the Beanshell based approach above, it is relatively straightforward to port data into another database.
This is useful especially in those cases where you start off using JTrac with the embedded HSQLDB database
and then decide to scale up and move to something like MySQL.

First, you should start the application re-configured to point to the new database and let JTrac do the hard work
of creating all the database tables. It is not necessary for Jtrac to be shut-down before proceeding with the next
step, but don't log-in yet!

A Beanshell script called "jtrac-hsqldb-to-mysql.bsh" is available in the "etc" folder of the JTrac distribution.
You can execute this just like described in the previous section on upgrading. Note that you will need to have
both the database drivers on the classpath in this case. You should of course edit the database connection
parameters (for database 1 and database 2) to suit your environment.

This particular script is extremely generic and it should be possible to use this to migrate across combinations
of databases other than HSQLDB and MySQL.

Upgrading and Database Migration

JTrac (2.1.0) 28

Chapter 8. Developer Guide

8.1. Pre Requisites

• JDK 5.0 (or higher)

• Maven 2.X

• Your Favourite IDE (e.g. NetBeans)

• Access to the internet (or a Maven 2 repository)

The JTrac development environment uses Maven 2 only for dependency management and generating and
deploying the JTrac website hosted at SourceForge. Almost all other development actions (clean, compile etc)
are fired through a detailed Ant script that is able to use the dependency information managed by Maven. Using
Maven ensures that no binaries (JAR files) need to be checked into version control at all.

You can get some idea about the details and rationale of the custom Ant + Maven integration approach from
this blog post.

But if you are comfortable using Maven, the pom.xml is Maven 2 compliant which means that you can directly
build the war file without Ant. You can even choose to use the maven-jetty-plugin by uncommenting the
section in pom.xml that declares this.

Although NetBeans is preferred by the JTrac developers, depending on an "IDE Neutral" Ant script ensures that
you would easily be able to use Eclipse (or any other IDE of your choice) without any problems.

If you get stuck or have any questions about setting up and getting started, feel free to use the JTrac forums for
help.

8.2. Check Prerequisites

Maven 2 should be in your "PATH". You can test this out by opening a command prompt and trying to run the
command "mvn". If this is set, you are ready to move to the next step.

8.3. Download / Extract Source

Download the source code from SourceForge and extract it to a convenient location. Note that the source code
is a separate download from the main (binary) and the file name will be of the form "jtrac-src-X.Y.Z.zip".

You could choose to check out the source code directly from the JTrac SourceForge Subversion repository. The
Subversion URL for the JTrac source code is as follows:

https://j-trac.svn.sourceforge.net/svnroot/j-trac/trunk/jtrac

If you are behind a corporate firewall that requires NTLM authentication, you can try a tool called NTLMAPS

JTrac (2.1.0) 29

http://maven.apache.org/
http://ptrthomas.wordpress.com/2006/04/18/another-way-to-integrate-maven-2-with-ant-and-netbeans/
http://maven.apache.org/plugins/maven-war-plugin/
http://maven.apache.org/plugins/maven-war-plugin/
http://mortbay.org/maven-plugin/
http://sourceforge.net/forum/forum.php?forum_id=552477
http://sourceforge.net/project/showfiles.php?group_id=162983&package_id=184104
http://ntlmaps.sourceforge.net/

to check out from Subversion.

If you are using Windows, we recommend TortoiseSVN as a Subversion client.

8.4. Customize Ant Build Properties File

The downloaded source code should contain a sample "build.properties" file or you can look at the XML
comment provided at the top of "build.xml" for the structure. Actually the couple or so entries are optional and
you will need them only if you want to use Tomcat (instead of Jetty) or use the JMeter script available for
load-testing.

8.5. Generate Dependencies Properties File

Open a command prompt and change to the "jtrac" folder. Run the following command:

mvn antprops:generate

This step will not only download all the required JAR files (which may take time only for the first time), but
also generate a standard properties file that will contain all the information required for the Ant build script to
operate. The file generated is called "build-deps.properties"

Note that you need to perform this step every time the "pom.xml" file changes. This happens rarely and
typically when newer versions of JTrac dependencies (e.g. Spring and Hibernate) are available. Keep watching
for changes in the versions of JTrac dependencies or specifically changes to "pom.xml" to avoid any problems.

If the command does not work, maybe you are not connected to the internet. Here's a tip that may help if you
are behind an HTTP proxy. This has been reported to work even when the proxy requires NTLM
authentication. You can append a parameter when running Maven commands as follows:

mvn antprops:generate -Dhttp.proxyHost=172.19.56.56

Note that if your proxy port is different from the default 80, you will have to add an "http.proxyPort" parameter
as well.

8.6. Import project into your IDE

If you are a NetBeans user you are ready to build and run JTrac! Just use the "Open Project" option from the
"File" menu, browse to and select the "jtrac" folder. You should be able to open it as a valid NetBeans project.

If you want to use Eclipse, that's easy as well. First you have to run the following command and Maven will
then generate the Eclipse project descriptor files for you.

mvn eclipse:eclipse

Developer Guide

JTrac (2.1.0) 30

http://tortoisesvn.tigris.org/
http://jakarta.apache.org/jmeter/

That should create the ".project" and the ".classpath" files. Now its just a matter of importing "Existing Project
into Workspace" within Eclipse. Note that the Eclipse project descriptor files also need to be re-generated when
JTrac dependencies change, i.e. when "pom.xml" changes. Make sure you do this also if you ever run "mvn
antprops:generate".

For Eclipse to work with Maven 2, you have to have a classpath variable called "M2_REPO" set correctly.
Refer the Maven 2 documentation for details on how to do this.

While debugging, if you would like to step through the source of dependencies as well, you can tell Maven to
download sources for dependent jar files. Note that source may not be available for some jars.

mvn eclipse:eclipse -DdownloadSources=true

8.7. Building And Running JTrac

You can explore all the Ant targets that are available. You can also try the "jetty-start" Ant target straight away
that will compile, create and deploy the exploded war as well as boot a Jetty server. For NetBeans users, the
"jetty-start" target is conveniently mapped to the "Run Main Project (F6)" shortcut, once you make JTrac the
"main project". Note that this Ant target is smart enough to detect if Jetty is already running and will perform a
shutdown if required before re-starting.

When starting with freshly checked-out source code, the Ant script may prompt you for a JTrac Version and
then create a "version.properties" file. This process is just to make the JTrac release process easier so it does not
really matter what you type. You would typically need to do this only once in development mode.

Maven has been configured to download the Jetty web server which drastically reduces the amount of setup
that you need to do in order to set up your development environment. Since JTrac creates the HSQLDB
database if required on startup, you do not need to worry about installing, configuring and creating any
database either.

If you want to use Apache Tomcat instead of Jetty, just have "build.properties" point to a valid Tomcat
instance. By now, you may have noticed that because of the Ant script, you don't even need a Tomcat or Jetty
plugin in either NetBeans or Eclipse.

8.8. Adding a language translation for JTrac

JTrac has full internationalization (i18n) support and you can easily add a new language without re-compiling
JTrac. All you need to do is introduce a translated version of the existing "messages.properties" file into the
"/WEB-INF/classes" folder. Note that you will need to unzip the WAR file in order to add more files to it.

For example, if you need to add a translation into French, a file called "messages_fr.properties" should exist.
You can refer the list of Java locale codes here. Note that country specific locales are also supported, for
example "fr_CA" means "French, Canada".

You can look at the existing translations e.g. "messages_de.properties" as examples. Note that JTrac needs to
be restarted for changes to the properties files to take effect. However, switching the language for any user can

Developer Guide

JTrac (2.1.0) 31

http://maven.apache.org/guides/mini/guide-ide-eclipse.html
http://ptrthomas.wordpress.com/2006/03/25/how-to-start-and-stop-tomcat-from-ant/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html

easily be done anytime from the "Edit Your Profile" link on the options screen and this takes effect the instant
the user saves his profile.

You can also get the latest versions of the "messages.properties" as well as the available translations directly
from version control at this url: http://j-trac.svn.sourceforge.net/viewvc/j-trac/trunk/jtrac/src/main/resources/
Since these may change a lot, it is recommended that you check here as well before submitting a translation.
We recommend that you submit translations as attachments on the JTrac patches tracker where we keep track
of code contributions as well.

You can use this nice open-source tool called PRBEditor that really helps by showing the English and
translated versions side by side on a single screen. It also takes care of handling special characters.

Developer Guide

JTrac (2.1.0) 32

http://j-trac.svn.sourceforge.net/viewvc/j-trac/trunk/jtrac/src/main/resources/
http://sourceforge.net/tracker/?atid=825943&group_id=162983
https://prbeditor.dev.java.net/

	JTrac
	Preface
	Chapter 1. Introduction
	1.1. About
	1.2. Release Notes: Version 2.1.0

	Chapter 2. Features
	2.1. Easy to Install
	2.2. Custom Fields
	2.3. Custom Workflow
	2.4. Detailed History View
	2.5. Attachments Support
	2.6. Custom Roles
	2.7. Search Custom Fields
	2.8. Dashboard
	2.9. Search Across All Projects
	2.10. Full Text Search
	2.11. Export to Excel
	2.12. Simple Navigation
	2.13. Cross Referencing of Items
	2.14. Read-Only Access
	2.15. E-mail Integration
	2.16. Multi-Language Support
	2.17. LDAP / CAS authentication support

	Chapter 3. Installation
	3.1. Prerequisites
	3.2. Quick Installation
	3.2.1. Notes for Linux / Unix users
	3.2.2. Security and Backup

	3.3. Settings
	3.4. Using only the WAR file
	3.5. Custom Installation
	3.5.1. Edit the "jtrac-init.properties" file
	3.5.2. Set a Servlet context parameter
	3.5.3. Set a System / JVM parameter

	3.6. Using a different database such as MySQL
	3.7. Using a JNDI Datasource
	3.8. Configuring LDAP Authentication
	3.9. Integrating with CAS for Single Sign On
	3.9.1. Changes to web.xml
	3.9.2. Changes to applicationContext-acegi-cas.xml

	3.10. Installing as a Windows Service
	3.11. What to Backup
	3.12. Upgrading

	Chapter 4. FAQ
	4.1. Do we really need another issue tracker?
	4.2. What is the JTrac architecture like?
	4.3. Why start with version 2.0? What about 1.0?
	4.4. What is the username and password when you log in for the first time?
	4.5. How can I help?
	4.6. We are heavy users of JTrac but it is running on the embedded HSQLDB database. Can it cope?
	4.7. Why does JTrac have a limit on custom fields? I really need more!
	4.8. How do I report bugs or feature requests?
	4.9. Why is JTrac not being used as the bug-tracker for this project? You should be eating your own dog food right?
	4.10. Do you have a list of users or references?

	Chapter 5. Roadmap
	5.1. Field-Level "Hide" Permissions
	5.2. Nested Items
	5.3. Custom Validation
	5.4. Custom Scheduled Jobs
	5.5. Submit By Email
	5.6. Screenshot Capture
	5.7. Saved Searches
	5.8. Wiki Engine
	5.9. Subversion Integration
	5.10. Tags
	5.11. RSS Feeds
	5.12. Import from other tools
	5.13. Single Sign On
	5.14. XML API
	5.15. Eclipse Mylyn integration
	5.16. Time Tracking
	5.17. Custom Reports

	Chapter 6. Interim Builds
	6.1. Overview
	6.2. Notes on using Interim Builds

	Chapter 7. Upgrading and Database Migration
	7.1. Deleting webapp temporary files
	7.2. Upgrading the Database
	7.3. Upgrading Jetty
	7.4. Database Migration

	Chapter 8. Developer Guide
	8.1. Pre Requisites
	8.2. Check Prerequisites
	8.3. Download / Extract Source
	8.4. Customize Ant Build Properties File
	8.5. Generate Dependencies Properties File
	8.6. Import project into your IDE
	8.7. Building And Running JTrac
	8.8. Adding a language translation for JTrac

